

Pre-processing Approach for Semi-Structured Medical

Data

Aiman Haziq Ab Yazik1 , Azliza Mohd Ali2* ,

1,2,3 School of Computing Sciences, College of Computing, Informatics and Mathematics,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
4 Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, Malaysia

azliza@tmsk.uitm.edu.my

Abstract. — The exponential growth of healthcare data nowadays due to the

widespread use of electronic health records (EHRs) has presented both

opportunities and challenges in patient care, resource allocation, and medical

research. Although advances in automated machine learning (AutoML) have

streamlined many processes especially in data preprocessing, however the

preprocessing of semi-structured data remains a time-consuming task,

particularly when the data does not conform to standard database structures. This

paper introduces a preprocessing approach designed to automate and simplify the

preprocessing of semi-structured medical data. The approach specifically

addresses the challenges posed by nested data within columns and involves a

series of steps, including renaming and removing columns, merging separated

rows, and expanding data in to structured formats. Through the application of this

approach to an actual medical dataset, we demonstrate its effectiveness in

automating the data preparation phase. The results indicate a successful

transformation of nested data into a structured format, where each previously

nested element is now represented by its own row and column, thereby

facilitating future data analysis. The integration of this approach into healthcare

data management systems has the potential to enhance the efficiency of data

preprocessing and improve the quality of subsequent data analysis. Additionally,

this preprocessing step can be further refined using other techniques to enhance

the data. Future research should focus on expanding the preprocessing's

capability to handle a wider variety of data types and structures, and exploring its

applicability to other fields that encounter similar nested data challenges.

Keywords: Data Preprocessing, Semi-Structured Data, Electronic Health

Records (HER), Automated Machine Learning (AutoML).

1 Introduction

Sharifa- lillah Nordin , Sazzli Shahlan Kasim3 4

The exponential growth of healthcare data presents both challenges and

opportunities for improving patient care, optimizing resources, and advancing research.

Electronic Health Records (EHRs) have played a key role in moving healthcare

towards a paperless environment, reducing medical errors and administrative costs [1,

© The Author(s) 2024
N. A. S. Abdullah et al. (eds.), Proceedings of the International Conference on Innovation & Entrepreneurship
in Computing, Engineering & Science Education (InvENT 2024), Advances in Computer Science Research 117,
https://doi.org/10.2991/978-94-6463-589-8_17

http://orcid.org/0009-0003-8100-0634
http://orcid.org/0000-0002-4267-6469
http://orcid.org/0000-0003-3537-5542
http://orcid.org/0000-0003-4585-7713
https://doi.org/10.2991/978-94-6463-589-8_17
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-589-8_17&domain=pdf

2]. However, the complexity and volume of EHR data create significant challenges in

data analysis and interpretation [2].

Healthcare data analysis, particularly exploratory data analysis (EDA), is crucial for

finding patterns, trends, and correlations. EHRs contain comprehensive patient

information, including demographics, medical history, and lab results, providing

valuable health insights [2]. Preprocessing techniques, such as Automated Machine

Learning (AutoML), encounter several challenges when preprocessing data, especially

with semi-structured data which is not usually structured like a traditional database [3].

Medical data also face challenges such as the curse of dimensionality, with

numerous variables increasing complexity [4]. High-dimensional data, such as from

microarrays and sequencing, require extensive preprocessing [4]. Semi-structured data,

which does not fit traditional databases, further complicates machine learning and data

analytics tasks [5].

This paper develops a preprocessing approach for semi-structured medical data,

with a focus on handling nested data within columns. We employ a Python-based

solution to create an automated and interactive process that streamlines data

preprocessing. The paper is organized as follows: Section 2 reviews the related

literature, Section 3 presents the methodology, Section 4 discusses the results, and

Section 5 concludes the paper.

2 Literature Works

2.1 Medical Data

Medical data is often complex and comes from various sources, including electronic

health records (EHRs), patient surveys, clinical trials, medical imaging, wearable

devices, and healthcare databases [1, 2]. EHRs provide detailed patient histories, lab

results, and treatments, offering insights into patient care and outcomes [2, 6]. How-

ever, processing this data is challenging due to its unstructured or semi-structured

nature, making traditional analysis difficult [2, 7].

