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Abstract. Hydrogen is a crucial intermediate product that is widely used in the 

petrochemical and oil sectors. Efficiently improving hydrogen recovery 

technology is crucial for achieving sustainable success and fulfilling 

environmental obligations, given the increasing demand for hydrogen and the 

growing urgency of environmental concerns. To solve this issue, a Feedforward 

Artificial Neural Network (FANN) model was developed to predict and improve 

the amount of hydrogen gas that can be made from palm kernel shell activated 

carbon (PKS-AC) syngas production. The study used 60 experimental data points 

to examine the impact of adsorption processes, such as adsorption, pressure 

equalisation, desorption, and re-pressurisation modes, on hydrogen recovery 

through pressure swing adsorption procedures. The optimisation process was 

performed using the MATLAB (R2017b) software, specifically the Neural 

Network (NN) tool, with a dataset containing adsorption pressure, duration of 

adsorption and blowdown time data. The study demonstrated that using the 

LOGSIG activation function achieved the smallest mean square error (MSE) of 

0.00010 when 19 hidden neurons were utilised. The regression coefficients (R) 

for training, validation, and testing were 0.91598, 0.99042, and 0.91718, 

respectively. The utilisation of this model has the potential to facilitate the 

development of cost-effective and efficient designs for on separation of pressure 

swing adsorption processes. 

Keywords: Hydrogen, Palm Kernel Shell, Activated Carbon, Feedforward, 

Artificial Neural Networks, PSA. 
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1 Introduction 

Recovery of hydrogen from syngas is a crucial step in utilizing this versatile 

fuel for various applications like clean power generation and fuel cell technology. 

Syngas is a byproduct of gasification processes such as coal gasification, biomass 

gasification, and natural gas reforming. It is mainly composed of hydrogen, carbon 

monoxide and carbon dioxide. There are several methods for recovering hydrogen; 

pressure swing adsorption (PSA), membrane separation, and cryogenic distillation are 

a few of them, each with pros and cons of its own.  However, hydrogen gas recovery 

from syngas using PSA with activated carbon is a proven and effective method [1]. 

CO is extremely toxic while  is greenhouse gas allegedly contributes to 

global warming [2]. As a result, removing these gases and recovering hydrogen is an 

essential approach for cutting down on waste and air pollution in the environment. By 

capturing hydrogen before it is released into the atmosphere, air quality is improved, 

emissions are avoided, and the environmental impact is decreased [3].  

Pressure swing adsorption (PSA) is a low-cost substitute for conventional 

absorption methods in the cyclic adsorption process used for gas separation and puri-

fication. A PSA process's primary feature is its ability to alternate between adsorption 

and desorption by varying the system pressure. The PSA process is run in cyclic 

steady state (CSS) for applications. The performance of PSA systems can be influ-

enced by the number of adsorption beds, bed dimensions, layers, cycle configuration, 

and operating conditions [4], [5]. 

Fig. 1 shows a two-bed PSA unit's basic operation. Adsorbent, purge valves, 

and valves are the main components of the equipment that control the cyclic process 

by making use of the different pressure settings.  

In chemical processes, an artificial neural network (ANN) is a valuable tool 

for accurately assessing the relationship between system inputs and outputs through 

its layers and nodes. Consequently, ANNs have been widely used in various areas of 

chemistry, including process simulation and control, adsorption and reaction kinetics 

and reducing computational costs [6]. ANNs can be regularly updated with new data, 

allowing them to adapt to changing environmental and operational conditions. This 

updatability makes ANNs an invaluable tool for maintaining excellent hydrogen re-

covery performance over time. [7]. 

Hence, the research aims to achieve three primary objectives: forecasting the 

quantity of hydrogen gas obtained by using an Artificial Neural Network (ANN) and 

experimental data; projecting the recovery of hydrogen by altering factors including 

adsorption pressure, adsorption time, and blowdown time using logsig activation 

function. For the purpose of comparing experimental and predicted data, Multilayer 

feedforward artificial neural networks (FANN) were implemented using MATLABTM 

(R2017b) guidelines. 
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Fig. 1. PSA unit used in recovery of hydrogen [8]. 

