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Abstract. The rapid growth of smart crop farming technologies in Vietnam has 

resulted in an unforeseen surge in the volume, variety, and velocity of agricultural 

data. This paper suggests a zone-based data lake architecture to address the issues 

of managing, integrating, and analyzing the huge amount of heterogeneous data 

collected by several sources in smart crop farming. The proposed architecture 

utilizes big data technologies and its development follows a nine-step data lake 

architecture framework (DLAF). The paper covers the integration of batch and 

real-time processing technologies so as to develop predictive models, real-time 

monitoring, and data-driven decision support systems for smart crop farming. 

The paper illustrates the practical application of the proposed architecture in 

smart crop farming via many use cases, including crop yield estimation, disease 

detection, resource optimization, and climate risk assessment. It also covers the 

key aspects of metadata management, data security and data governance to meet 

the standards of data quality, lineage, and compliance. 
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Agriculture remains a key driver of Vietnam’s national stability and growth. Agricul-

ture employs about one-third of the nation's workforce (World Bank, 2022). Farming 

was the major use of agricultural lands and it accounted for 39.4% of the total land 

area of Vietnam (World Bank, 2021). Vietnam ranks among the five countries most 

affected by climate change due to its remarkable coastline and the main settlement of 

its population and economic resources in coastal lowlands and deltas. Saltwater intru-

sion is anticipated to accelerate due to a projected 30 cm sea level rise by 2050 

(Smajgl et al., 2015). An estimated 2 million hectares of agricultural land are at dan-

ger of saltwater intrusion each year (Loc et al., 2021). The ability to swiftly adapt and 

respond to environmental changes through intelligent data analysis is not merely ben-

eficial but vital. Technologies that are employed to curb the use of resources, espe-

cially water, fertilizers, and pesticides for crop production will be the basis for im-

proving agricultural sustainability (Misra et al., 2020). 

 Smart crop farming involves the use of the Internet of Things (IoT) sensors, 

drones, and machine learning algorithms. It relies heavily on large-scale, heterogene-

ous data collections from a range of sources, such as satellite images, soil sensors, and 

crop yields. However, quickly collecting and analyzing these big data sets from heter-
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ogeneous and large sources poses a big challenge especially in developing nations 

(Elijah et al., 2018). This necessitates a strong architecture capable of handling, pro-

cessing, and extracting value from huge data pools - a role ideal for a data lake. The 

data lake is a repository where all types of data can be stored. Due to their flexibility 

and scalability, the data lake is well suited to the agricultural sectors of the emerging 

markets, enabling data-driven decisions to improve crop yields, resource use, and 

mitigate climate-related risks. This paper proposes a zone-based data lake architec-

ture, with the goal of not only streamlining farm management, but also providing data 

integration, metadata management and advanced analytics that would be useful in 

data-driven decision-making in smart crop farming in Vietnam. 

2 Literature Review 

2.1 Data Lake Concept 

Dixon (2010) firstly proposed the data lake concept to address the limitations of data 

marts, which are subsets of data warehouses that only answer certain issues. The data 

lake is a centralized storage repository that lets users store raw, heterogeneous data in 

its initial form to explore, retrieve and analyze data from external data sources. The 

data lake may be considered as a central repository where data of any kind is kept 

without a rigid schema for future investigations (Sawadogo & Darmont, 2021). Two 

fundamental features of the data lake serves as the foundation for this definition: The 

schema-on-read technique, which means that schema and data needs are not defined 

until the data is queried, and data variety (Sawadogo & Darmont, 2021). The data lake 

stores data in raw format using a flat architecture. A set of extended metadata tags and 

a unique identifier are assigned to each data entity in the lake (Miloslavskaya & Tol-

stoy, 2016). 

Sawadogo et al. (2019) reviewed previous literature to define a complete definition 

of the data lake. The data lake is a scalable system for storing and analyzing any type 

of data in its initial form. It is mostly utilized by data professionals (statisticians, data 

scientists, or analysts) to extract knowledge. The characteristics of this system include 

a metadata catalog to ensure data quality, data governance policies and tools, accessi-

bility to many types of users, integration of all data types, logical and physical organi-

zation, and scalability. 

