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Abstract. Properly monitoring plant health in hydroponic farming is crucial as 

the plants rely solely on mineral water flowing through their roots as a growth 

source. One of the main challenges is the early detection of wilt in plants due to 

water stress. If not addressed promptly, water stress can lead to crop failure. One 

approach used to detect the plant wilting level is by applying deep learning 

technology. This paper presents a novel approach to data collection and 

classification in the context of vertical aeroponic agriculture. To effectively 

monitor the condition of crops within this setup, a custom data collection system 

using a simple robotic arm was developed. Images of bok choy crops were 

captured in both fresh and wilted conditions. The proposed deep learning model 

processes three-channel images with a resolution of 128×128 pixels. Results 

show that the proposed deep learning model achieved a high overall accuracy of 

90% in distinguishing between fresh and wilted conditions. The model correctly 

classified 131 out of 138 fresh samples and 107 out of 125 wilted samples, 

resulting in only 25 misclassifications out of 263 total samples. 
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1 Introduction 

The world population is expected to reach around 9.7 billion by 2050 (UN, 2022), and 

this condition will pose significant challenges related to global food availability 

(Miladinov, 2023; van Dijk et al., 2021). In this regard, the agricultural sector has 

proven to make an essential contribution to providing food for the world population 

(Pawlak & Kołodziejczak, 2020). However, agricultural production can be unstable due 

to a variety of complex and dynamic factors, including climate conditions, markets, and 

public policies that are beyond the control of farmers (Martin et al., 2013). 

Considering the limitations of arable land, scarcity of water resources, 

environmental impact, and increasing awareness of sustainable development, it is 

necessary to seek alternatives to open-field farming systems (Stein, 2021). One 

proposed alternative to open-field farming is hydroponic farming (Martin et al., 2019; 
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Rajendran et al., 2024). The hydroponic farming system uses clean water enriched with 

essential dissolved minerals necessary for plant growth (Velazquez-Gonzalez et al., 

2022). Plants can efficiently absorb the required nutrients since these nutrients are 

available in the water solution. Applying a hydroponic farming system allows plants to 

use their energy more effectively, as there is no need for extensive effort to develop 

roots to penetrate soil or rocks to obtain minerals. 

Water stress in vegetable crops is a critical issue affecting the hydroponic farming 

system worldwide (Tripathi et al., 2015). As global population growth drives the 

demand for increased food production, efficient management of water resources has 

become a priority. Traditional methods of detecting water stress in crops, such as visual 

inspection and manual measurements, are labor-intensive and often subjective 

(Virnodkar et al., 2020). A plant condition monitoring system involving information 

technology, such as computer vision, is essential to help farmers reduce disturbances in 

hydroponic plants, one of which is wilting (Fravel & Larkin, 2002). Early prevention 

of plant wilting using information technology has the potential to avoid crop failure and 

reduce human resource costs. One of the latest technologies used for classifying digital 

images is deep learning (Xin & Wang, 2019). Recent advancements in deep learning 

have opened new avenues for automated, accurate, and scalable solutions to monitor 

crop health and detect water stress. In this context, deep learning techniques have 

already shown significant promise in various image classification tasks and offer a 

powerful tool for advancing agricultural monitoring systems. 

The application of deep learning in agriculture has received considerable attention, 

with researchers exploring its potential to address various challenges, including disease 

detection, crop yield prediction, and environmental monitoring (Albahar, 2023). For 

instance, Convolutional Neural Networks (CNNs) have been effectively utilized for 

classifying crop diseases from leaf images (Sladojevic et al., 2016) and UAV-based 

imagery analysis for large-scale monitoring (Zhang et al., 2019). However, the specific 

water stress detection in vegetable crops, particularly in controlled environments like 

vertical aeroponic systems, remains open to be explored. This research aims to fill this 

gap by leveraging deep learning techniques to detect water stress conditions in 

vegetable crops, focusing on fresh and wilted states. 

