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Abstract. Large-scale solar farms, often encompassing more than 100,000 

panels, face significant challenges in maintaining optimal performance due to the 

impracticality of manual defect inspections. Undetected defects reduce panel 

efficiency, increase operational costs, and delay necessary maintenance, leading 

to more extensive damage and higher repair costs. This paper outlines a 

comprehensive approach to automatically detect defects and localize both normal 

and defective solar panels using the YOLOv5 model, addressing the need for 

efficient and reliable maintenance in large-scale solar farms. Initially, YOLOv5 

is employed to classify specific zones within images containing two panels. 

Identified zones are cropped, and the same YOLOv5 model is used again to 

accurately localize each individual panel within the zone. Subsequently, the 

model is reapplied to detect any defects in the solar panels, analyzing and 

identifying anomalies. The panels and their defects are then precisely located, 

with bounding boxes drawn around the defect spots. The proposed method 

ensures thorough and precise identification and localization of both the panels 

and their defects. The final training results demonstrate near-perfect performance 

across all metrics, achieving a precision (P) of 0.947, a recall (R) of 0.968, and a 

mean Average Precision at 50% IoU (mAP50) of 0.989 for all classes. This 

project addresses critical challenges in the maintenance of large-scale solar 

farms, enhancing the efficiency and longevity of solar panels through timely and 

accurate defect detection. The automated system reduces labor costs, minimizes 

downtime, and promotes sustainable energy production. By fostering innovation 

in AI and image processing, the project contributes to technological 

advancements and supports global transitions to renewable energy sources. 

Future efforts will focus on real-time deployment on edge devices, integration 

with maintenance systems, expanding datasets for improved model robustness, 

and exploring multispectral imaging. Additionally, efforts will be made to 

integrate predictive maintenance algorithms, and conduct extensive field testing 

and long-term validation. 
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1 Introduction 

Solar panels, those sleek, shining devices that capture sunlight and transform it into 

electricity [1], are more than just a technological marvel—they are a beacon of hope 

for a sustainable future. Picture fields of solar panels glistening in the sun, each one 

contributing to a greener planet by reducing the reliance on fossil fuels as solar panel 

carbon emission is 95% less than coal [2]. For governments, the benefits are manifold. 

By investing in solar energy, they can achieve greater energy independence, create jobs 

in the renewable energy sector, and lower energy costs for their citizens. Malaysian 

government incentives encourage widespread adoption, leading to a more resilient and 

sustainable energy infrastructure that can power homes and industries while protecting 

the environment [3]. 

However, the journey of solar panels from installation to energy production isn't 

without challenges. Like any technology, solar panels can develop defects over time—

cracks, hot spots, or faulty connections that can severely impact their efficiency and 

longevity [4]–[6]. Detecting these defects early is crucial, akin to catching a cold before 

it turns into pneumonia. Timely detection allows for quick repairs or replacements, 

ensuring that each panel operates at its peak efficiency. This not only maximizes energy 

output and return on investment but also ensures a steady supply of renewable energy, 

aiding in meeting energy goals and reducing the carbon footprint. 

Consider the vast solar farms with thousands of panels. Locating a defective panel 

in such a sea of technology is like finding a needle in a haystack. Accurate localization 

of defects is essential for efficient maintenance. When issues are precisely identified, 

technicians can quickly address them, minimizing downtime and reducing maintenance 

costs. For large-scale solar operations, this targeted approach is vital. It ensures that all 

panels function optimally, enhancing the overall energy output and reliability of the 

system. 

This is where the power of machine learning comes into play [7]. Imagine a 

sophisticated system, equipped with advanced algorithms like YOLOv5 [8], tirelessly 

scanning through images of solar panels, pinpointing defects with unparalleled 

accuracy and speed. Unlike human experts who may experience fatigue and subjective 

judgment [9], machine learning models are relentless and precise. They can analyze 

vast amounts of data efficiently, continuously learning and improving from new 

information. This automation not only enhances the precision of defect detection but 

also accelerates the process, making maintenance more effective and ensuring higher 

efficiency of solar panel systems. In a world where renewable energy is crucial for our 

survival, integrating machine learning in solar panel maintenance is nothing short of 

revolutionary, bridging the gap between human limitations and technological potential. 