2 Methodology 

2.1 Modelling recovery of hydrogen using Feedforward Artificial Neural 

Network (FANN) 

Forecasting the prediction of hydrogen recovery from a pressure swing adsorp-

tion process using the MATLABTM R2017b neural network toolbox. The objective of 

this modelling is to forecast the hydrogen recovery from PSA in the gasification pro-

cess. The study utilised the feed forward back propagation neural network (FANN) 

algorithm, which is considered the most appropriate method for solving fitting prob-

lems, particularly in mapping input and output. The input and output data sets utilised 

in this modelling analysis were obtained from prior experimental work conducted in 

this research. The input data for the ANN modelling consisted of feed adsorption 

time, adsorption pressure, and blowdown time. The output data, used for training, 
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testing, and validation, was the recovery of hydrogen obtained from experimental 

study.  

The performance of the predicted output from the Artificial Neural Network 

(ANN) was evaluated using the Mean Square Error (MSE) value and the regression 

value (R). These values were obtained from the constructed model while comparing 

the predicted values with the experimental values. The trial-and-error method was 

utilized to select the optimal network structure, based on the lowest Mean Squared 

Error (MSE) value and the R value closest to 1, for the testing, validation, and train-

ing datasets. The process of trial and error involves experimenting with different 

combinations of hidden nodes and layers to identify the optimal number of neurons 

and hidden layers needed for the artificial neural network (ANN) architecture.  

 

2.2 Artificial neural network (ANN) model development 

 

Fig. 2. The illustration was used to model feed-forward artificial neural networks (FANNs) 

(Idris et al., 2019b). 
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To predict the outcome of the modelling process, the adsorption pressure 

was held constant at 2 bars. The network model was developed by selecting the net-

work type, the number of layers, the number of neurons in the hidden layer, the train-

ing function, and the transfer functions for the hidden and output layers.  

The flowchart for feed forward artificial neural network (FANN) modeling is 

presented in Fig. 2. A feedforward neural network, characterized by its unidirectional 

flow of data through circular connections between its nodes, represents the fundamen-

tal type of the neurol network chosen in this study. In this model, data moves exclu-

sively in one direction, never reversing or looping back [9]. 

2.2.1 Neural network structure 

The neural network structure has been categorised into two types: feedfor-

ward network and feedback network [10]. In a feedback network, the data or infor-

mation is acquired from the output of the preceding levels. The flow of data or infor-

mation between neurons occurs through the input-output connections of different 

neuronal layers. A feedforward network is commonly referred to as a multi-layer 

perceptron (MLP). The choice of using a feedforward network is based on its simplic-

ity and ability to prevent over-parameterization [11]. Furthermore, the weight and bias 

are appropriately modified during the training procedure, enabling the network to 

accurately forecast the output for a given set of inputs. A neural network layer con-

sists of three distinct layers: the input layer, the hidden layer, and the output layer. 

 

2.2.2 Data size structure 

For a neural network to operate well and achieve generalisation, the right da-

ta size must be chosen during training. Apparently, there is no single approach for 

assessing the quantity of the data for adequate network training [11], [12]. In this 

study, the input data was randomly divided into three separate data sets. The first set, 

comprising 70% of the data, was used for training and consisted of 42 samples. The 

second set, accounting for 15% of the data, was used for validation and contained 9 

samples. The remaining 15% of the data, also consisting of 9 samples, was used for 

testing. 