2.2 Semi-Structured Data

Semi-structured data, which doesn’t fit neatly into traditional structured models, adds
another layer of complexity. For instance, CSV files can have varying column numbers
across rows, leading to inconsistencies [5, 8]. Spreadsheets, commonly used in data
management, are designed for human interaction rather than automated processing,
further complicating data integration [8]. Addressing preprocessing issues particularly
in semi-structured data requires significant effort, which is crucial for developing relia-
ble machine learning models [2, 8, 9].

Pre-processing Approach for Semi-Structured Medical Data 161

2.3 Data Preprocessing

Data preprocessing is a critical phase in machine learning and data analysis, where raw
data is cleaned, transformed, and prepared for modeling [10, 11]. High-quality prepro-
cessing directly impacts the performance of deep learning models, with poor data qual-
ity potentially undermining algorithm outcomes [11]. Data scientists spend a substan-
tial portion of their time on tasks such as data cleaning, missing data imputation, and
categorical data encoding [3, 11]. Each of these tasks presents its own set of challeng-
es, especially when dealing with the complexities of medical and semi-structured data.

2.4 Automated Machine Learning (AutoML)

Recognizing the time-intensive nature of data preprocessing, Automated Machine

Learning (AutoML) have been developed to streamline this process. Automated Ma-

chine Learning (AutoML) streamlines the machine learning pipeline, including data

preprocessing, feature engineering, model selection, and hyperparameter optimization

[12–14]. AutoML automates many of the preprocessing tasks, such as handling miss-

ing values, encoding categorical variables, and scaling features, thereby enhancing

consistency and saving time [13]. However, challenges remain, particularly with semi-

structured data, where the lack of standardized handling methods can hinder AutoML's

scalability and effectiveness [8, 13].

2.5 Fuzzy Matching

Fuzzy matching is a technique used to identify strings that are similar but not identical,
accounting for minor errors or variations [15]. It is particularly useful in data prepro-
cessing when dealing with inconsistent or incomplete data entries. For example, fuzzy
matching can address common typing errors by comparing and scoring the similarity
of strings using algorithms like Levenshtein Distance (LS), Token Sort Ratio (TSR),
and Jaro Distance [16]. Among these, TSR is often more effective for longer strings, as
it normalizes word order and reduces variability due to different word arrangements
[16].

For instance, if the target word "human" receives a response of "huwan," TSR
would be calculated as TSR = 2 * (length of shared substring) / (sum of lengths of both
strings) * 100 [15]. The shared substrings are "hu" and "an," so the calculation would
be 2 * 4 / 10 * 100 = 80.

3 Methodology

In this research, we develop a Python-based method to provide an interactive, data-
driven service for users to perform data preprocessing efficiently and effectively. The
user will interact with the command line interface to generate the cleaned dataset. The
method aims to preprocess semi-structured data with nested columns. We employ pre-
existing approaches to address a wide range of data cleaning and feature engineering
tasks. Our primary focus is on the combination of different rows and the expansion of
columns into multiple columns, followed by the data cleaning process.

162 A. H. A. Yazik et al.

The most challenging aspect of designing this method is integrating the column
expansion phase, where each column may contain multiple nested variables, which can
occur multiple times even for a single ID. Therefore, our proposed method must handle
this task efficiently.

3.1 Column Rename

In semi-structured data, the data often lacks a clear structure and column names may
not be standardized. This phase involves a straightforward process to rename columns
using a for loop. The program prompts the user to specify which columns need
renaming and then allows the user to provide both the original and the new column
names.

3.2 Column Dropper

The next step is the column dropper, a straightforward phase where the program
prompts the user to specify which columns to drop. Users can choose to drop columns
individually or provide a list of columns separated by commas to drop them all at once.
The program will continue to prompt the user in a loop until they are satisfied with the
structure of the DataFrame.