2.2 Data Lake Architecture Models 

The initial flat data lake architecture made it possible to import heterogeneous data in 

its raw form at a cheap cost and closely tied to the Hadoop system. However, it pre-

vents users from processing data and doesn't log any user operations (Ravat & Zhao, 

2019). The data lake architecture predominantly employs two major approaches for 

managing pre-processed data: pond architecture and zone architecture (Giebler et al., 

2019a). 

The pond architecture by Inmon (2016) contains five data ponds. Each pond han-

dles a specific type of data. Primarily, it restricts data availability to one specific pond 
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at a time, and as data transfers to other ponds, the raw data is lost. The process goes 

against the data lake's definition of ingesting all the raw data and processing them 

upon usage (Ravat & Zhao, 2019). 

 

 

Fig. 1. Pond Architecture (Sawadogo & Darmont, 2021) 

The basic concept behind dividing the data lake into various zones originates from 

the need to automate standardized pre-processing pipelines, organize the pre-

processed data and deploy it for further processing (Wieder & Nolte, 2022). This is 

accomplished by allocating data to zones inside the data lake based on its processing 

level. The initial zone contains raw data that is ingested in its original format. There 

are several alternatives for zone architecture that are proposed and discussed in litera-

ture. An in-depth study of the zone architecture was carried out by Giebler et al. 

(2020), who examined the design differences, specific features, and use cases of five 

different data lakes based on the zone architecture (Gorelik, 2019; Madsen, 2015; 

Patel et al., 2017; Ravat & Zhao, 2019; Sharma, 2018; Zikopoulos, 2015), which led 

to the development of a generic meta-model for a zone and the specification of a zone 

reference model. This assessment shows that none of previous studies can satisfy all 

requirements. After designing the meta-model for zones and combining the widely 

accepted concepts from literature with the requirements from the latest assessment, 

Giebler et al. (2020) developed a zone architecture with six zones: Landing Zone, 

Raw Zone, Harmonized Zone, Distilled Zone, Explorative Zone, and Delivery Zone. 

In this model, Giebler et al. (2020) separate the zones into a raw zone and a harmo-

nized zone, which are generic, and a distilled zone that is designed for individual use 

cases. The distilled zone serves data to the final delivery zone, enabling reporting and 

OLAP operations, while an explorative zone accommodates advanced analytics. 

Moreover, all zones have a protected area. This area is encrypted and safe. Data 

moves from one protected zone to another as shown in Fig. 2. 
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Fig. 2. Zone Architecture (Giebler et al., 2020) 

2.3 Smart Crop Farming Concept 

The smart farming concept formulated as the technology began to advance in the 

early 2010s (Rodríguez et al., 2019). Smart farming expanded upon from precision 

agriculture through the utilization of real-time data from smart sensors and IoT mod-

els to highlight a network for data exchange. Wolfert et al. (2017) define smart farm-

ing as a management strategy, which focuses mainly on the application of IoT, big 

data analytics, AI, and robotics to the most effective utilization of agricultural pro-

cesses. A more comprehensive definition of smart farming was introduced as a data-

driven approach that involved leveraging advanced technologies in order to maximize 

crop productivity, quality, and sustainability (Pivoto et al., 2018). Additionally, smart 

farming emphasizes the importance of extracting value and ensuring veracity from big 

data (Rodríguez et al., 2019). 
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Fig. 3. Evolution of Smart Farming (Rodríguez et al., 2019) 

Smart crop farming, as a subset of smart farming, is the use of smart technology 

and information systems to make the crop production process more efficient and envi-

ronmentally friendly (Pivoto et al., 2018). Smart crop farming is primarily the appli-

cation of technology to improve crop yield, quality, and resistance to external factors. 