 

2.2.3 Selection of neural network model 

2.2.3.1 Network type  

There are many different kinds of artificial neural networks, but one of the 

simplest ones is called a feedforward neural network. Within this network, infor-

mation flows only in a unidirectional manner, progressing from the input nodes, pass-

ing via any hidden nodes, and ultimately reaching the output nodes. The network is 

acyclic. Feedforward neural networks were the first type of artificial neural network 
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developed and are less complex compared to other types such as recurrent neural 

networks and convolutional neural networks [13]. 

2.2.3.2 Number of hidden layers 

The hidden layer serves as an intermediary layer positioned between the 

input and output layers of the network. The number of hidden layers in the network 

varies depending on the problem. Certain situations require a single hidden layer, 

while others necessitate numerous hidden layers. Hidden layers consist of a group of 

compact neurons that transmit data from the training layer to other layers [14]. When 

dealing with actual-world issues using a multilayer feed-forward network, it is crucial 

to take into account the size of the hidden layer [15]. The optimal artificial neural 

network (ANN) architecture can be determined by carefully choosing the number of 

neurons in the hidden layer. By increasing the number of neurons in the hidden layer, 

the model can effectively represent the training data. However, there is still a chance 

that it may fail to accurately represent data that falls outside of the training range. To 

accomplish this, one neuron is used as an initial guess, followed by an increase in the 

number of neurons one at a time [11]. 

 

2.2.3.3 Number of hidden neurons 

Typical guidelines show the number of hidden neurons that should be be-

tween the size of the input layer and the size of the output layer [16]. As per Vujičić et 

al., 2016, the quantity of hidden neurons must not exceed twice the size of the input 

layer. The training algorithm was optimised by determining the most suitable number 

of hidden layers for the constructed artificial neural network (ANN) model. There is 

no singular approach to ascertain the ideal number of hidden neurons. This work uti-

lised the technique of expanding the neural network, where the training process be-

gins with a limited number of hidden neurons. 

As the error is determined, the number of neurons may be increased 

throughout the operation. The chosen number of hidden neurons was determined by a 

trial-and-error process, based on the outcomes of the error function with regard to the 

training data set for MSE, aiming to reach a value closest to 0 [18]. This is the stand-

ard approach used to select the appropriate number of hidden neurons. The initial 

selection of the number of hidden neurons is often equal to the number of input neu-

rons or nodes in the network.  

In order to accomplish this, an initial estimate is made using three neurons 

in the hidden layer, and then the number of neurons is gradually increased from 1 to 

20. If the initial number of hidden neurons fails to yield a high correlation coefficient 

value and a minimal MSE, then the number of neurons is raised. But, as the number 

of concealed neurons incorporated in the model increases, the model's complexity 

also increases. Once the number of hidden layers and the number of hidden neurons 
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has been determined, the Artificial Neural Network (ANN) is prepared for training 

[11]. 

2.2.3.4 Selection of training algorithm 

The Levenberg-Marquardt (LM) algorithms were utilized in learning, pre-

diction, classification, optimization, control, and detection [19]. They were also used 

for classification. Given their extensive applicability, Levenberg-Marquardt algo-

rithms were a suitable substitute for artificial neural network learning in hydrogen 

recovery optimization. LM method is widely used because to its excellent conver-

gence speed and stability while training artificial neural network (ANN) models [20]. 

This step is necessary to ascertain the suitable weight and bias values and to achieve 

the optimal network structure. The Levenberg-Marquardt (LM) method is a frequently 

used optimisation strategy for a range of artificial neural network (ANN) applications, 

particularly for solving nonlinear least square problems. The training procedure utilis-

ing the Backpropagation (BP) method is an iterative optimisation technique that aims 

to minimise the performance function by appropriately altering the weights and biases 

of the network. The Mean Squared Error (MSE) is the most commonly used perfor-

mance metric. Furthermore, this training procedure is used to adjust the network's 

weight by minimising an objective function, specifically the Mean Squared Error 

(MSE) between the network's outputs and the desired outputs [11], [21]. 

