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Abstract. This study introduces CB-ResNet and CB-DenseNet anomaly 

detection models that utilise attention mechanisms. The objective is to overcome 

the limitations of classic anomaly detection algorithms, including low detection 

accuracy and unstable model performance. The backbone network utilises the 

convolutional block attention mechanism (CBAM) to improve the extraction of 

target feature information in both spatial and channel dimensions during shallow 

feature extraction. By assigning importance to the extracted features of the CNN 

network, the attention mechanism can eliminate irrelevant information and 

enhance the model's ability to learn anomalous data features. The experimental 

findings demonstrate that both CB-ResNet and CB-DenseNet models, which 

utilise attention mechanisms, may reach detection accuracy over 99%. 

Furthermore, these models exhibit strong stability and possess a high level of 

generalisation capability. We gain superior efficiency compared to conventional 

models such as ResNet and DenseNet. 
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1        Introduction 
 

Anomaly identification in medical images is a prominent area of research in image 

processing and a crucial component of medical diagnosis [1]. Conventional anomaly 

detection algorithms rely on collections of images and struggle to differentiate the 

tiny distinctions between normal and abnormal characteristics in medical imaging. 

Deep learning has demonstrated significant potential in acquiring representations of 

complex data, It has expanded the limits of numerous learning tasks. The objective of 

this study is to develop a model for detecting anomalies in chest X-ray images using 

deep learning algorithms. The  model utilises a convolutional neural network to iden-

tify anomalies by performing image preprocessing, image augmentation, and image 

feature extraction. 

Pan Liyan et.al [2] proposed an improved method utilising AlexNet to categorise 

various types of chest x-rays demonstrating pneumonia. Horry M J suggested employ-
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ing transfer learning as a means to automatically identify individuals with COVID-19 

[3]. The study analysed the effectiveness of state-of-the-art convolutional neural net-

work (CNN) models that have been employed for medical image categorization in 

recent years. These models include VCG19, MobileNetV2 [4], Xception [5], Incep-

tion [6], and Inception-ResNetV2 [7]. After performing a thorough analysis, we de-

termined that VGG19 and MobileNet had better results when compared to the other 

results.  

The paper is organized as follows: In Sect.2, we present the convolutional neural net-

works-ResNet and DenseNet. Section 3 describes two anomaly detection models: CB-

ResNET and CB-DenseNet. Section 4 presents the experimental setup and results. 

Finally, conclusions and future work are drawn in Sec.5. 

The main contributions of this article are: proposing anomaly detection models CB-

ResNet and CB-DenseNet based on attention mechanisms, and applying this model to 

the field of chest X-ray anomaly detection for the first time. Compared with tradition-

al anomaly detection models, the network model proposed in this article has higher 

detection accuracy and shows strong generalization ability. 

 

2        Convolutional Neural Network – CNN 

 

In this section, we introduce the two classical convolutional neural network models 

mainly used in this paper: ResNet and DenseNet.  

 

2.1      Deep residual network  —  ResNet 

 

In recent years, the deep residual network (ResNet) has been widely used to solve the 

degradation problem in deep neural networks by introducing cross-layer connections 

[8], which deepens the network and improves its performance. As shown in Figure 1, 

ResNet uses a cut-off design to input data from previous layers directly into later data 

layers. If the input is x , the desired underlying mapping is ( )H x , and a residual 

mapping is defined as ( ) ( )F x H x x= − , the original mapping function ( )H x can 

be expressed as ( )F x x+ . The introduction of disconnected designs does not add 

other parameters and has no impact on the original network . ResNet can also be 

solved by feedback training through deep neural networks [9]. In the training process, 

errors at the bottom layer can be propagated to the upper layer through the breaking 

mode, effectively avoiding the problem of gradient disappearance caused by too many 

layers and ultimately improving the accuracy of training. 

                      
Fig. 1. Residual block structures of ResNet at different depths 
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2.2      Dense Convolutional Networks — DenseNet 

 

DenseNet is a deep neural network connected between layers [10]. In this dense con-

nection model, the output feature maps by all layers before the current layer are con-

nected along the channel dimension as the input of the current layer, and then the 

output of this layer is used as the input for the subsequent layers. The dense connec-

tion between feature layers can maximize the information exchange among them. The 

dense convolution block and transition layer are the two most important modules in 

the network structure of DenseNet201, in which the growth rate is used to control the 

output of each feature layer. The network structure of DenseNet201 is shown in Fig-

ure 2. 

 

 
Fig. 2. Network structure of DenseNet201 

 

3      Proposed Model of Attention-based Anomaly Detection 
 

A suggested anomaly detection model, CB-ResNET and CB-DenseNet, integrates the 

pre training network  CBAM (Convolutional Block Attention Module) and attention 

mechanism. It is based on ResNet and DenseNet. 