This involves sending different sensors, such as soil moisture probes, and weather 

stations, to obtain real-time data on the growth, health and environmental conditions 

of crops. Through the utilization of these advanced algorithms and machine learning 

approaches, farmers will be provided with actionable insights that will help them 

optimize irrigation, fertilization, pest control and other critical factors of crop man-

agement. In addition, smart crop farming also considers the social, economic, and 

environmental factors that impact farming as well (Lioutas et al., 2019). 

2.4 Overview of Crop Farming in Vietnam 

There are various types of crop production in Vietnam, and each plays a crucial role 

in the agricultural industry. In 2020, Vietnam produced 42.7 million tons of rice, mak-

ing the country one of the world's largest rice exporters (Ministry of Agriculture and 

Rural Development, 2021). Moreover, Vietnam is the second-largest coffee supplier 

in the world market (Nguyen et al., 2023). Additionally, Vietnam is known for its 

tropical fruit production, including mangos, dragon fruits, and lychees. Even though 

Vietnam is rated as a leading exporter of some types of agricultural crops, the coun-

try’s production is distributed geographically. It means that each region has unique 

natural conditions, and their geography is distinctive with certain types of crops. The 

Mekong Delta is a region of rice growth, the Central Highlands specializes in coffee 

production, and fruit production is graphically diversified (Nguyen & Warr, 2020). 

Vietnam’s agricultural sector has experienced various technologies to improve 

productivity and efficiency. The use of machinery, chemical fertilizers, and pesticides 

has become more widespread, especially in large-scale farming operations. There is 

also a growing interest in smart farming technologies, such as remote sensing, GIS 

and GPS, which enable farmers to optimize resource use (Minh et al., 2019). The 

application of mobile apps and digital platforms has also facilitated access to market 

information and extension services for farmers (Hoang & Tran, 2023). 

2.5 Related Work 

Several studies have explored data lake architectures for various applications. Zhao et 

al. (2021) developed a zone-based data lake architecture for integrating IoT and big 

data. Their model has capabilities in managing heterogeneous data sources and im-

plementing metadata management and data governance frameworks. However, it 

differentiates between batch and real-time data during the ingestion process, using 

internal datasets for batch operations and external ones for real-time data. Besides, 

Benjelloun et al. (2023) introduced a multi-zoned data lake architecture for Moroccan 

fish farming. Their model integrates data from diverse sources, including IoT sensors, 
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manual entries, and external APIs. The authors showcase the architecture's capabili-

ties in monitoring water quality, feed management, and production forecasting. 

The zone-based data lake architecture developed by Giebler et al. (2020) has been 

widely applied in various domains. For instance, Stach et al. (2022) utilized this mod-

el to manage large-scale biological datasets, particularly from protein sequence data-

bases and mass spectrometry. This approach has streamlined the data handling pro-

cess and made refined data readily available for analysis and interpretation. Parente 

(2021) also applied the Giebler’s model to design a data lake for managing big data in 

healthcare. This approach addresses the challenges of integrating heterogeneous med-

ical data, particularly medical images. 

3 Methodology and Data 

3.1 Data Lake Architecture Design 

The data lake architecture framework (DLAF) was outlined by Giebler et al. (2021) as 

the comprehensive design of the data lake, including the infrastructure, data storage, 

data flow, data modeling, data organization, data processes, metadata management, 

data security and privacy, and data quality. This framework, by considering the inter-

dependencies between aspects, ensures that the resulting architecture is cohesive, 

scalable and appropriate for data types, and the processing needs of the smart crop 

farming domain. There are nine steps that must be followed. 

Step 1: Identify Scenario. The data collected is diverse in structure. The architec-

ture must handle both real time stream processing for operational adjustments on the 

spot and batch processing approach for strategic planning. Data is utilized through a 

variety of advanced analytical techniques and operational processes that significantly 

enhance agricultural efficiency. 

Step 2: Design Data Flow. The BRAID architecture, which enables both batch 

and stream processing, was chosen for this case. In the BRAID architecture, data 

ingested as a stream is immediately directed both to a stream processing engine and to 

persistent storage (Giebler et al., 2018). The BRAID architecture facilitates the utili-

zation of batch processing results in stream processing activities as illustrated in Fig. 