3.3 Row Combinator

The next step is the row combinator, which is crucial for merging rows that have been
separated due to conversion from CSV or Excel formats. In medical systems, data
entries might be written in a way that separates related information into new rows. The
row combinator collects and combines all related rows into a single entry based on a
common ID, ensuring the data is consolidated correctly. For example the table 1 below
show what the data example looks like before it will combine. The actual data is more
complex, but it is simplified here to provide a clearer understanding in this paper.

Table 1. Example of the Data

MRN Inpatient Outpatient Deceased
Date

Echo Results

0001 Admit Date: 2022-08-
28

Clinic: Clinic
ABC

- Date Report : 2022-09-08

 Discharge Date: 2023-
08-29

Date Clinic :
2020-03-09

 Echo Window : Suboptimal

 Main Diagnosis: 2
Vessel Disease

Diagnosis:

 Admit Date: 2023-01-
03

 Discharge Date: 2023-
01-04

0002 Admit Date: 2023-01-
20

Clinic: Clinuc
ABC

- Date Report : 2023-02-08

 Discharge Date: 2023-
01-22

Date Clinic :
2019-04-11

 Echo Window : Suboptimal

 Main Diagnosis :
Unstable Angina

Pre-processing Approach for Semi-Structured Medical Data 163

 Figure 1 shows the flow of the row combinator phase. In this phase, the content
separated by rows is combined into a single row. The program first asks the user which
row represents the unique ID, then begins looping through each row in the DataFrame.
For the first row, all data is taken and stored in a dictionary, and the unique ID is
captured. For subsequent rows, the saved unique ID acts as an identifier to determine if
the row should be combined. If no matching ID is found, or the ID is the same, the data
is appended to the same dictionary. Otherwise, the dictionary is appended to the
Staging DataFrame, a new unique ID is saved, and the current dictionary, which has
already been appended to the Staging DataFrame, is emptied.

Create Raw_DataFrame from the previous modified raw dataset.

Create an empty DataFrame called Staging_DataFrame.

Create another empty dictionary called Row_Dictionary.

Create a null variable called Current_Row_ID

Take Unique_ID_Column by prompting the user for the unique id column

for row in Raw_DataFrame:

 if is_first_row(row):

 Append all row values into Row_Dictionary

 Set Current_Row_ID as row[Unique_ID_Column]

 else:

 if row[Unique_ID_Column] is the same as Current_Row_ID or row[Unique_ID_Column] is empty:

 Append all row values to Row_Dictionary

 else:

 Append Row_Dictionary into Staging_DataFrame

 Empty the Row_Dictionary

 Append new row value to Row_Dictionary

 Set Current_Row_ID as row[Unique_ID_Column]

return Staging_DataFrame

 Fig. 1. Row Combinator

3.4 Column-Row Expansion

Next is the Column-Row Expansion Phase, where the combined data will be

distributed into their respective columns and rows. This phase is extensive because the

data must be accurately placed into the correct rows and columns. For instance, if there

are six occurrences of a variable like "Admit Date," the program should create six new

rows to accommodate each admit date, as illustrated in Figure 2 below.

In this phase, the combined data is loaded, and a new empty Staging DataFrame is

created. The Staging DataFrame will then include both the new column names and the

old columns after prompting the user to specify which columns need to be expanded.

164 A. H. A. Yazik et al.

The program also asks the user for the variables within the specified columns that need

to be expanded, creating new columns in the Staging DataFrame accordingly. All user

inputs, such as the intended columns and their variables, are stored in a dictionary.

For variables containing spaces, the program will use regular expressions and fuzzy

matching based on Token Sort Ratio (TSR) to locate them. Spaces in these variables

will be replaced with underscores. Other values are also identified using regular

expressions and fuzzy matching with a threshold of 80% to correct any errors, such as

misspellings. This has to be done to enhance the matching strategy using regular

expression in the next step.

Next, the program processes each row of the DataFrame in a loop. Initially, the

system creates a dictionary combining old and new column names. All data, except

columns with nested elements, are appended to this dictionary. Regular expressions

are generated from user input to extract nested data from each cell. Each row’s result

will be a variable containing an array of these nested values. The loop then appends

the extracted data into the appropriate rows and columns of the Staging DataFrame.

