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Abstract. This study aims to explore the theoretical application of the Fourier 

transform in analyzing piano audio signals and to identify potential methods for 

detecting mistakes and missed notes. The Fourier transform is a powerful tool for 

revealing the frequency characteristics of audio signals, making it suitable for 

extracting frequency domain features from piano recordings, which can be used 

to compare actual performance with expected spectral features to detect inaccu-

racies. 
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1 Introduction 

1.1 Research Background 

The digital age and increased computational power have accelerated audio signal pro-

cessing research. This field utilizes computational methods to analyze, manipulate, and 

modify musical signals for various applications. Specialized techniques harness musi-

cal elements like rhythm, harmony, timbre, and melody. The diversity and unique prop-

erties of musical signals underpin processing techniques and algorithms[1]. Signal pro-

cessing techniques have revolutionized music generation and analysis. 

Piano audio signals exhibit a broad frequency range, dynamics, and harmonic con-

tent, with complex temporal features. These signals differ from string sounds due to the 

driving point admittance effect[2], posing theoretical challenges like overlapping notes, 

inharmonicity, onset detection issues, harmonic masking, and nonlinearities. Advanced 

signal processing, like time-frequency analysis, can help overcome these challenges. 

Fourier Transform is a mathematical tool used to analyze piano audio signals. It 

breaks down time-domain signals into frequencies, aiding in identifying dominant fre-

quencies and distinguishing sounds. Commonly used in music signal processing, it con-

verts signals from time to frequency domains, revealing spectral characteristics and 

harmonic structures. This approach is valuable in analyzing piano recordings, extract-

ing features like spectral envelopes, and identifying mistakes or missed notes by com-

paring actual and expected spectral features[3]. 
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1.2 Research Objective 

The theoretical goal of this study is to explore how the Fourier transform can be used 

to analyze piano audio signals and theoretically identify mistakes and missed notes. 

1.3 Literature Review 

Fourier Transform analyzes piano audio into frequencies, revealing acoustic properties. 

Hong[3] used it in MATLAB to visualize piano harmonics. Lenssen & Needell[4] de-

veloped DFT & STFT for chord analysis, capturing frequency changes over time. Zhao 

et al.[5] improved scale recognition with FFT-based matched filtering. Eggink et al.[2] 

employed FFT for spectral analysis, focusing on low-frequency harmonics. Joji et al.[6] 

created a Python algorithm using FFT for piano note detection, reducing noise and as-

sessing performance accuracy. The algorithm assesses the frequency and rhythm of the 

piano audio signals to determine a correctness score for the piano play. By converting 

the piano audio signal from the time domain to the frequency domain, the FFT algo-

rithm can be used to accurately identify individual piano notes. 

2 Theoretical Foundation 

2.1 Mathematical Principles of Fourier Transform 

The Fourier transform is a mathematical tool used in audio signal processing. It con-

verts the time-domain input signal into a frequency-domain representation for analysis. 

The connection between frequency and time domains is easily observable in a vibrating 

string. This vibrational motion can be modeled using differential equations with a func-

tion 𝑓(𝑡), where 𝑡 is time. This is time-domain representation of the string motion. Au-

dio signals are recorded in the time domain. 

If a piano string is plucked in such a way that it vibrates only at the fundamental 

harmonic, the standing waves of the vibrating string represent the time domain by a 

single sinusoid of frequency 𝑣0. Thus, the frequency representation function of a vi-

brating string is 𝐹 (𝑓0). In real-world, systems have more than one frequency. This can 

be accounted for by constructing the frequency-domain representation of the frequency 

domain by an infinite series of the harmonics representing the motion [4]. If 𝑓(𝑡) is a 

periodic signal with period 𝑇, the fundamental frequency of the signal is given by: 

 𝒇𝟎 =
𝟏

𝑻
 (1) 

The corresponding angular frequency is given by: 

 𝝎𝟎 = 𝟐𝝅𝒇𝟎 (2) 