4. 
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Fig. 4. Integration of Data Flow in the Zone Model (Giebler et al., 2021) 

Step 3: Design Data Organization. As taking into account different types of data 

to get combined and raw data availability is essential, we opted to utilize zone archi-

tecture. We selected the zone architecture developed by Giebler et al. (2020), which is 

appropriate for our use case of handling both the data batch and real-time stream pro-

cessing. Moreover, it considers data quality and data security concepts that maintain 

the privacy of sensitive agricultural data and access control. The zone architecture 

used and its data flow are shown in Fig. 4. 

Step 4: Design Data Storage. The data storage approach makes use of multiple 

storage systems, each designed to meet certain data requirements to effectively handle 

various data types. It is also necessary to consider how the data will be used and its 

inherent characteristics. 

Step 5: Design Infrastructure. As discussed in Step 4, it will be their task to de-

termine and also to perform a complete range of big data technologies that have high 

proficiency in handling large-scale agricultural data as described in Section 3.3. 

Step 6: Design Data Modeling. In the Landing Zone and the Raw Zone, data is 

kept in its raw form. The Harmonized Zone and Distilled Zone are both constructed 

using the Data Vault approach (Giebler et al., 2019b), which are exploited for the 

storing of structured data. While the Harmonized Zone employs Raw Vault modeling, 

the Distilled Zone uses Business Vault modeling in order for the incorporation of 

business logic and drawing of insights relevant to specific farming use cases. The 

connections of structured, semi-structured, and unstructured data are achieved by 

using link-based integration (Gröger et al., 2014). In the Delivery Zone and the Ex-

plorative Zone, data is built according to the end-users and analytics application 

needs. 

Step 7: Design Metadata as Enabler. Since metadata is also data, the first six 

steps of the data lake design process should be followed to the metadata. Metadata 

can be structured or semi-structured, and is ingested similarly to data. The data flow 

concept remains the same for both metadata and data. In terms of data organization, 

metadata remains continuous and run through all the data lake zones. Because of 

highly connected metadata, it is stored using Neo4J, a graph database management 

system. The metadata is modeled using Apache Atlas. 

Step 8: Design Data Processes. Data processes are divided into data lifecycle and 

data pipelining processes. Data lifecycle processes involved the data cycle from crea-

tion, storage, enhancement and disposal. During each stage of its lifecycle, the 

metadata that is relevant is captured and stored together with the data. The data pipe-

lining processes begin from the bulk ingestion of raw data into the Landing Zone that 

serves as the temporary storage for the data before further processing. Data is moved 

from the Landing Zone to other zones via ETL processes. The concepts of data securi-

ty, privacy, and quality are effectively applied in data lifecycle processing (e.g. access 

control and change management) and data pipelining processes (e.g. anonymization 

techniques). 
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Step 9: Design Metadata as a Feature. We leverage concepts that offer features 

beyond metadata as enabler, such as a data catalog to facilitate data access (Chessell 

et al., 2014). 

3.2 Data Sources 

The three main sources of data can be classified as DMP (Data Mediated by Process), 

DGM (Data Generated by Machine), and DHO (Data from Human Origin) (Ouafiq et 

al., 2022). 

The data produced during agricultural activities and procedures is known as the 

DMP. It can be manually saved in file formats like CSV or automatically stored in 

information systems (IS). DMP is typically generated from IS, e.g., CRM, ERP, and 

Laboratory Information Management Systems (LIMS). It includes data such as crop 

yields, fertilizer applications, and irrigation schedules used in the fields. The data 

could be stored in relational database management systems (RDBMS). 

The data created by IoT devices, smart machines, intelligent robots, or drones that 

are distributed around the farm and gather data using sensors, smart devices, and sat-

ellite imagery (e.g. by pH, temperature, moisture). This data is known as the DGM. 

This data mainly comes in the form of streaming data, micro-batches, and small 

batches that can be processed in real time.  