In this research, we propose a method to identify defects and localize solar panels 

using YOLOv5. We will first use YOLOv5 to localize the solar panels before scanning 

them to identify defect spots. This paper comprises five sections: introduction, related 

review, methodology, results, and conclusion. 
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2 Related Review 

This section provides an in-depth literature review of previously developed algorithms, 

offering insights into their methodologies and outcomes. It serves to highlight the 

unique aspects and contributions of this research by contrasting it with established 

methods. A total of five distinct methods are examined and compared in detail, with a 

summary of their characteristics and capabilities presented in Table 1. This comparative 

analysis underscores the advancements and innovations introduced by this research, 

situating it within the context of existing work in the field. 

Table 1. Previous Research 

Research/ Paper Title Methods Advantages Disadvantages 

A technique for fault 

detection, 

identification and 

location in solar 

photovoltaic systems 

[4] 

Incorporate the 

current flow in 

the string within 

the solar panels 

Automatic 

detection of line-

wiring faults and 

localization 

Assuming no faults 

string currents and 

compare it with actual 

string currents 

Solar panel defect 

detection design based 

on YOLO v5 algorithm 

[10]  

Use Yolov5 to 

classify defect 

spot 

Efficient speed in 

detecting defective 

spots 

No panel localization 

method introduced 

Solar panel hotspot 

localization and fault 

classification using 

deep learning approach 

[6] 

Use various deep 

learning and 

machine learning 

to classify fault 

and localize 

hotspot. 

Eliminate use of 

human expert and 

allow early 

detection. Utilize 

advanced 

algorithms to 

classify hotspots 

and faults 

The panel localization 

method lacks 

efficiency, 

effectiveness, and 

conciseness. It fails to 

focus adequately 

beyond identifying 

hotspots. 

Fault detection and 

classification in solar 

based distribution 

systems in the presence 

of deep learning and 

social spider method 

[7] 

Use generative 

adversarial 

networks 

(GANs) and 

Social Spyder 

method to detect 

fault. 

Hybrid method 

which can increase 

classification 

capability 

 

 

No panel localization 

method introduced 

 

Solar Cell Surface 

Defect Detection 

Based 

on Improved YOLO v5 

[11]  

Use YOLO v5 to 

detect fault 

Improve YOLO v5 

to increase its 

capability 

 

No panel localization 

method introduced 
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Firstly, the paper titled “A Techniques for Fault Detection, Identification, and 

Location in Solar Photovoltaic Systems” [4] introduces a comparative method for 

detecting faults. This approach involves comparing the actual current flow against an 

assumed fault-free current flow. While this method aids in fault detection and panel 

localization, its reliance on assumed fault-free conditions presents a limitation, as 

assumptions can undermine the capability of outlier detection [12]. 

 Next, the paper titled “Solar Panel Defect Detection Design Based on YOLO 

v5 Algorithm” [10] utilizes the same algorithm as this study but incorporates 

enhancements that improve speed and reduce hardware energy requirements. Despite 

these advancements, the paper does not include a method for panel localization. 

The paper titled “Solar Panel Hotspot Localization and Fault Classification Using 

Deep Learning Approach” [6] explores a range of machine learning and deep learning 

techniques, comparing their effectiveness and integrating critical automation to 

eliminate the need for human expertise. It employs these technologies to identify 

hotspot areas and subsequently locate the panels. However, the paper does not detail 

the method for determining the coordinates of these locations and focuses solely on 

hotspots. It does not address how defects in non-hotspot areas are handled or the 

implications of such defects. 

The paper titled “Fault Detection and Classification in Solar-Based Distribution 

Systems Using Deep Learning and Social Spider Methods” [7] employs Generative 

Adversarial Networks (GANs) and the Social Spider method to identify defective 

panels. By integrating these hybrid techniques, the paper enhances the system's 

detection capabilities. However, it does not provide methods for panel localization. 