This process continues until all rows are processed, after which the program returns

the Staging DataFrame as the result.

a. Initialization

• Input_DataFrame as the raw data.
• each_row_new_column, each_row_data, regex, toappend_regex, staged_cleaned_data, and col-

umn_need_expansion as empty dictionaries.

• generated_regex, row_value, and variables_to_regex as empty variables.
• cleaned_data as an empty list.

b. User Input

• The user is prompted to specify the column and its variables to be expanded. This input is stored in

column_need_expansion.

c. Replacing Spaces in Variable Names

• For each variable in the targeted column, spaces are replaced with underscores using regular expres-

sions to standardize the variable names.

d. Row-wise Processing

• Each row in Input_DataFrame is processed as follows:

▪ Initialize each_row_new_column and each_row_data for the current row.

▪ Create new columns in each_row_new_column for each variable in the columns specified
for expansion.

▪ Add all original columns to each_row_data.

▪ Remove columns targeted for expansion from each_row_data.
▪ Update each_row_data with each_row_new_column.

e. Generating Regular Expressions

• For each column in column_need_expansion, regular expressions are generated for the variables.

These expressions identify single or multiple inputs of each variable and are stored in regex.

f. Extracting Variables Using Regular Expressions

Pre-processing Approach for Semi-Structured Medical Data 165

• The generated regular expressions are applied to extract variables from the targeted column text. The

results are stored in staged_cleaned_data.

g. Determining Maximum Array Length

• The maximum array length for each variable in staged_cleaned_data is determined to facilitate the
expansion of rows.

h. Expanding Rows

• Rows are expanded based on the extracted data until the maximum array length is reached. The ex-

panded rows are stored in cleaned_data.

Fig. 2. Column-Row Expansion Pseudocode

4 Evaluation and Results

Given that our dataset is semi-structured and nested, we will explore a variety of
feasible scenarios. We use a secondary CSV dataset provided by a medical institution,
which has already been anonymized. Our aim is to handle nested and uncleaned semi-
structured data.

4.1 Dataset Overview

Figure 3 below shows an example of a column from the cardiology data CSV. In this
data, we can see multiple admittance dates under a single ID, each on a different row,
and this pattern repeats until the next ID is encountered.

Fig. 3. Dataset Overview

For example, the columns include "Inpatient" and "Outpatient," which can repeat
multiple times until the next ID is found. This dataset can be separated by each Admit
Date, Discharge Date, Main Diagnosis, Drugs, and Procedure for the Inpatient column.
From this example, the new columns would be Admit Date_Inpatient, Discharge
Date_Inpatient, Main Diagnosis_Inpatient, Drugs_Inpatient, and Procedure_Inpatient.

166 A. H. A. Yazik et al.

4.2 Processed Dataset Overview

Figure 4 shows the results after the semi-structured data has been processed through

the preprocessing pipeline. The previously uncleaned data has been organized into

their respective rows and columns. In this figure, we can see that the MRN serves as

the unique ID for each patient in the dataset. This data is now ready for the next pre-

processing step, which involves handling the imputation of missing data and addition-

al data normalization.

Fig. 4. After Preprocessing

5 Conclusions

In conclusion, our study commenced with meticulous initial data preprocessing steps,
including renaming columns, dropping unnecessary columns, combining rows into a
single row, and expanding rows based on nested data, before implementing automated
procedures. During the Column-Row Expansion phase, we effectively managed data
preprocessing using regular expressions and fuzzy matching of TSR to separate the
nested value in the cell. Moving forward, we aim to introduce additional automation in
subsequent phases, including data cleaning, scaling, feature selection, and feature ex-
traction, as well as handling a broader range of data types and structures, to enhance
the data's suitability for analysis and machine learning models. Additionally, if the
semi-structured data exhibits repeated structures across rows within a column, this
approach can be applied to other fields beyond medical data, effectively transforming
semi-structured data into a structured format.

Acknowledgments. The authors would like to express gratitude to the School of Computing

Sciences, College of Computing, Informatics and Mathematics, Hospital Al Sultan Abdullah,

and Faculty of Medicine, Universiti Teknologi MARA for all the given support.