The DHO is the data gathered from human inputs, observations, and experiences, 

relating to agricultural activities, primarily from social media and manual files, thus it 

can be considered a challenge to consider (e.g. field notes and survey responses) (Raif 

et al., 2022). 

3.3 Big Data Technologies in Data Lake Architecture 

It is critical to examine specific big data technologies that underpin our architecture 

by facilitating data flow, storage, processing, and analytics across all zones. 

Data Storage: HDFS. Hadoop Distributed File System (HDFS) is a file system 

developed for storing large datasets reliably across multiple worker nodes in a cluster. 

HDFS can store unstructured, semi-structured, and structured data. It provides fault 

tolerance and high aggregate bandwidth as data blocks are replicated across nodes. 

HDFS is master-slave architecture using NameNode (master) to manage file system 

namespace, regulate client accesses, DataNodes (slaves) store data, serve read and 

write requests (White, 2012).  

Data Ingestion: Sqoop and Flume. Apache Sqoop is useful in transferring large 

amounts of data between Hadoop and structured data stores like relational databases. 

It supports single table load or free-form SQL query as well as saved jobs that allow 

you to import updates made to a database since the last import (Gupta & Giri, 2018). 

Apache Flume is a distributed, fault-tolerant, and available service designed for col-

lecting, aggregating, and moving large amounts of log data from different sources to a 

centralized repository. It uses a transaction-based messaging mode for data consisten-

cy and integrity in the whole process of data ingestion. It also supports batch ingestion 

(Gupta & Giri, 2018). 
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Data Processing: Spark. Apache Spark is an open-source data processing engine 

that is an efficient, large-scale data processing on clusters. It supports high-level lan-

guage APIs in Java, Scala, Python, and R and an optimized engine that works with 

general computation graphs (White, 2012). Spark's key abstraction is the Resilient 

Distributed Dataset (RDD), which represents a read-only collection of objects parti-

tioned across a cluster that can be rebuilt if a partition is lost. Spark supports batch 

processing, real-time streaming, machine learning, and graph processing (Gupta & 

Giri, 2018). 

Data Exposition: Hive, HBase and Elasticsearch. Apache Hive, which is a data 

warehousing system built on Hadoop allows the process of reading, writing, and man-

aging large datasets by SQL query. Hive is built around the concept of the table, 

which is a structured table corresponding to a directory in the HDFS. These directo-

ries are further organized into partitions, and each partition is split into buckets (Gup-

ta & Giri, 2018). Apache HBase is a column-oriented, non-relational database man-

aged by HDFS. It gives real-time access to large datasets. HBase follows a master-

slave architecture, with a master node responsible for regulating access and updates to 

data, and multiple region servers handling data storage and retrieval (White, 2012). 

Elasticsearch is a distributed, RESTful search and analytics engine that can index and 

search parallel large volumes of data in near real-time.  It supports full-text search of 

HTTP web interface and documents that are schema-free and written in JSON format. 

Elasticsearch supports search types from structured, semi-structured, and unstructured 

data. 

Stream Processing: Apache Kafka. Kafka is a distributed stream processing plat-

form that allows publishing and subscribing to streams of records. Kafka operates as a 

message queue and facilitates the transfer of reliable data between app systems and 

services (Gupta & Giri, 2018). 

Workflow Scheduling: Oozie and Airflow. Apache Oozie is an open-source 

scheduling system used for managing Hadoop jobs. In Oozie, the job workflows are 

represented by a collection of control flow and action nodes presented as a directed 

acyclic graph (DAG) with the beginning and end control flow nodes for controlling 

the execution (White, 2012). Apache Airflow is the platform for creating, scheduling, 

and monitoring workflows programmatically. It can be used to define workflows as 

DAGs, in which tasks are executed by workers that run from the beginning to the end 

based on set dependencies.  

Data Visualization: Superset. Apache Superset is an open-source web application 

for data visualization and exploration built on a comprehensive business intelligence 

platform. It offers a user-friendly interface for users to create and share interactive 

dashboards with various charts, tables, and maps.  