3 Results and discussion 

3.1 Artificial neural network (ANN) model development 

This model severs to aid researchers in predicted hydrogen gas recovery us-

ing PSA systems equipped with ANN tools. The study focused on an optimal adsorp-

tion pressure of two bar as the specific input pressure range. Adsorption times at the 

feed inlet were varied between 0.5,1,3, and 5 minutes, while the blowdown time re-

mained constant at 0.5 minutes.  

A multilayered feedforward back propagation neural network was imple-

mented in this investigation. Input data included feed inlet pressure, adsorption dura-

tion and blowdown time, while the output (target data) was hydrogen recovery based 

on experimental results. The modelling analysis utilized sixty data samples, with the 

default configuration of the ANN tool in  R2017b employing a training-

validation-testing ratio of 70:15:15, respectively 

 

3.1.1 Dataset 

  The training data were used to generate the network parameters (weights and 

biases), ensuring the network learned from the dataset. Validation data then verified 

the flexibility of these parameters. The test dataset provided an unbiased evaluation of 
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how well the final model fits the training data. Table 1 presents the actual data used 

in this ANN modeling experiment.  

  Usually, ANNs are constructed with only one output neuron. This is applica-

ble for tasks with a solitary goal variable, such as predicting a price, classifying a 

picture (cat vs dog), or creating a singular value. The presence of two output neurons 

in this study enables the network to simultaneously predict or classify two distinct yet 

interconnected variables more accurately [22]. The classification result, in comparison 

to the regression output, offers a more accurate evaluation of the operational status of 

hydrogen recovery. 

Table 1. Experimental data of hydrogen recovery. 

Experimental Data 

Input Output 

Pressure (bar) Adsorption time (min) 
Blowdown time 

(min) 
C1 C2 

Training Set 

2 0.5 0.5 0.03 0.25 

2 0.5 0.5 0.19 0.26 

2 0.5 0.5 0.19 0.25 

2 0.5 0.5 0.26 0.25 

2 0.5 0.5 0.25 0.25 

2 0.5 0.5 0.26 0.25 

2 0.5 0.5 0.25 0.25 

2 0.5 0.5 0.26 0.25 

2 0.5 0.5 0.25 0.25 

2 0.5 0.5 0.25 0.25 

2 0.5 0.5 0.24 0.25 

2 0.5 0.5 0.24 0.25 

2 0.5 0.5 0.26 0.25 

2 0.5 0.5 0.26 0.25 

2 0.5 0.5 0.25 0.25 

2 1.0 0.5 0.09 0.17 

2 1.0 0.5 0.18 0.17 

2 1.0 0.5 0.18 0.17 

2 1.0 0.5 0.18 0.17 

2 1.0 0.5 0.18 0.17 

2 1.0 0.5 0.20 0.17 

2 1.0 0.5 0.18 0.17 

2 1.0 0.5 0.18 0.16 

2 1.0 0.5 0.17 0.16 

2 1.0 0.5 0.17 0.16 
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2 1.0 0.5 0.15 0.16 