Finally, the paper titled “Solar Cell Surface Defect Detection Based on Improved 

YOLO v5” [11] presents an enhanced version of the YOLO v5 algorithm, designed to 

bolster its detection capabilities. Despite these improvements, the researchers did not 

focus on panel localization, leaving the issue of identifying the exact location of 

defective panels unaddressed. 

Therefore, in this paper, we introduce a groundbreaking technique that has not been 

explored before, aiming to advance both panel localization and defect detection with 

greater efficiency and effectiveness. This novel approach utilizes the YOLO v5 

algorithm exclusively, setting a new benchmark in the field and encouraging further 

research into the precise localization of defective solar panels. 

3 Methodology 

This section outlines the methodology for localization and detection. We employ 

YOLOv5x to detect three distinct classes: zone, panel, and defect spot. The images used 

are thermal, as they highlight defects with white spots more clearly than standard 

images. The process begins with training the YOLOv5x model, followed by 

localization and identifying defect spots. 
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3.1 Data Collection and Dataset Preparation 

For this study, data was collected using a drone to capture detailed thermal images of 

solar panels. The solar panels used in this research are owned by Tenaga Nasional 

Berhad Integrated Learning Solution (TNB iLSAS). Our dataset comprises 79 thermal 

images, which collectively include 193 panels, 76 zones, and 45 defect spots. 

To ensure robust training and evaluation of our model, we split these 79 thermal 

images into training and testing sets. The training set consists of 63 images, while the 

testing set is composed of 16 images. This distribution ensures that 80% of the images 

are used for training and the remaining 20% for testing, providing a balanced approach 

to model validation. 

The testing dataset specifically includes 7 defect spots, 39 panels, and 17 zones, 

ensuring that it is representative of the challenges the model will face in real-world 

scenarios. Table 2 provides a detailed breakdown of this split, highlighting the careful 

consideration given to maintaining a representative distribution of panels, zones, and 

defects in both the training and testing datasets. 

Table 2. Data Distribution 

Class Training (80%) Testing (20%) Total Classes 

Zone 59 17 76 

Panel 154 39 193 

Defect 38 7 45 

Total Data 251 63 314 

 

This structured approach to data collection and preparation is critical for training an 

effective model. By leveraging thermal imaging technology and systematically 

organizing our data, we can better train the YOLOv5 model to accurately detect and 

localize defects in solar panels, ultimately contributing to improved maintenance 

practices and energy efficiency. 

3.2 Model Development and Training 

First, we use a Kaggle notebook to develop the YOLOv5x model. We utilize labelling 

to annotate each class. Figure 1 illustrates the three classes that will be labelled and 

trained in the Kaggle notebook.  

         

Fig. 1. The left image shows the zone, while the right image displays the panel with a red box 

indicating the defect spot 
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We conducted the training of the YOLOv5x model over the course of 700 epochs. This 

extensive training process was designed to ensure the model's accuracy and reliability 

in detecting and localizing defects in solar panels. The whole model is depicted in Fig. 

2. 

 

Fig. 2. The Model Architecture 

Firstly, the training dataset enters the backbone layer. This layer consists of 

convolutional layers, which scan the images and identify patterns, residual layers, 

which retain information from earlier layers, and Cross Stage Partial Networks 

(CSPNet), which help learn better features from the images. Next, the data enters the 

neck layer, which includes the Feature Pyramid Network (FPN) to aid in detecting 

objects at various scales, followed by Path Aggregation to enhance the information 

exchange between large-scale and small-scale objects. The data then moves to the head 

layer, where bounding boxes are created for each predicted object. The objectness score 

indicates the model's confidence in detecting these objects, and class prediction labels 

the objects. The final output is a set of labeled images. 

Our dataset was divided into two parts: 84% of the data was allocated for training, 

while the remaining 16% was set aside for testing. This split allowed us to effectively 

train the model while also evaluating its performance on unseen data. The detailed 

results of this training process, including performance metrics and evaluation outcomes, 

will be thoroughly discussed and presented in Section 3. This comprehensive approach 

ensures that the model is well-tuned and capable of accurate defect detection in practical 

applications. 