The Fourier series expresses the periodic signal 𝑓(𝑡) as the sum of harmonically re-

lated sinusoids or complex exponentials. The general form of the Fourier series is ex-

pressed using complex exponentials: 
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 𝒇(𝒕) = ∑ 𝒄𝒏
∞
−∞ 𝒆𝒋𝒏𝝎𝟎𝒕 (3) 

In equation (3), 𝑐𝑛 represents following complex Fourier coefficients: 

 𝒄𝒏 =
𝟏

𝑻
∫ 𝒇(𝒕)𝒆−𝒋𝒏𝝎𝟎𝒕𝒅𝒕

𝑻=∞

𝑻=𝟎
 (4) 

The Fourier transform stems from the Fourier series, and is used to obtain the fre-

quency-domain representation of a time-domain function. The inverse of the Fourier 

transform returns the time-domain function from a frequency-domain function.  

2.1.1 The Continuous Fourier Transform. 

The relationship between angular frequency (𝜔𝑘) and ordinary frequency (𝑣) is de-

fined by the equation: 

 𝝎𝒌 ≡ 𝟐𝝅𝒌𝒗 (5) 

Then, the Fourier transform defines the relationship between the time-domain func-

tion 𝑓 and its corresponding frequency-domain function 𝐹 as follows: 

 𝑭(𝝎𝒌) ≡ ∫ 𝒇(𝒕)𝒆−𝟐𝝅𝒊𝒌𝒕𝒅𝒕,        𝒌 ∈ (−∞, ∞)
∞

−∞
 (6) 

The above complex exponential has sinusoidal components within it: 𝑒𝑖𝜔𝑡 =
cos(𝜔𝑡) + 𝑖𝑠𝑖𝑛(𝜔𝑡). 

We can derive the inverse Fourier transform from (6): 

 𝒇(𝒕) = ∫ 𝑭(𝝎𝒌)𝒆𝟐𝝅𝒊𝒌𝒕𝒅𝒌,        𝒌 ∈ (−∞, ∞)
∞

−∞
 (7) 

Digital applications of the continuous Fourier transform require the discrete form, 

known as the discrete Fourier transform (DFT). 

2.1.2 The discrete Fourier transform (DFT). 

The DFT for vector 𝑓 ∈ ℂ𝑁 is defined by: 

 𝑭𝒌 ≡ ∑ 𝒇𝒏𝒆−𝒊𝟐𝝅𝒏𝒌/𝑵         𝒌 = 𝟎, 𝟏, … , 𝑵 − 𝟏 
𝑵

𝟐

𝒏=−
𝑵

𝟐
+𝟏

 (8) 

In equation (2) above, 𝑓𝑛 denotes the 𝑛𝑡ℎ entry of the vector 𝑓. The inverse of the 

DFT is: 

 𝒇𝒌 = ∑ 𝑭𝒏𝒆𝒊𝟐𝝅𝒏𝒌/𝑵         𝒌 = 𝟎, 𝟏, … , 𝑵 − 𝟏 
𝑵

𝟐

𝒏=−
𝑵

𝟐
+𝟏

 (9) 

The inverse Fourier transform decomposes the audio signal into the elements of its 

frequency in a way that enables easy extraction of spectral data and perception of indi-

vidual notes by the human ear [4]. For chord detection and audio processing, sinusoids 

are defined as a function of the form: 

250             X. Li



 

 

 𝒙(𝒕) = 𝑨𝒔𝒊𝒏 (𝟐𝝅𝒗𝒕 + ∅) (10) 

Where: 

A – amplitude 

v – radian frequency (rad/sec) 

2πv – frequency (Hz) 

t – time (s) 

∅ - initial phase (radians) 

2πvt + ∅ - instantaneous phase (radians) 

Fourier transforms are based on the complex properties of sinusoids which are de-

fined by Euler’s identities: 

 𝒆𝒊𝜽 = 𝐜𝐨𝐬(𝜽) + 𝒊 𝐬𝐢𝐧 (𝜽) (11) 

 𝒆±𝒊𝟐𝝅𝒗𝒙 = 𝐜𝐨𝐬(𝟐𝝅𝒗𝒙) ± 𝒊 𝒔𝒊𝒏(𝟐𝝅𝒗𝒙) (12) 

Equation (12) is the form most relevant to audio signal processing. 