2 1.0 0.5 0.17 0.16 

2 1.0 0.5 0.16 0.19 

2 1.0 0.5 0.16 0.16 

2 1.0 0.5 0.17 0.16 

2 3.0 0.5 0.02 0.07 

2 3.0 0.5 0.08 0.07 

2 3.0 0.5 0.08 0.07 

2 3.0 0.5 0.08 0.07 

2 3.0 0.5 0.08 0.07 

2 3.0 0.5 0.07 0.07 

2 3.0 0.5 0.07 0.07 

2 3.0 0.5 0.07 0.07 

2 3.0 0.5 0.07 0.06 

2 3.0 0.5 0.07 0.07 

2 3.0 0.5 0.03 0.07 

2 3.0 0.5 0.07 0.07 

Validation Set 

2 3.0 0.5 0.07 0.07 

2 3.0 0.5 0.07 0.06 

2 3.0 0.5 0.07 0.07 

2 5.0 0.5 0.16 0.44 

2 5.0 0.5 0.46 0.41 

2 5.0 0.5 0.45 0.31 

2 5.0 0.5 0.41 0.40 

2 5.0 0.5 0.44 0.42 

2 5.0 0.5 0.26 0.45 

Testing Set 

2 5.0 0.5 0.47 0.43 

2 5.0 0.5 0.48 0.41 

2 5.0 0.5 0.49 0.31 

2 5.0 0.5 0.44 0.40 

2 5.0 0.5 0.10 0.45 

2 5.0 0.5 0.46 0.40 

2 5.0 0.5 0.36 0.38 

2 5.0 0.5 0.44 0.39 

2 5.0 0.5 0.43 0.45 

3.1.2 Network optimization of ANN model 

 

The neural network proposed in this study was FANN, which utilized the 

Levenberg-Marquardt (LM) back- propagation training approaches. The study con-
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ducted by [23] concluded that the LM or trainlm training function was the most effec-

tive among all. The logsig or logistic sigmoid function is a mathematical function that 

transforms the input into a value ranging from 0 to 1. This property makes it particu-

larly suitable for tasks involving binary classification. The earlier work conducted by 

[24], utilized logistic regression to identify and exclude less significant features.  Ta-

ble 2 displays the MSE values obtained from the training data set for different num-

bers of hidden neurons at activation function of Logsig which yielded the lowest MSE 

value of 0.00010 with 19 neurons, thus giving the most accurate predicted results.  

Table 2. MSE value from training data set for a variety of hidden neurons at logsig transfer 

function. 

No. of Hidden 

Neuron 
Model Error (MSE) 

1 0.00057 

2 0.00079 

3 0.00015 

4 0.00021 

5 0.00017 

6 0.00033 

7 0.00036 

8 0.00030 

9 0.00371 

10 0.00048 

11 0.00353 

12 0.00018 

13 0.00017 

14 0.00027 

15 0.00037 

16 0.00016 

17 0.00039 

18 0.00027 

19 0.00010 

20 0.00037 

 

The mean squared error of the network model decreased as the number of 

training steps grew, as demonstrated in Table 3. However, an overabundance of train-

ing might lead to a rise in mistakes. This statement aligns with numerous studies [25]. 

The training database must be analyzed in order to accurately estimate the number of 

neurons and hidden layers prior to the neural network design [23]. 

Hydrogen Recovery Analyses Based on LOGSIG Activation Functions             397



 

Table 3. MSE value from training data set for a variety of hidden neurons at logsig transfer 

function. 

 

Fig. 3 compares the number of neurons in the hidden layer with the error 

coverage for the log sigmoid function (LOGSIG). As the number of neurons in-

creased, the error coverage approached zero, indicating that the network could 

achieve optimal results when using 19 neurons [23]. Throughout alterations in the 

network architecture, the MSE exhibited fluctuations between its minimum and max-

imum values. The performance of the neural network was notably affected by changes 

in the number of hidden layers and the configurations of neurons within those layers 

[26]. 

 

 

Fig. 3. The effect of hidden layer neuron numbers on MSE and network performance using 

logsig activation functions. 

The selection of the number of neurons in different layers of an artificial 

neurol network (ANN) is crucial for its successful training. The number of neurons in 

the input layer is determined by the number of input parameters, while the number in 

the output layer corresponds to the output parameters. However, the number of neu-

rons in the hidden layer is not predetermined and requires careful consideration. The 

overall effectiveness of the ANN hinges on its ability to accurately model real-world 

scenarios through appropriate neural network architecture [26]. 