Our study introduces a novel approach to data collection and analysis in the context 

of vertical aeroponic agriculture. Unlike traditional flat-field farming, vertical 

aeroponic systems grow crops in vertically stacked layers, providing a controlled 

environment that optimizes space and resource usage. To effectively capture the 

condition of crops within this setup, we developed a custom data collection system 

involving a simple arm robot. This robotic arm, equipped with a camera module, offers 

flexibility in capturing images from various angles and heights, ensuring 

comprehensive coverage of the crops’ conditions. By automating the data collection 

process, we aim to reduce manual labor and enhance the consistency and accuracy of 

the data. 

The primary novelty of our research lies in creating and utilizing a unique dataset 

comprising images of vegetable crops under fresh and wilted conditions collected 

within a vertical aeroponic system. This dataset is the foundation for training a deep 

learning model designed to classify crop conditions effectively. This paper addresses 

the specific challenges in detecting water stress and demonstrates the broader potential 

for integrating robotics and deep learning in precision agriculture. 
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2 Methodology 

2.1 Dataset Collection 

Images of bok choy (Brassica rapa subsp. chinensis) were collected in fresh and wilted 

conditions. Each image is 128 × 128 pixels and was captured using a camera module 

attached to a Raspberry Pi Zero W single-board computer. The bok choy was grown in 

a vertical farming system using an aeroponic tower, which cultivates crops in vertically 

stacked layers. 

 
Figure 1. Data collection setting 

As shown in Figure 1, a simple arm robot mechanism is performed to move the camera 

module. A strategy is needed to capture the crop condition as the crops are grown in a 

vertical tower. This research used two stepper motors to move the camera module 

horizontally (through rotation) and vertically (through translation). This mechanism 

provides a chance to capture all crop images grown in the stacked layer of the vertical 

tower. 

Figure 2 illustrates the module’s communication workflow. As shown in the figure, 

a camera module is mounted on the Raspberry Pi Zero. The Raspberry Pi board 

connects wirelessly to the ESP32 microcontroller module and communicates through 

the HTTP post-request protocol. The ESP32 module controls the drivers that move the 

motors. The HTTP post-request protocol is operated wirelessly and was chosen to 

minimize the number of wires connected to the central processing board (the Raspberry 

Pi). The board is part of a moving arm and is connected only with a power cable. The 

crop images were stored in two locations. First, the images were saved in the internal 

memory of the Raspberry Pi module. Since the captured images are relatively small 

(128×128 pixels), storing them internally on the SD card mounted to the Raspberry Pi 

does not require significant space. Second, as the board was connected to an internet 

modem, the images were also uploaded to the cloud as a backup. 
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Figure 2. Module’s communication workflow 

Examples of crop condition images are shown in Figure 3. Water stress in crops causes 

wilting, as illustrated in the lower row of the figure. In contrast, the upper row displays 

fresh leaves. The camera module did not capture images of individual crops; instead, a 

single image might contain overlapping leaves from multiple crops with varying 

conditions. However, if images include a single wilting leaf, this paper labeled those 

images as wilt. 

 

   
   

   

Figure 3. Example of crop conditions: fresh (upper row) and wilt (lower row) 

2.2 Deep Learning Model 

Figure 4 visualizes the proposed deep learning model. The model accepts three-channel 

images of 128×128 pixels. The inputs are then processed through multiple pairs of 

convolutional and pooling layers before being flattened and classified using dense 

Detection of Water Stress in Vegetable Crops Using Deep Learning             417



 

layers. The proposed deep learning model is implemented using TensorFlow 2.11 and 

designed for image classification. The model contains a sequential architecture with 

multiple layers. The proposed deep model begins with a two-dimensional convolutional 

layer containing 32 filters of size 4×4 and utilizes a rectified linear unit (ReLU) 

activation function. A max-pooling layer with a pool size of 3×3 follows this first 

convolutional layer. The max-pooling layer helps reduce the spatial dimensions. The 

second convolutional layer with 64 filters of size 3×3, ReLU activation function and 

another max-pooling layer with a pool size of 2×2 is included. Then, a third 

convolutional layer with 128 filters of size 3×3 is combined, followed by another 2×2 

max-pooling layer. The output from the convolutional layers is flattened into a one-

dimensional vector, which is then processed by a dense layer with 128 units and ReLU 

activation. A dropout layer with a dropout rate of 0.5 is included to prevent overfitting. 