2.2 Spectral Characteristics of Piano Audio Signals 

The harmonic structure and fundamental frequency (𝑓0) of piano notes are unique and 

complex due to their harmonic content. The fundamental frequency is the lowest fre-

quency of the audio signal corresponding to the pitch of each note played. In addition, 

each note produces a series of harmonics (overtones), represented by the integer multi-

ples of the fundamental frequency (2𝑓0, 3𝑓0, 4𝑓0, 5𝑓0, etc.). The inharmonicity of piano 

strings, caused by string stiffness, gives the piano its unique "bright" sound. Each note's 

fundamental frequency and harmonic structure serve as identifying features. Inharmon-

icity algorithms, when modeled accurately, can identify notes by considering deviations 

from perfect harmonic intervals. 

The amplitude envelope and temporal characteristics of piano audio signals reflect 

their unique identification features. The sharp attack, decay rate (influenced by pitch 

and physical properties), sustain and release phases offer distinguishing temporal traits 

that can aid in identifying and distinguishing piano notes. The sustain phase duration 

also informs note sequencing or holding[7]. 

Piano audio signals exhibit a rich spectral content, with harmonics decreasing in 

amplitude as frequency increases. Spectral peaks match known harmonic series for note 

identification. Spectral balance affects brightness and warmth. Higher notes have fewer 

harmonics than lower notes, making them distinguishable. Dynamic range and playing 

force influence spectral characteristics, allowing for note differentiation. 

Spectral characteristics like string and soundboard resonances, sympathetic vibra-

tions, and mechanical noise offer nuanced information for identifying and distinguish-

ing piano notes. Resonances and sympathetic vibrations create subtle spectral varia-

tions, while mechanical noises aid in confirming note onset. 
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3 Theoretical Analysis 

3.1 Theoretical Application of The Fourier Transforms to Piano Audio 

Signals 

Piano audio signals are sampled digitally, and, therefore, DFT is the most common 

form of Fourier transform used: 

 𝑿(𝒌) = ∑ 𝒙(𝒏)𝒆−𝒋
𝟐𝝅𝒌𝒏

𝑵𝑵−𝟏
𝒏=𝟎  (13) 

Where: 

N – number of samples 

k – the frequency components 

When applying the Fourier transform to piano audio signals, we obtain the fre-

quency, amplitude, and phase information of the signals. These components define the 

characteristics of the piano note. The frequency of the signal represents the pitches and 

associated harmonics. The intensity of each frequency component is represented by 

amplitude, which influences the loudness and timbre perceived by a listener. Phase is 

defined as the initial angle of each sinusoidal component at the start of the audio signal. 

Although less perceptible by the human ear, phase angle shapes the waveform of a 

sound wave. The DFT can be used to analyze Fourier transform results of different 

piano notes and their frequency domain representations: 

Case 1: Low A (A2) piano note. 

The low A (A2) note has a fundamental frequency (f0) of ~ 110 Hz. The note gen-

erates a series of harmonics at integer multiples of f0: 

1st harmonic is f0 = 110 Hz; 2nd harmonic is 2×110 Hz = 220 Hz; 3rd harmonic is 

3×110 Hz = 330 Hz. And so on. 

The 1st harmonic is the fundamental component that gives a peak at 110 Hz and 

represents the main pitch of the note. The 2nd and 3rd harmonics give peaks at frequen-

cies of 220 Hz and 330 Hz, respectively. The Fourier transform of these notes reveals 

strong lower harmonics that give a richer and warmer sound. The amplitude spectrum 

tapers off gradually, with the first few harmonics having strong peaks.  

Case 2: Middle C (C4) piano note.  

The middle C4 note has a fundamental frequency of ~ 261.63 Hz. The note gener-

ates a series of harmonics at integer multiples of f0: 

1st harmonic is f0 = 261.63 Hz; 2nd harmonic is 2×261.63 Hz = 523.26 Hz; 3rd 

harmonic is 3×261.63 Hz = 784.89 Hz. And so on. 

