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Abstract. — The exponential growth of healthcare data nowadays due to the 

widespread use of electronic health records (EHRs) has presented both 

opportunities and challenges in patient care, resource allocation, and medical 

research. Although advances in automated machine learning (AutoML) have 

streamlined many processes especially in data preprocessing, however the 

preprocessing of semi-structured data remains a time-consuming task, 

particularly when the data does not conform to standard database structures. This 

paper introduces a preprocessing approach designed to automate and simplify the 

preprocessing of semi-structured medical data. The approach specifically 

addresses the challenges posed by nested data within columns and involves a 

series of steps, including renaming and removing columns, merging separated 

rows, and expanding data in to structured formats. Through the application of this 

approach to an actual medical dataset, we demonstrate its effectiveness in 

automating the data preparation phase. The results indicate a successful 

transformation of nested data into a structured format, where each previously 

nested element is now represented by its own row and column, thereby 

facilitating future data analysis. The integration of this approach into healthcare 

data management systems has the potential to enhance the efficiency of data 

preprocessing and improve the quality of subsequent data analysis. Additionally, 

this preprocessing step can be further refined using other techniques to enhance 

the data. Future research should focus on expanding the preprocessing's 

capability to handle a wider variety of data types and structures, and exploring its 

applicability to other fields that encounter similar nested data challenges. 
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1 Introduction 

Sharifa- lillah Nordin , Sazzli Shahlan Kasim3 4

The exponential growth of healthcare data presents both challenges and 

opportunities for improving patient care, optimizing resources, and advancing research. 

Electronic Health Records (EHRs) have played a key role in moving healthcare 

towards a paperless environment, reducing medical errors and administrative costs [1, 
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2]. However, the complexity and volume of EHR data create significant challenges in 

data analysis and interpretation [2]. 

 

Healthcare data analysis, particularly exploratory data analysis (EDA), is crucial for 

finding patterns, trends, and correlations. EHRs contain comprehensive patient 

information, including demographics, medical history, and lab results, providing 

valuable health insights [2]. Preprocessing techniques, such as Automated Machine 

Learning (AutoML), encounter several challenges when preprocessing data, especially 

with semi-structured data which is not usually structured like a traditional database [3]. 

 

Medical data also face challenges such as the curse of dimensionality, with 

numerous variables increasing complexity [4]. High-dimensional data, such as from 

microarrays and sequencing, require extensive preprocessing [4]. Semi-structured data, 

which does not fit traditional databases, further complicates machine learning and data 

analytics tasks [5]. 

 

This paper develops a preprocessing approach for semi-structured medical data, 

with a focus on handling nested data within columns. We employ a Python-based 

solution to create an automated and interactive process that streamlines data 

preprocessing. The paper is organized as follows: Section 2 reviews the related 

literature, Section 3 presents the methodology, Section 4 discusses the results, and 

Section 5 concludes the paper. 

2 Literature Works 

2.1 Medical Data 

Medical data is often complex and comes from various sources, including electronic 

health records (EHRs), patient surveys, clinical trials, medical imaging, wearable 

devices, and healthcare databases [1, 2]. EHRs provide detailed patient histories, lab 

results, and treatments, offering insights into patient care and outcomes [2, 6]. How-

ever, processing this data is challenging due to its unstructured or semi-structured 

nature, making traditional analysis difficult [2, 7]. 

 

 

2.2 Semi-Structured Data 

Semi-structured data, which doesn’t fit neatly into traditional structured models, adds 
another layer of complexity. For instance, CSV files can have varying column numbers 
across rows, leading to inconsistencies [5, 8]. Spreadsheets, commonly used in data 
management, are designed for human interaction rather than automated processing, 
further complicating data integration [8]. Addressing preprocessing issues particularly 
in semi-structured data requires significant effort, which is crucial for developing relia-
ble machine learning models [2, 8, 9]. 