Finally, the model concludes with a dense layer. The dense layer (equipped with a 

sigmoid activation function) contains one unit suitable for classifying the input images 

into two categories. In total, there are 1,142,753 trainable parameters.  

 

Figure 4. Proposed deep learning model 

2.3 Model  Training 

The model was compiled using the Adam optimizer. During training, binary cross-

entropy was used as the loss function, and accuracy was used as the evaluation metric. 

An early stopping callback was selected to improve the training process, monitoring 

the validation loss with the patience of 5 epochs and restoring the best weights upon 

stopping. Early stopping is a regularization method utilized in deep learning to avoid 

overfitting during training. Early stopping involves monitoring the model’s 

performance on a validation dataset and stopping the training process once its 

performance stops improving. The model was trained on the dataset for up to 50 epochs, 
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leveraging this early stopping mechanism to prevent overfitting and ensure optimal 

performance. The model was fitted to the training data generator and validated against 

the test data generator as part of the training process. 

3 Results and Discussion 

Figure 5 shows the model accuracy and loss during training. Based on the figure, the 

model demonstrated substantial improvement in both training and validation accuracy, 

particularly in the early stages of training. The training process of the deep learning 

model using early stopping resulted in significant improvements in both training and 

validation accuracy over the epochs. The model showed a notable increase in validation 

accuracy from 73.38% in the first epoch to 90.49% by the 35th epoch, with a 

corresponding decrease in validation loss from 0.5631 to 0.2272. The training accuracy 

improved consistently, reaching 88.40% by the 38th epoch. Despite slight fluctuations, 

such as in epochs 3 and 10, where the validation accuracy dipped, the overall trend was 

positive, indicating the model’s robustness and effectiveness. Early stopping involves 

monitoring the model’s performance on a validation dataset and stopping the training 

process once its performance stops improving. Early stopping consists of monitoring 

the model’s performance on a validation dataset and stopping the training process once 

its performance stops improving. The early stopping strategy effectively prevented 

overfitting, as evidenced by the high validation accuracy and low validation loss 

achieved. 

 

 
Figure 5. Model accuracy and loss during training 

Table 1 and Figure 6 show the classification report and confusion matrix on the test 

data. Based on the experiments, the deep learning model achieved a high overall 

accuracy of 90% in distinguishing between fresh and wilted conditions. The model 

showed strong performance with precision, recall, and f1-score values for the ‘fresh’ 

class at 0.86, 0.98, and 0.92, respectively. For the ‘wilt’ class, precision, recall, and f1-

score values were 0.97, 0.82, and 0.89, respectively. The confusion matrix revealed that 

the model correctly classified 135 out of 138 fresh samples and 103 out of 125 wilted 

samples, with only 25 misclassifications out of 263 samples. These results underscore 

the model’s strong ability to accurately classify conditions with balanced performance 

across both classes. 
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Table 1. Classification report 

Class Precision Recall F1-score Support 

fresh 0.86 0.98 0.92 138 

wilt 0.97 0.82 0.89 125 

Parameters     

accuracy   0.90 263 

macro avg 0.92 0.90 0.90 263 

weighted avg 0.91 0.90 0.90 263 

 

 

Figure 6. Confusion matrix on test data 

4 Conclusion 

Using a binary classification approach, this paper demonstrates a method for detecting 

wilt in crops due to water stress. The proposed data collection and deep learning model 

can classify whether the crops are fresh or wilted with an accuracy of 90% on the test 

data. The model correctly classified 135 out of 138 fresh samples and 103 out of 125 

wilted samples, resulting in only 25 misclassifications out of 263 samples. These results 

highlight the model’s strong ability to classify conditions with balanced performance 

across both classes accurately. 
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