The 1st harmonic is the fundamental component that gives a peak at 261.63 Hz and 

represents the main pitch of the note. The 2nd and 3rd harmonics give peaks at frequen-

cies of 523.26 Hz and 784.89 Hz, respectively. As the frequency of these harmonics 

decreases with the increasing integer multiples, their amplitudes decrease, shaping the 

timbre.  

Case 3: High A (A5) piano note.  

The fundamental frequency of the A(A5) piano note is 880 Hz. This high frequency 

means that there are fewer harmonics within the audible range.  
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1st harmonic is f0 = 880 Hz; 2nd harmonic is 2×261.63 Hz = 1760 Hz; 3rd harmonic 

is 3×261.63 Hz = 2640 Hz. And so on. 

Higher harmonics typically have lower amplitudes, giving a thinner sound compared 

to lower notes. 

3.1.1 Deriving the Frequency Domain Representation. 

The frequency domain representations for these notes can be derived by applying 

the Fourier Transform. 

Case 1: Low A (A2) piano tone.  

Fundamental frequency, f0~110 Hz. The time domain representation of A(A2) note 

can be modeled as the summation of the fundamental frequency and its harmonics: 

 𝒙𝑨𝟐(𝒕) = 𝑨𝟎 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕 + ∅𝟎) + ∑ 𝑨𝒏 𝐜𝐨𝐬 (𝟐𝝅𝒏𝒇𝟎𝒕 + ∅𝒏)𝑵
𝒏−𝟏  (14) 

Considering the first three harmonics: 

𝒙𝑨𝟐(𝒕) = 𝑨𝟎 𝐜𝐨𝐬(𝟐𝝅. 𝟏𝟏𝟎𝒕 + ∅𝟎) + 𝑨𝟏 𝐜𝐨𝐬(𝟐𝝅. 𝟐𝟐𝟎𝒕 + ∅𝟏) + 𝑨𝟐 𝐜𝐨𝐬(𝟐𝝅. 𝟑𝟑𝟎𝒕 +
∅𝟐)  (15) 

This is the time-domain representation of the low A (A2) piano note. 

The frequency domain representation is obtained by applying the Fourier transform: 

 𝑿𝑨𝟐(𝑭) = 𝑨𝟎𝒆𝒋∅𝟎𝜹(𝒇 − 𝟏𝟏𝟎) + 𝑨𝟏𝒆𝒋∅𝟎𝜹(𝒇 − 𝟐𝟐𝟎) + 𝑨𝟐𝒆𝒋∅𝟎𝜹(𝒇 − 𝟑𝟑𝟎) (16) 

At 110 Hz, amplitude = A0 and phase = ∅0; At 220 Hz, amplitude = A1 and phase = 

∅1; At 330 Hz, amplitude = A2 and phase = ∅2 

Case 2: Middle C (C4) piano note.  

The time-domain representation of the note can be modeled as: 

 𝒙𝑪𝟒(𝒕) = 𝑨𝟎 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕 + ∅𝟎) + ∑ 𝑨𝒏 𝐜𝐨𝐬 (𝟐𝝅𝒏𝒇𝟎𝒕 + ∅𝒏)𝑵
𝒏−𝟏  (17) 

Considering the first three harmonics: 

𝒙𝑪𝟒(𝒕) = 𝑨𝟎 𝐜𝐨𝐬(𝟐𝝅. 𝟐𝟔𝟏. 𝟔𝟑𝒕 + ∅𝟎) + 𝑨𝟏 𝐜𝐨𝐬(𝟐𝝅. 𝟓𝟐𝟑. 𝟐𝟔𝒕 +
∅𝟏) + 𝑨𝟐 𝐜𝐨𝐬(𝟐𝝅. 𝟕𝟖𝟒. 𝟖𝟗𝒕 + ∅𝟐)  (18) 

Applying the Fourier transform: 

𝑿𝑪𝟒(𝑭) = 𝑨𝟎𝒆𝒋∅𝟎𝜹(𝒇 − 𝟐𝟔𝟏. 𝟔𝟑) + 𝑨𝟏𝒆𝒋∅𝟎𝜹(𝒇 − 𝟓𝟐𝟑. 𝟐𝟔) + 𝑨𝟐𝒆𝒋∅𝟎𝜹(𝒇 −
𝟕𝟖𝟒. 𝟖𝟗)  (19) 

At 261.3 Hz, amplitude = A0 and phase = ∅0; At 523.26 Hz, amplitude = A1 and 

phase = ∅1; At 784.89 Hz, amplitude = A2 and phase = ∅2 

Case 3: High A (A5) piano note.  