 

Pre-processing Approach for Semi-Structured Medical Data             161



 

 

2.3 Data Preprocessing 

Data preprocessing is a critical phase in machine learning and data analysis, where raw 
data is cleaned, transformed, and prepared for modeling [10, 11]. High-quality prepro-
cessing directly impacts the performance of deep learning models, with poor data qual-
ity potentially undermining algorithm outcomes [11]. Data scientists spend a substan-
tial portion of their time on tasks such as data cleaning, missing data imputation, and 
categorical data encoding [3, 11]. Each of these tasks presents its own set of challeng-
es, especially when dealing with the complexities of medical and semi-structured data. 
 

2.4 Automated Machine Learning (AutoML) 

Recognizing the time-intensive nature of data preprocessing, Automated Machine 

Learning (AutoML) have been developed to streamline this process. Automated Ma-

chine Learning (AutoML) streamlines the machine learning pipeline, including data 

preprocessing, feature engineering, model selection, and hyperparameter optimization 

[12–14]. AutoML automates many of the preprocessing tasks, such as handling miss-

ing values, encoding categorical variables, and scaling features, thereby enhancing 

consistency and saving time [13]. However, challenges remain, particularly with semi-

structured data, where the lack of standardized handling methods can hinder AutoML's 

scalability and effectiveness [8, 13]. 

 

 

2.5 Fuzzy Matching 

Fuzzy matching is a technique used to identify strings that are similar but not identical, 
accounting for minor errors or variations [15]. It is particularly useful in data prepro-
cessing when dealing with inconsistent or incomplete data entries. For example, fuzzy 
matching can address common typing errors by comparing and scoring the similarity 
of strings using algorithms like Levenshtein Distance (LS), Token Sort Ratio (TSR), 
and Jaro Distance [16]. Among these, TSR is often more effective for longer strings, as 
it normalizes word order and reduces variability due to different word arrangements 
[16]. 

For instance, if the target word "human" receives a response of "huwan," TSR 
would be calculated as TSR = 2 * (length of shared substring) / (sum of lengths of both 
strings) * 100 [15]. The shared substrings are "hu" and "an," so the calculation would 
be 2 * 4 / 10 * 100 = 80. 

3 Methodology 

In this research, we develop a Python-based method to provide an interactive, data-
driven service for users to perform data preprocessing efficiently and effectively. The 
user will interact with the command line interface to generate the cleaned dataset. The 
method aims to preprocess semi-structured data with nested columns. We employ pre-
existing approaches to address a wide range of data cleaning and feature engineering 
tasks. Our primary focus is on the combination of different rows and the expansion of 
columns into multiple columns, followed by the data cleaning process. 
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The most challenging aspect of designing this method is integrating the column 
expansion phase, where each column may contain multiple nested variables, which can 
occur multiple times even for a single ID. Therefore, our proposed method must handle 
this task efficiently. 

3.1 Column Rename 

In semi-structured data, the data often lacks a clear structure and column names may 
not be standardized. This phase involves a straightforward process to rename columns 
using a for loop. The program prompts the user to specify which columns need 
renaming and then allows the user to provide both the original and the new column 
names.  

3.2 Column Dropper 

The next step is the column dropper, a straightforward phase where the program 
prompts the user to specify which columns to drop. Users can choose to drop columns 
individually or provide a list of columns separated by commas to drop them all at once. 
The program will continue to prompt the user in a loop until they are satisfied with the 
structure of the DataFrame.  

3.3 Row Combinator 

The next step is the row combinator, which is crucial for merging rows that have been 
separated due to conversion from CSV or Excel formats. In medical systems, data 
entries might be written in a way that separates related information into new rows. The 
row combinator collects and combines all related rows into a single entry based on a 
common ID, ensuring the data is consolidated correctly. For example the table 1 below 
show what the data example looks like before it will combine. The actual data is more 
complex, but it is simplified here to provide a clearer understanding in this paper. 