No. of times training 

performed 

Activation 

function 

No. of Hidden 

Neuron 
MSE 

1st 

Logsig 19 

0.00048 

2nd 0.00014 

3rd 0.00011 

4th 0.00010 
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In this study, early stopping was used to prevent overfitting as the error value 

on validation data increased. The optimal number of neurons was determined based 

on the MSE and R values in the training dataset. Insufficient neurons relative to the 

complexity of the problem could lead to “underfitting”. Conversely, an excessive 

number of neurons might cause “overfitting”, which could significantly degrade the 

network’s performance [14].  

3.1.3 Performance of the developed ANN model 

 

After training a network, a simulation was conducted to evaluate its perfor-

mance on new, previously unseen data—an essential step to gauge how well the net-

work generalizes to unfamiliar inputs. Using a feedforward backpropagation multi-

layer neural network with the Levenberg- Marquardt training algorithm, minimal 

MSE and maximal correlation coefficient R were achieved for the dataset.  

The activation function played a crucial role in neural networks by determin-

ing whether a neuron should be activated based on the weighted sum plus bias. It 

introduced nonlinearity to the neuron’s output, enabling it to handle complex tasks 

and learn effectively [27]. The performance of the ANN model developed with this 

activation function is highlighted in this section. Table 4 presents the characteristics 

of the model generated in the current study, providing a concise overview of the im-

plementation of the ANN application in MATLAB. 

Table 4. Table captions should be placed above the tables. 

Characteristics  Commentary  

Algorithm  Feed forward back propagation 

Minimize error function MSE 

Learning type  Supervised training 

Training algorithm Levenberg-Marquardt 

Hidden layer logistic sigmoid function. 

Output layer  Logsig 

Number of hidden layers 2 

Number of neurons in input layer 3 

Number of neurons in hidden layer 19 

Number of neurons in output layer 2 

 

Implementing an alternative activation function, logsig, with the smallest 

MSE value of 0.00010 in the training section, the performance of the adsorption con-

dition in hydrogen recovery is demonstrated. In Fig. 4, the scatter regression (R) dia-

gram displays the actual values from the experimental data and the predicted data 

recovery of hydrogen from the developed ANN model for the training data set. The 
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experimental results exhibit a strong correlation with the ANN models, as illustrated 

in Fig. 5, with a R value of 0.94700. Fig. 6 illustrates the comparison of hydrogen 

recovery values between the experimental data and the predicted results generated by 

the Artificial Neural Network (ANN) model for the training dataset.  

 

Fig. 4. Scatter regression plot of actual and ANN model’s predicted recovery of hydrogen val-

ues for training dataset. 

 

Fig. 5. A correlation coefficient between the actual and the predicted hydrogen recovery for 

training dataset. 
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Fig. 6. Comparison of the recovery of hydrogen between the experimental values and the pre-

dicted values obtained from ANN model for training data set. 

 

Fig. 7 illustrates the actual and predicted hydrogen recovery values for the 

validation data set in a scatter chart. The validation procedure yielded an impressive R 

value of 0.99042. The hydrogen gas recovery values derived from the experimental 

study are compared to those predicted by the ANN model for the validation data set in 

Fig. 8, with a correlation coefficient value (R) of 0.97440. Fig. 9 represents the com-

parison of the recovering hydrogen values between the experimental values and the 

predicted numbers that were developed from the artificial neural network model for 

the validation data set.  

  

 

Fig. 7. Scatter regression plot of actual and ANN model’s predicted recovery of hydrogen val-

ues for validation dataset. 
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Fig. 8. A correlation coefficient between the actual and the predicted hydrogen recovery for 

validation dataset. 

 

Fig. 9. Comparison of the recovery of hydrogen between the experimental values and the pre-

dicted values obtained from ANN model for validation data set. 

A scatter plot of the experimental data versus the predicted particle size data 

is provided in Fig. 10 to assess the accuracy of the developed ANN model. The R 

value of 0.91728 indicates that the results derived from the testing data set were high-

ly acceptable. The comparison of hydrogen recovery values between the experimental 

and predicted values derived from the ANN model for the testing data set is demon-

strated in Fig. 11. The R value of 0.91370 is a satisfactory correlation coefficient 

between the actual data from the testing set and the predicted hydrogen recovery. Fig. 