The time-domain representation of the note can be modeled as: 

 𝒙𝑨𝟓(𝒕) = 𝑨𝟎 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕 + ∅𝟎) + ∑ 𝑨𝒏 𝐜𝐨𝐬 (𝟐𝝅𝒏𝒇𝟎𝒕 + ∅𝒏)𝑵
𝒏−𝟏  (20) 

Considering the first three harmonics: 
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 𝒙𝑨𝟓(𝒕) = 𝑨𝟎 𝐜𝐨𝐬(𝟐𝝅. 𝟖𝟖𝟎𝒕 + ∅𝟎) + 𝑨𝟏 𝐜𝐨𝐬(𝟐𝝅. 𝟏𝟕𝟔𝟎𝒕 +
∅𝟏) + 𝑨𝟐 𝐜𝐨𝐬(𝟐𝝅. 𝟐𝟔𝟒𝟎𝒕 + ∅𝟐)  (21) 

Applying the Fourier transform: 

 𝑿𝑨𝟓(𝑭) = 𝑨𝟎𝒆𝒋∅𝟎𝜹(𝒇 − 𝟖𝟖𝟎) + 𝑨𝟏𝒆𝒋∅𝟎𝜹(𝒇 − 𝟏𝟕𝟔𝟎) + 𝑨𝟐𝒆𝒋∅𝟎𝜹(𝒇 − 𝟐𝟔𝟒𝟎) (22) 

At 880 Hz, amplitude = A0 and phase = ∅0. At 1760 Hz, amplitude = A1 and phase 

= ∅1. At 2640 Hz, amplitude = A2 and phase = ∅2. 

The Fourier transform decomposes piano audio signals into frequency components, 

showing the harmonic structure properties of each note. In each of the above three 

cases, the representation of each note is defined by the frequencies of the delta func-

tions, the amplitudes, and the phases. Collectively, these audio signal properties the 

harmonic richness, waveform shape, and the perceived loudness of the notes. The 

unique spectral patterns of the notes allow for their distinction. Figure 1 shows the plots 

of the magnitude of the frequency components, where the peaks of fundamental fre-

quency and harmonics of notes A2, C4, and A5 can be visualized. 

 

Fig. 1. Frequency domain representations of notes (a) A2, (b) C4, and (c) A5 based on DFT 

analysis of the notes. The DFT is computed using the FFT algorithm, after applying a Ham-

ming window to the audio signal of a piano note. 

3.2 Theoretical Detection of Mistakes and Missed Notes 

Fourier Transform Analysis (FFT) converts piano audio from time to frequency do-

main, segmenting it into precise timeframes. It identifies notes by matching dominant 

frequencies to predefined spectra of a well-tuned piano. FFT can detect mistakes like 

254             X. Li



 

 

extra or wrong notes by analyzing unexpected frequencies and missed notes by identi-

fying absent expected frequencies. This conversion and analysis enable precise note 

identification and mistake detection. 

3.3 Model Derivation and Validation 

Establishing a theoretical model for detecting mistakes and missed notes in piano audio 

signals requires a good understanding of the characteristics of the signals and how the 

Fourier transform can be used to analyze them. The model is established to detect dis-

crepancies between the actual and expected signals, as an indicator of mistakes or 

missed notes. 

A piano audio signal is a time-domain signal comprising multiple harmonic frequen-

cies that correspond to the notes played. Each of the notes can be modeled as a sum of 

sinusoidal functions. 