 

3.1     CBAM（Convolutional Block Attention Module） 

 

CBAM is a general-purpose and lightweight module that can be seamlessly integrated 

into any CNN architecture without significant overheads and trained end-to-end to-

gether with base CNNs [11]. There are two sequential sub-modules in CBAM, includ-

ing Channel Attention Module (CAM) and Spatial Attention Module (SAM). CBAM 

is shown in Figure 6(a). CAM is shown in Figure 6 (b). The output feature map of the 

CAM is taken as the input feature map of the SAM, as shown in Figure 3 (c). 

 

Channel Attention Module

Input

Spatial Attention Module

Output

 
(a) Convolutional Block Attention Module (CBAM) 
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(b) Channel Attention Module (CAM) 
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 (c) Spatial Attention Module (SAM) 

 

     Fig. 3. Schematic diagrams of (a )CBAM, (b) CAM, and (c)SAM. 

 

3.2     CB-DenseNet model 

 

In order to improve the performance of CNN-based anomaly detection models for 

chest X-ray images, the CB-DenseNet network was constructed according to the con-

tents above, as shown in Figure 4. The CBAM is embedded into a dense block in the 

DenseNet201 channel, with the CBAM being in front of each 1 1 convolutional layer 

and behind the first three dense blocks. By using the convolutional attention mecha-

nism to extract features at shallow layers, the network efficiency is further improved.  

CNN

CNN

pooling

CBAM

CBAM

CBAM

CBAM

CBAM

CBAM

CBAM

CBAM

CBAM

Global average pooling

Classifier

Result

Dense convolution

block

Dense convolution

block

DenseNet201 Channel  
Fig. 4.  Network structure of CBAM+DenseNet201  

 

The output from the previous convolution block is sequentially fed to the convolution 

layer (Conv), the batch normalization (BN) layer, the rectified linear unit (ReLU) 

layer, and the pooling layer. The output is called an activation map (AM). The chan-

nel optimization activation maps can be obtained: 

( )E CAM D D=                                                  
（1） 

The final output: 

( )F SAM E E= 
                                              

（2） 
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where E represents the channel optimization activation map, F represents the final 

output, and   represents the multiplication operation between elements, The im-

provement of the elements from E to F  is achieved through the channel attention 

mechanism and the space attention mechanism, and the output enters the next level of 

the convolution block for operation. 

 

3.3      CB-ResNet model 

 

Based on the above working principle, the CB-ResNet model is also proposed. In this 

model, ResNet50 with attention mechanism is used as the backbone network. Channel 

attention mechanism and spatial attention mechanism of CBAM are applied in a block 

structure, i.e., channel attention and spatial attention are successively passed before 

the original block and residual structure are connected. 

 

4       Experiment 

 
4.1      Experimental Setting 

 

The experiment was performed using Python 3.6 on the Windows 10 operating sys-

tem. The model was built based on PyTorch. The computer is equipped with a  CPU 

of R7-5800H and a RAM of 16GB. The algorithm was trained and tested with GPU 

acceleration. In the training process, Adam and SGD optimizers were used. All mod-

els iterated the entire training set (Epoch) for 20 and 50 epochs. The Batch Size of 

forward propagation and backpropagation was 32 each time, and the learning rate was 

set to 0.0001. 

 

4.2      Data  

 

This study uses the publicly available Covid-19 dataset. The Covid19-dataset contains 

456 CXR images from confirmed COVID-19 patients, 374 CXR images from patients 

with viral pneumonia, and 285 normal CXR images in PNG format with a resolution 

of 1024×1024 pixels. The dataset is divided into a testing set and a training set. The 

testing set contains 230 CXR images of COVID-19 patients, 226 CXR images of 

patients with viral pneumonia, and 145 normal CXR images. The training set contains 

226 CXR images of COVID-19 patients, 148 CXR images of patients with viral 

pneumonia, and 140 normal CXR images. The typical CXR images from  patients 

with COVID-19 and patients with non-COVID-19 are shown in Figure 5. 
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(a)                                            (b)                                           (c)  

Fig. 5. Chest X-ray images of (a) normal people, (b) patients with COVID-19, and (c) pa-

tients with viral pneumonia (non-COVID-19). 

 

4.3      Evaluation indicators 

 

Precision (P), Recall (R) and F1 scores were selected as evaluation indexes. Precision 

(P) represents the probability that all samples detected positive are actual positive 

samples [12]. This index reflects the detection capability and is calculated by Equ. 3. 

Recall (R) represents the probability of being detected as a positive sample in an actu-

al positive sample, and it is calculated by Equ. 4. In anomaly detection and evalua-

tion, Precision (P) and Recall (R) are commonly used performance evaluation index-

es, but they are often contradictory . To better evaluate the performance of anomaly 

detection algorithms, the F1 score, also known as harmonic mean, is proposed by 

combining Precision (P) and Recall (R) into a single index [13], and it can be regard-

ed as a weighted average of P and R. The F1 score is calculated by Equ. 5 with a 

range of 0 to 1 The closer the F1 score is to 1, the higher the model’s performance is. 