Table 1. Example of the Data 

MRN Inpatient Outpatient Deceased 
Date 

Echo Results 

0001 Admit Date: 2022-08-
28 

Clinic: Clinic 
ABC 

- Date Report : 2022-09-08 

 Discharge Date: 2023-
08-29 

Date Clinic : 
2020-03-09 

 Echo Window : Suboptimal 

 Main Diagnosis: 2 
Vessel Disease 

Diagnosis:   

 Admit Date: 2023-01-
03 

   

 Discharge Date: 2023-
01-04 

   

0002 Admit Date: 2023-01-
20 

Clinic: Clinuc 
ABC 

- Date Report : 2023-02-08 

 Discharge Date: 2023-
01-22 

Date Clinic : 
2019-04-11 

 Echo Window : Suboptimal 

 Main Diagnosis : 
Unstable Angina 
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 Figure 1 shows the flow of the row combinator phase. In this phase, the content 
separated by rows is combined into a single row. The program first asks the user which 
row represents the unique ID, then begins looping through each row in the DataFrame. 
For the first row, all data is taken and stored in a dictionary, and the unique ID is 
captured. For subsequent rows, the saved unique ID acts as an identifier to determine if 
the row should be combined. If no matching ID is found, or the ID is the same, the data 
is appended to the same dictionary. Otherwise, the dictionary is appended to the 
Staging DataFrame, a new unique ID is saved, and the current dictionary, which has 
already been appended to the Staging DataFrame, is emptied. 

 

Create Raw_DataFrame from the previous modified raw dataset. 

Create an empty DataFrame called Staging_DataFrame. 

Create another empty dictionary called Row_Dictionary. 

Create a null variable called Current_Row_ID 

 

Take Unique_ID_Column by prompting the user for the unique id column 

 

for row in Raw_DataFrame: 

    if is_first_row(row):  

        Append all row values into Row_Dictionary 

        Set Current_Row_ID as row[Unique_ID_Column] 

    else: 

        if row[Unique_ID_Column] is the same as Current_Row_ID or row[Unique_ID_Column] is empty: 

            Append all row values to Row_Dictionary 

        else: 

            Append Row_Dictionary into Staging_DataFrame 

            Empty the Row_Dictionary 

            Append new row value to Row_Dictionary 

            Set Current_Row_ID as row[Unique_ID_Column] 

 

return Staging_DataFrame 

 Fig. 1. Row Combinator 

3.4 Column-Row Expansion 

Next is the Column-Row Expansion Phase, where the combined data will be 

distributed into their respective columns and rows. This phase is extensive because the 

data must be accurately placed into the correct rows and columns. For instance, if there 

are six occurrences of a variable like "Admit Date," the program should create six new 

rows to accommodate each admit date, as illustrated in Figure 2 below. 

 

In this phase, the combined data is loaded, and a new empty Staging DataFrame is 

created. The Staging DataFrame will then include both the new column names and the 

old columns after prompting the user to specify which columns need to be expanded. 
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The program also asks the user for the variables within the specified columns that need 

to be expanded, creating new columns in the Staging DataFrame accordingly. All user 

inputs, such as the intended columns and their variables, are stored in a dictionary. 
  

For variables containing spaces, the program will use regular expressions and fuzzy 

matching based on Token Sort Ratio (TSR) to locate them. Spaces in these variables 

will be replaced with underscores. Other values are also identified using regular 

expressions and fuzzy matching with a threshold of 80% to correct any errors, such as 

misspellings. This has to be done to enhance the matching strategy using regular 

expression in the next step. 

 

Next, the program processes each row of the DataFrame in a loop. Initially, the 

system creates a dictionary combining old and new column names. All data, except 

columns with nested elements, are appended to this dictionary. Regular expressions 

are generated from user input to extract nested data from each cell. Each row’s result 

will be a variable containing an array of these nested values. The loop then appends 

the extracted data into the appropriate rows and columns of the Staging DataFrame. 

This process continues until all rows are processed, after which the program returns 

the Staging DataFrame as the result.  

 

 
a. Initialization 

• Input_DataFrame as the raw data. 
• each_row_new_column, each_row_data, regex, toappend_regex, staged_cleaned_data, and col-

umn_need_expansion as empty dictionaries. 

• generated_regex, row_value, and variables_to_regex as empty variables. 
• cleaned_data as an empty list. 