Let 𝑥(𝑡) represent a piano audio signal and 𝑖 represent the note played. Then, 

 𝒙𝒊(𝒕) = 𝑨𝒊. 𝐬𝐢𝐧 (𝟐𝝅𝒇𝒊𝒕 + ∅𝒊) (23) 

Where: 

Ai – amplitude of the i-tℎ note; fi – fundamental frequency of the i-tℎ note; ∅i – 

phase of the i-tℎ note 

The sum of individual notes represents the overall piano signal x(t): 

 𝒙(𝒕) = ∑ 𝒙𝒊(𝒕) = ∑ 𝑨𝒊. 𝐬𝐢𝐧 (𝟐𝝅𝒇𝒊𝒕 + ∅𝒊)
𝑵
𝒊=𝟏

𝑵
𝒊=𝟏  (24) 

When the Fourier transform 𝑋(𝑓) of the signal 𝑥(𝑡) is applied: 

 𝑿(𝒇) = ∫ 𝒙(𝒕)𝒆−𝒋𝟐𝝅𝒇𝒕𝒅𝒕
∞

−∞
 (25) 

Based on the linearity of the Fourier transform: 

 𝑿(𝒇) = ∑ 𝑨𝒊[∫ 𝐬𝐢𝐧(𝟐𝝅𝒇𝒊𝒕 + ∅𝒊) 𝒆−𝒋𝟐𝝅𝒇𝒕𝒅𝒕
∞

−∞
]𝑵

𝒊=𝟏  (26) 

Using Euler’s formula (27): 

 𝐬𝐢𝐧(𝟐𝝅𝒇𝒊𝒕 + ∅𝒊) =
𝒆𝒋(𝟐𝝅𝒇𝒊𝒕+∅𝒊)−𝒆𝒋(𝟐𝝅𝒇𝒊𝒕+∅𝒊)

𝟐𝒋
 (27) 

We get: 

 𝑿(𝒇) = ∑
𝑨𝒊

𝟐𝒋
[∫ (𝒆𝒋(𝟐𝝅𝒇𝒊𝒕+∅𝒊)−𝒆𝒋(𝟐𝝅𝒇𝒊𝒕+∅𝒊)

)𝒆−𝒋𝟐𝝅𝒇𝒕𝒅𝒕
∞

−∞
]𝑵

𝒊=𝟏  (28) 

Each component of the Fourier transform will show peaks at frequencies that corre-

spond to the notes played. The Fourier transform algorithm can be simplified and opti-

mized to reduce computational complexity, especially when dealing with high-resolu-

tion and long-term recordings, and improve the efficiency and practicality of the algo-

rithm. The simplified version of equation (28) is: 
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 𝑿(𝒇) = ∑
𝑨𝒊

𝟐𝒋

𝑵
𝒊=𝟏 [∫ (𝟐𝒋𝒔𝒊𝒏(𝟐𝝅𝒇𝒊𝒕 + 𝝋𝒊))𝒆−𝒋𝟐𝝅𝒇𝒕𝒅𝒕

∞

−∞
] (29) 

The FT can be optimized by using FFT to compute the DFT. This allows for the 

analysis of large windows of audio signal much faster when dealing with high-resolu-

tion and long-term recordings. For a discretized signal x[n] sampled at N points, the 

FFT is expressed as: 

 𝑿[𝒌] = ∑ 𝒙[𝒏]𝑵−𝟏
𝒏=𝟎 𝒆−𝒋𝟐𝝅𝒌𝒏/𝑵 (30) 

In equation (30), 𝑘 represents the frequency index. Other optimization techniques 

for the FT include windowing for Short-Time Fourier Transform (STFT), downsam-

pling or decimating the signal for long-term recording, using multiresolution analysis 

with wavelet transform, and pruning insignificant frequencies and associated harmon-

ics. 

Mistakes or missed notes can be detected by comparing the Fourier transform of the 

actual signal and that of the expected signal. The difference function can be defined as 

follows: 

 𝑫(𝒇) = |𝑿𝒂𝒄𝒕𝒖𝒂𝒍(𝒇) − 𝑿𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅(𝒇)| (31) 

Where: 

D(f) – the difference function; Xactual(f) – Fourier transform of the actual signal; 

Xexpected(f) – Fourier transform of expected signal. 