12 depicts the comparison of hydrogen recovery values between the experimental and 

predicted values for the testing data set, as developed from the ANN model.  
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Fig. 10. Scatter regression plot of actual and ANN model’s predicted recovery of hydrogen 

values for testing dataset. 

 

Fig. 11. A correlation coefficient between the actual and the predicted hydrogen recovery for 

testing dataset. 

 

Fig. 12. Comparison of the recovery of hydrogen between the experimental values and the 

predicted values obtained from ANN model for testing data set. 
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While Fig. 13 illustrates a scatter regression plot that integrates the predicted 

and actual particle size values for overall data points utilized in the log sigmoid func-

tion study. The R value of 0.92420 indicates that the model's performance is greatly 

satisfactory. Lastly, Fig. 14 illustrates that the ANN model's predicted and experi-

mental hydrogen recovery values for the entire data set resulted in a R value of 

0.96210, which is highly satisfactory. 

 

Fig. 13. Scatter regression plot of actual and ANN model’s predicted recovery of hydrogen 

values for overall dataset. 

 

Fig. 14. A correlation coefficient between the actual and the predicted hydrogen recovery for 

overall dataset. 

A neuron's activation function is a critical parameter that significantly im-

pacts the results. Effective outcomes are evidently achieved by selecting the appropri-

ate activation function [28]. The logsig activation function demonstrated superior 

performance for the ANN model. The results indicated that the ANN model per-

formed poorly in terms of the number of neurons (fewer than five) in all error meas-

urement criteria (in both median and standard deviation). Nevertheless, the median 
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values exhibited a modest mean square error, indicating that the optimal performance 

was achieved at approximately 18-19 artificial neurons. As a result, 19 neurons were 

ultimately selected as the optimal number of neurons for the logsig activation func-

tion. In this study, the best neural network model was also the one with the lowest 

MSE value and the highest R value. This is due to the fact that the R-value is signifi-

cantly closer to 1 than the other two training algorithms that were evaluated. Addi-

tionally, the LM training algorithm has an R-value of 1, indicating that it is the most 

suitable algorithm, and that the data is well-suited to this model [29]. The logsig func-

tion was therefore selected as the optimal function for the recovery of hydrogen [30].  

4 Conclusions  

The study successfully utilized artificial neural networks on Matlab 2017b to 

predict hydrogen gas recovery, analysing algorithm function, mean square error, and 

number of neurons. The feed forward neural network successfully predicted hydrogen 

gas recovery through a command window. The number of neurons in the hidden layer 

was varied to train and test a variety of different networks. A three-layer feedforward 

artificial neural network (FANN) was utilised for modelling purposes. The FANN 

layer consisted of three input variables, one hidden layer, and one output. A total of 

60 experimental data points were included in the model. Various networks were 

trained and tested by altering the number of neurons in the hidden layer. The regres-

sion coefficients (R) were assessed for training, validation, and testing, yielding val-

ues of 0.91598, 0.99042, and 0.91728, respectively. The log sigmoid function (logsig) 

was used with 19 hidden neurons, resulting in a mean square error (MSE) of 0.00010. 

The developed FANN demonstrated accurate and efficient prediction of the experi-

mental data, achieving a strong overall correlation coefficient of 0.924200 for the 

three input variables. The FANN model was found to be a valuable tool for determin-

ing the effective parameters of the PSA process, as our findings had indicated. By 

means of estimations for various materials and structures, like a recurrent neural net-

work (RNN), the authors hope to increase the application of the optimal ANN struc-

tures in the evaluation of other adsorption parameters in the future. Moreover, the 

actual number of hidden layers remains a challenging chore. It would be advisable to 

widen the research going forward to ascertain the precise ideal number of hidden 

layers.  
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