 

b. User Input 

• The user is prompted to specify the column and its variables to be expanded. This input is stored in 

column_need_expansion. 

 
c. Replacing Spaces in Variable Names 

• For each variable in the targeted column, spaces are replaced with underscores using regular expres-

sions to standardize the variable names. 
 

d. Row-wise Processing 

• Each row in Input_DataFrame is processed as follows: 
 

▪ Initialize each_row_new_column and each_row_data for the current row. 

▪ Create new columns in each_row_new_column for each variable in the columns specified 
for expansion. 

▪ Add all original columns to each_row_data. 

▪ Remove columns targeted for expansion from each_row_data. 
▪ Update each_row_data with each_row_new_column. 

 

e. Generating Regular Expressions 

• For each column in column_need_expansion, regular expressions are generated for the variables. 

These expressions identify single or multiple inputs of each variable and are stored in regex. 

 
f. Extracting Variables Using Regular Expressions 
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• The generated regular expressions are applied to extract variables from the targeted column text. The 

results are stored in staged_cleaned_data. 
 

g. Determining Maximum Array Length 

• The maximum array length for each variable in staged_cleaned_data is determined to facilitate the 
expansion of rows. 

 

h. Expanding Rows 

• Rows are expanded based on the extracted data until the maximum array length is reached. The ex-

panded rows are stored in cleaned_data. 

 

Fig. 2. Column-Row Expansion Pseudocode 

4 Evaluation and Results 

Given that our dataset is semi-structured and nested, we will explore a variety of 
feasible scenarios. We use a secondary CSV dataset provided by a medical institution, 
which has already been anonymized. Our aim is to handle nested and uncleaned semi-
structured data. 

4.1 Dataset Overview 

Figure 3 below shows an example of a column from the cardiology data CSV. In this 
data, we can see multiple admittance dates under a single ID, each on a different row, 
and this pattern repeats until the next ID is encountered.  

 

Fig. 3. Dataset Overview 

For example, the columns include "Inpatient" and "Outpatient," which can repeat 
multiple times until the next ID is found. This dataset can be separated by each Admit 
Date, Discharge Date, Main Diagnosis, Drugs, and Procedure for the Inpatient column. 
From this example, the new columns would be Admit Date_Inpatient, Discharge 
Date_Inpatient, Main Diagnosis_Inpatient, Drugs_Inpatient, and Procedure_Inpatient.  
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4.2 Processed Dataset Overview 

Figure 4 shows the results after the semi-structured data has been processed through 

the preprocessing pipeline. The previously uncleaned data has been organized into 

their respective rows and columns. In this figure, we can see that the MRN serves as 

the unique ID for each patient in the dataset. This data is now ready for the next pre-

processing step, which involves handling the imputation of missing data and addition-

al data normalization. 

 

 

Fig. 4. After Preprocessing 

5 Conclusions 

In conclusion, our study commenced with meticulous initial data preprocessing steps, 
including renaming columns, dropping unnecessary columns, combining rows into a 
single row, and expanding rows based on nested data, before implementing automated 
procedures. During the Column-Row Expansion phase, we effectively managed data 
preprocessing using regular expressions and fuzzy matching of TSR to separate the 
nested value in the cell. Moving forward, we aim to introduce additional automation in 
subsequent phases, including data cleaning, scaling, feature selection, and feature ex-
traction, as well as handling a broader range of data types and structures, to enhance 
the data's suitability for analysis and machine learning models. Additionally, if the 
semi-structured data exhibits repeated structures across rows within a column, this 
approach can be applied to other fields beyond medical data, effectively transforming 
semi-structured data into a structured format. 

Acknowledgments. The authors would like to express gratitude to the School of Computing 

Sciences, College of Computing, Informatics and Mathematics, Hospital Al Sultan Abdullah, 

and Faculty of Medicine, Universiti Teknologi MARA for all the given support. 

Disclosure of Interests. The authors declare that there are no competing interests. 