If D(f) ≠ 0 at a specific frequency, then the difference is explained by discrepancies 

between the expected and actual signals, which can either be due to mistakes or missed 

notes. The degree of mistake or missed note can be determined by calculating the en-

ergy difference shown in equation (32): 

 𝑬 = ∫ |𝑿𝒂𝒄𝒕𝒖𝒂𝒍(𝒇) − 𝑿𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅(𝒇)|
𝟐

𝒅𝒇
∞

𝟎
 (32) 

The higher the value of E, the greater the deviation from the expected performance. 

Stability considerations for this model include noise sensitivity, harmonic overlaps, and 

model complexity. 

The model applies to multiple instruments in controlled environments and live per-

formances but may struggle with isolating piano signals amidst others. Source separa-

tion techniques can help. It excels in low-noise, high-quality recordings[8]. Live per-

formances' acoustics and noise may hinder stability, but noise reduction and adaptive 

filtering can help. Validation through diverse testing conditions and performance met-

rics like accuracy, precision, and confusion matrix is crucial. Comparing with existing 

models assesses statistical significance. 
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4 Theoretical Discussion 

4.1 Limitations of Theoretical Analysis 

Some potential limitations of using the Fourier transform in piano signal analysis have 

been mentioned in section 3.3. They include noise interference, signal non-linearity, 

harmonic overlaps, and model complexity. The proposed theoretical model may be sen-

sitive to noise accompanying the audio signal. Noise can introduce unexpected frequen-

cies, which may lead to incorrect detection of mistakes. Filtering techniques such as 

band-pass filtering can be used to improve stability by isolating the fundamental fre-

quencies. Signal non-linearity causes distortion so that the output waveform is different 

from the input waveform. The harmonics in piano notes may also overlap in the Fourier 

spectrum. This phenomenon may complicate the detection process, especially when the 

frequency of the notes falls within a small range. This problem can be mitigated using 

techniques such as wavelet transforms or Short-Time Fourier Transform (STFT), which 

provide time-frequency localization. The stability of the model also depends on its com-

plexity and accuracy. If it does not accurately capture the audio characteristics, then it 

can be difficult to detect mistakes or missed notes. 

4.2 Practical Applications of Theoretical Results 

The theoretical results of Fourier transform analysis can be applied to practical piano 

teaching and performance evaluation. Successful models for accurate note identifica-

tion can be developed by utilizing FFT capabilities. The theoretical results also high-

light the potential to integrate signal processing into the student learning process, for 

example, through real-time feedback to students and real-time assessment of piano per-

formances. This may potentially promote automated student assessment [6]. Beyond 

the academic applications, the theoretical model also extends into real-world applica-

tions. Understanding the harmonic composition and how it contributes to timbre and 

other audio characteristics can inform the design of better musical pianos or the refine-

ment of existing ones to achieve high-output audio qualities. The FFT analysis is di-

rectly applicable in the development of audio signal processing software with effects, 

synthesis, and noise reduction capabilities. Sound engineers and music producers can 

leverage theoretical models to effectively manipulate recordings, to achieve the desired 

qualities of music [3]. 

5 Conclusion 

Fourier Transform analyzes piano audio signals to identify notes by converting them 

from time to frequency domain. It aids in detecting mistakes and missed notes, provid-

ing insights into music recording and performance accuracy. 

The application of the Fourier transform in audio signal processing provides a foun-

dation for future research in music theory. Future research directions include the devel-
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opment of more complex audio signal processing methods for future theoretical explo-

ration and potential application in the realm of the design of musical instruments, sound 

engineering, and music production. Promising technologies include machine learning 

models such as deep learning, and advanced audio feature extraction techniques such 

as constant-Q transforms. Combining deep learning techniques with Fourier transform 

to improve the accuracy and reliability of error detection in piano audio signals. Adap-

tive learning systems could also potentially provide personalized feedback and ensure 

high-precision audio. Another possibility for future research is the standardization of 

data sets and performance evaluation metrics for the detection of mistakes and missed 

notes in piano audio recordings. 
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