Pr
TP

ecision
TP FP

=
+                      

（ 3 ）

Re
TP

call
TP FN

=
+                      

（4）

callecision

callecision
F

RePr

RePr2
1

+


=

                                    
（ 5 ） 

 

where TP (Ture Positive) means that the Positive sample is correctly detected as a 

positive sample; FP (False Positive) means that the Negative sample is incorrectly 

detected as a positive sample; TN (True Negative) means that the negative sample is 

correctly detected as a negative sample; FN (False Negative) indicates that the posi-

tive sample is incorrectly detected as negative [14]. 

 

4.4     Model verification and result analysis 

 

In this work, four deep learning network models are developed, trained, and tested on 

the same dataset, and the performance of these models is compared. Figure 6 shows 

the accuracy and loss of the training set and testing set obtained using the ResNet50 

and DenseNet121 models for 20 and 50 epochs. After classifying the images in the 

testing set for 20 epochs, the classification accuracy of the ResNet50 and Dense-

Net121 models is 92.74% and 95.58%, respectively. However, after classifying the 
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images for 50 epochs, the classification accuracy of these two models varies largely, 

indicating that the increasing number of epochs does not improve the performance of 

these two models. 

 

 

epoch=20                                                                     epoch=50. 

(a) Accuracy and loss of the ResNet50 model after training for 20 and 50 epochs 

 

 

epoch=20                                                                       epoch=50 

(b) Accuracy and loss of the DenseNet121 model after training for 20 and 50 epochs 

Fig. 6. Accuracy and loss of the ResNet50 and DenseNet121 models after training for 20 

and 50 epochs 

Figure 7 shows the accuracy and loss rate of the training set and testing set obtained 

using the CB-ResNet and CB-DenseNet models in 20 and 50 epochs. After the model 

with 20 epochs was used to classify the images in the testing set, the classification 

accuracy of CB-ResNet and CB-DenseNet was 97.89% and 98.82%, respectively, 

both of which were higher than those of ResNet and DenseNet. With the increasing 

number of epochs, the stability of the model remained high, the accuracy showed a 

steady upward trend and finally tended to converge, suggesting that the model had a 

strong generalization ability. 

 

 

 

 

 

epoch=20                                                                      epoch=50 

(a) Accuracy and loss of the CB-ResNet model after training for 20 and 50 epochs 
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epoch=20  
                                                                    

epoch=50
 

(b) Accuracy and loss of the CB-DenseNet model after training for 20 and 50 epochs 

Fig. 7. Accuracy and loss of the CB-ResNet and CB-DenseNet models after training for 20 

and 50 epochs 

Table 1 shows the training results of four models and their performance indexes on 

the testing set. The accuracy and loss of the four models on the same training set and 

testing set are different. The introduction of attention mechanism in the backbone 

network can effectively improve the anomaly detection accuracy of the model on the 

testing set, with CB-ResNet and CB-DenseNet reaching 99.55% and 99.75% accura-

cy, respectively. With the increasing epochs, the accuracy of the CB-ResNet and CB-

DenseNet models is steadily improved, indicating that the model has a good generaliza-

tion ability.  

 

Table 1  Comparison of performance indexes among different models 

 

Model Iterations train_loss train_accuracy test_loss test_accuracy F1 

ResNet 
20 0.045367 91.52% 0.002865 92.74% 0.9236 

50 0.052742 91.85% 0.004731 92.81% 0.9287 

DenseNet 
20 0.031763 93.50% 0.002127 95.58% 0.9428 

50 0.056732 94.36% 0.003466 96.44% 0.9472 

CB-ResNet 
20 0.024739 95.46% 0.002109 97.89% 0.9521 

50 0.022531 98.21% 0.001783 99.55% 0.9653 

CB-DenseNet 
20 0.022761 97.46% 0.00412 98.82% 0.9836 

50 0.021842 98.54% 0.001356 99.76% 0.9875 

 

Finally, the abnormal results of CXR images were displayed, and the abnormal results 

were divided to obtain the Mask of chest X-ray images of COVID-19 patients, as 

shown in Figure 8. 
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Fig. 8.  Mask of chest X-ray images of COVID-19 patients 

 

5        Conclusion 
 

Based on ResNet and DenseNet models, two anomaly detection models (CB-ResNet 

and CB-DenseNet) were proposed by introducing attention mechanism, and their 

performance was verified on the training and testing sets. Compared with ResNet and 

DenseNet, CB-ResNet and CB-DenseNet exhibit an increase in anomaly detection 

accuracy, and their performance is stable. The results indicate that CB-ResNet and 

CB-DenseNet models have better generalization ability.The limitation of this algo-

rithm is that it runs slowly due to the large number of network model parameters. In 

the future, it will be necessary to continue to optimize the proposed network model 

structure. How to reduce network model parameters and shorten network running 

time is the next research direction. 
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