References 

1.  Sáinz-Pardo Díaz J, López García Á (2022) A Python library to check the 

level of anonymity of a dataset. Sci Data 9:. https://doi.org/10.1038/s41597-

022-01894-2 
 

Pre-processing Approach for Semi-Structured Medical Data             167



 

 

2.  Fathima Shah W (2021) Data Preprocessing in Healthcare: A Vital Step to-

wards Informed Decision-Making Article in. International Journal of Science 

and Research. https://doi.org/10.21275/SR231226164816 

 

3.  Bilal M, Ali G, Iqbal MW, et al (2022) Auto-Prep: Efficient and Automated 

Data Preprocessing Pipeline. IEEE Access 10:107764–107784. 

https://doi.org/10.1109/ACCESS.2022.3198662 

 

4.  Lee CH, Yoon HJ (2017) Medical big data: Promise and challenges. Kidney 

Res Clin Pract 36:3–11. https://doi.org/10.23876/j.krcp.2017.36.1.3 

 

5.  van Engelen JE, Hoos HH (2019) A Survey on Semi-Supervised Learning. 

Mach Learn. https://doi.org/10.1007/s10994-019-05855-6 

 

6.  Sheikhalishahi S, Miotto R, Dudley JT, et al (2019) Natural Language Pro-

cessing of Clinical Notes on Chronic Diseases: Systematic Review. JMIR 

Med Inform. https://doi.org/10.2196/12239 

 

7.  Ladas N, Borchert F, Franz S, et al (2023) Programming Techniques for Im-

proving Rule Readability for Rule-Based Information Extraction Natural 

Language Processing Pipelines of Unstructured and Semi-Structured Medical 

Texts. Health Informatics J. https://doi.org/10.1177/14604582231164696 

 

8.  Bonfitto S, Cappelletti L, Trovato F, et al (2021) Semi-automatic Column 

Type Inference for CSV Table Understanding. In: Bures T, Dondi R, Gamper 

J, et al (eds) SOFSEM 2021: Theory And Practice Of Computer Science. 

Springer International Publishing Ag, Gewerbestrasse 11, Cham, Ch-6330, 

Switzerland, pp 535–549 

 

9.  Sun W, Cai Z, Li Y, et al (2018) Data Processing and Text Mining Technolo-

gies on Electronic Medical Records: A Review. J Healthc Eng. 

https://doi.org/10.1155/2018/4302425 

 

10.  Fan C, Chen M, Wang X, et al (2021) A Review on Data Preprocessing 

Techniques Toward Efficient and Reliable Knowledge Discovery From 

Building Operational Data. Front Energy Res 9 

 

11.  Mumuni A, Mumuni F (2024) Automated data processing and feature engi-

neering for deep learning and big data applications: A survey. Journal of In-

formation and Intelligence. https://doi.org/10.1016/j.jiixd.2024.01.002 

 

12.  Li PR, Chen Z, Chu X, Rong K (2023) DiffPrep: Differentiable Data Prepro-

cessing Pipeline Search for Learning Over Tabular Data. Proceedings of the 

Acm on Management of Data. https://doi.org/10.1145/3589328 

 

168             A. H. A. Yazik et al.



 

 

13.  Truong A, Walters A, Goodsitt J, et al (2019) Towards Automated Machine 

Learning: Evaluation and Comparison of AutoML Approaches and Tools. 

https://doi.org/10.1109/ICTAI.2019.00209 

 

14.  Pečnik L, Fister I (2021) NiaAML: AutoML Framework Based on Stochastic 

Population-Based Nature-Inspired Algorithms. The Journal of Open Source 

Software. https://doi.org/10.21105/joss.02949 

 

15.  Bosker HR Using fuzzy string matching for automated assessment of listener 

transcripts in speech intelligibility studies. https://doi.org/10.3758/s13428-

021-01542-4/Published 

 

16.  Kleshch K, Shablii V (2023) Comparison of fuzzy search algorithms based on 

Damerau-Levenshtein automata on large data. Technology audit and produc-

tion reserves 4:27–32. https://doi.org/10.15587/2706-5448.2023.286382 

  

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Pre-processing Approach for Semi-Structured Medical Data             169

http://creativecommons.org/licenses/by-nc/4.0/

	Pre-processing Approach for Semi-Structured Medical Data