Disclosure of Interests. The authors declare that there are no competing interests.

References

1. Sáinz-Pardo Díaz J, López García Á (2022) A Python library to check the

level of anonymity of a dataset. Sci Data 9:. https://doi.org/10.1038/s41597-

022-01894-2

Pre-processing Approach for Semi-Structured Medical Data 167

2. Fathima Shah W (2021) Data Preprocessing in Healthcare: A Vital Step to-

wards Informed Decision-Making Article in. International Journal of Science

and Research. https://doi.org/10.21275/SR231226164816

3. Bilal M, Ali G, Iqbal MW, et al (2022) Auto-Prep: Efficient and Automated

Data Preprocessing Pipeline. IEEE Access 10:107764–107784.

https://doi.org/10.1109/ACCESS.2022.3198662

4. Lee CH, Yoon HJ (2017) Medical big data: Promise and challenges. Kidney

Res Clin Pract 36:3–11. https://doi.org/10.23876/j.krcp.2017.36.1.3

5. van Engelen JE, Hoos HH (2019) A Survey on Semi-Supervised Learning.

Mach Learn. https://doi.org/10.1007/s10994-019-05855-6

6. Sheikhalishahi S, Miotto R, Dudley JT, et al (2019) Natural Language Pro-

cessing of Clinical Notes on Chronic Diseases: Systematic Review. JMIR

Med Inform. https://doi.org/10.2196/12239

7. Ladas N, Borchert F, Franz S, et al (2023) Programming Techniques for Im-

proving Rule Readability for Rule-Based Information Extraction Natural

Language Processing Pipelines of Unstructured and Semi-Structured Medical

Texts. Health Informatics J. https://doi.org/10.1177/14604582231164696

8. Bonfitto S, Cappelletti L, Trovato F, et al (2021) Semi-automatic Column

Type Inference for CSV Table Understanding. In: Bures T, Dondi R, Gamper

J, et al (eds) SOFSEM 2021: Theory And Practice Of Computer Science.

Springer International Publishing Ag, Gewerbestrasse 11, Cham, Ch-6330,

Switzerland, pp 535–549

9. Sun W, Cai Z, Li Y, et al (2018) Data Processing and Text Mining Technolo-

gies on Electronic Medical Records: A Review. J Healthc Eng.

https://doi.org/10.1155/2018/4302425

10. Fan C, Chen M, Wang X, et al (2021) A Review on Data Preprocessing

Techniques Toward Efficient and Reliable Knowledge Discovery From

Building Operational Data. Front Energy Res 9

11. Mumuni A, Mumuni F (2024) Automated data processing and feature engi-

neering for deep learning and big data applications: A survey. Journal of In-

formation and Intelligence. https://doi.org/10.1016/j.jiixd.2024.01.002

12. Li PR, Chen Z, Chu X, Rong K (2023) DiffPrep: Differentiable Data Prepro-

cessing Pipeline Search for Learning Over Tabular Data. Proceedings of the

Acm on Management of Data. https://doi.org/10.1145/3589328

168 A. H. A. Yazik et al.

13. Truong A, Walters A, Goodsitt J, et al (2019) Towards Automated Machine

Learning: Evaluation and Comparison of AutoML Approaches and Tools.

https://doi.org/10.1109/ICTAI.2019.00209

14. Pečnik L, Fister I (2021) NiaAML: AutoML Framework Based on Stochastic

Population-Based Nature-Inspired Algorithms. The Journal of Open Source

Software. https://doi.org/10.21105/joss.02949

15. Bosker HR Using fuzzy string matching for automated assessment of listener

transcripts in speech intelligibility studies. https://doi.org/10.3758/s13428-

021-01542-4/Published

16. Kleshch K, Shablii V (2023) Comparison of fuzzy search algorithms based on

Damerau-Levenshtein automata on large data. Technology audit and produc-

tion reserves 4:27–32. https://doi.org/10.15587/2706-5448.2023.286382

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Pre-processing Approach for Semi-Structured Medical Data 169

http://creativecommons.org/licenses/by-nc/4.0/

	Pre-processing Approach for Semi-Structured Medical Data