3.3 Detection and Localization 

The flow of detection and localization are shown in Fig.3. 
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Fig. 3. Flow of localization and detection 

After cropping the zones, the localization process begins, followed by the detection 

of defect spots. The final output will include data consisting of localized panels and 

identified defect spots, clearly indicating the areas of concern on the solar panels. 

4 Results 

We will discuss the training outcomes as well as the localization and detection 

processes. 

4.1 Training Result 

Table 3 shows the training result. 

Table 3. Training Result 

Class Instances Precision (P) Recall (R) Mean average 

precision (mAP50) 

All 63 94.7% 96.8% 98.9% 

Zone 17 84.1% 100% 97.8% 

Panel 39 100% 94.3% 99.4% 

Defect 7 100% 96.2% 99.5% 

 

The training results for the model demonstrate its exceptional performance in 

accurately detecting and localizing zones, panels, and defect spots in solar panel 

images. For the zone class, the model achieved a precision of 84.1%, meaning it 

correctly identified 84.1% of defects. It also achieved a perfect recall of 1.0, meaning 

it successfully identified all actual zones in the images without any misses. The mean 

average precision (mAP50) for zones is 97.8%, reflecting the model's high accuracy 

and consistency in detecting zones. 
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In the panel class, the model's performance is even more impressive, with a precision 

of 100%, showing that all identified panels are correct with no false positives. The recall 

is 94.3%, showing it missed a small fraction of actual panels. The mAP50 for panels is 

99.4%, demonstrating the model's reliability in accurately identifying panels. 

For the defect class, the model achieved a precision of 100%, meaning all detected 

defects are true defects with no false positives. The recall is perfect at 1.0, indicating 

that the model identified all actual defects in the images. The mAP50 for defects is 

99.5%, highlighting the model's outstanding capability in accurately detecting and 

localizing defect spots. Overall, these results underscore the YOLOv5x model's 

exceptional accuracy and reliability in detecting and localizing various classes within 

solar panel images. 

 

Fig. 4.   Detection Process  

4.2 Detection Results 

Based on Figure 4, a thermal solar image is presented, containing a zone. The zone 

in this image was successfully detected, with a 94% confidence level. This high 

confidence level indicates that the model is highly certain about the presence and 

correct identification of the zone within the thermal image. 

Once the zone is identified, the next step involves cropping this zone to isolate the 

panels within it. During this stage, two panels are detected in total. The detection 

confidence for these panels varies. The first panel is detected with a confidence level 
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of 78%, and the second panel is detected with a confidence level of 74%, both of which 

are considered reliable for practical applications. 

The detected panels are then labelled sequentially, with the first detected panel 

labelled as panel 1 and the second as panel 2. This sequential labelling aids in 

organizing and tracking the panels during subsequent analysis, effectively achieving 

localization. 

Finally, the model proceeds to detect defect spots within the identified panels. One 

defect spot is detected, located in panel 2, with an 82% confidence level. This high 

confidence level for defect detection indicates that the model is quite reliable in 

identifying defects within the panels. 

In summary, our proposed approach has effectively localized each panel within the 

thermal images and accurately detected the defective spots. The high confidence levels 

in the detections demonstrate the robustness and reliability of the model. This approach 

ensures that solar panels and their defects can be monitored and maintained efficiently, 

contributing to better management and optimization of solar energy systems. 

5 Conclusion 

In conclusion, our approach using the YOLOv5 model has proven highly effective in 

detecting defects and localizing solar panels. The model successfully classified zones, 

cropped and localized panels, and identified defect spots with near-perfect accuracy. 

The final training results demonstrate exceptional performance, with a precision of 

94.7%, recall of 96.8%, and mAP50 of 98.9% across all classes. Our method was 

validated through the analysis of thermal solar images, where it accurately detected 

zones, localized panels, and identified defects with high confidence. This robust 

performance highlights the potential of our approach for improving solar panel 

maintenance and efficiency. 
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