User Interface and Management: Hue. Hue (Hadoop User Experience) is an 

open-source platform for web interfaces for interacting with Hadoop clusters and 

analyzing data.  It offers a file browser for HDFS, a query editor for Hive and Impala, 

a shell, and an Oozie workflow/coordinator designer and dashboard. 

Data Governance: Atlas. Apache Atlas is an open-source framework for data 

governance and metadata management that helps organizations manage their data 

assets from different platforms and formats. It is an extensible, scalable platform that 
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facilitates the management and storage of metadata which provides tools for data 

discovery, classification, and lineage. 

4 Results and Discussions 

4.1 Technical Architecture 

The era of data-driven farming is associated with the phenomenal growth in the vol-

ume of data captured from different sources of smart crop farming. There is an urgent 

need to design a reliable and scalable data lake architecture. The proposed architec-

ture provides a fundamental view of the data lifecycle from ingestion to consumption 

and how its key components interact while preserving the flexibility, scalability, and 

performance, as shown in Fig. 5. 

 

Fig. 5. Smart Crop Farming Data Lake Technical Architecture 

Landing Zone. The Landing Zone acts as a buffer, enabling data to be quickly in-

gested and then moved toward the Raw Zone. The DMP and some types of the DHO 

are ingested into the Landing Zone using batch processing techniques (e.g. Sqoop for 

relational databases, Flume for manual files). Nevertheless, the DGM and certain 

types of the DHO are ingested through streaming processes (e.g. Kafka for sensors 

and real-time feedback). Data in this zone is mostly in its original raw format, retain-

ing its granularity and schema from the source systems. However, basic transfor-

mations such as string character adjustments or timing formats may be used. The 

Landing Zone is managed to protect data quality and integrity but not designed for 

data history. After ingestion, HDFS is utilized to temporarily store data.  

Raw Zone. The Data in the Landing Zone is transferred to the HDFS storage in the 

Raw Zone. The data is arranged and put in a hierarchical directory structure within 

HDFS. The Raw Zone also employs HBase to store and process the real-time data. 

The Raw Zone is the main repository for raw data ingested from various sources. For 
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properties, the Raw Zone data can not be modified or deleted to preserve data integri-

ty and consistency. However, the rapid growth of data volume in sensor measure-

ments and the legal terms require that some flexibility is offered in data manipulation 

and deletion. It means a compromise which can be made between space reduction, 

compliance, and data completeness. Data scientists are granted access to the Raw 

Zone. They can copy data from the Raw Zone to other zones. Updates to the data of 

the Raw Zone are saved as a new record with timestamps to track the changes.  

Harmonized Zone. The Harmonized Zone is a part of the Raw Zone which is cop-

ied or viewed on demand without any changes to the original data. Data is critically 

linked to master data management, and the Harmonized Zone allows access to the 

master data once it has been cleansed and validated (Otto, 2012). Hive creates struc-

tured schemas and enables SQL-like querying for structured data. The data modeling 

in Hive consists of the schema definition, partitioning of the data based on relevant 

attributes, and the creation of external tables that point to the data stored in HDFS 

(Benjelloun et al., 2023). MongoDB is used for unstructured and semi-structured data 

storage and Elasticsearch indexes the data based on search queries. The same proper-

ties and the user access applied in the Raw Zone. Data from source systems are com-

bined into a consolidated schema. Data Vault is adopted, where different partial 

schemas are built for data sources and contexts rather than an overarching schema. 

Distilled Zone. The Distilled Zone gives analytical tasks the highest priority, but 

its primary focus is on data compilation. Data granularity can be changed. Complex 

processing techniques, including complex computations, data enrichment, or business 

logic implementation in a particular domain, are employed to transform the data. 

Moreover, the data schema in the Distilled Zone might be slightly modified to meet 

the requirements of particular use cases. This is applicable to data processing in both 

batches and streams. Data scientists, systems and processes can access both the Har-

monized Zone and the Distilled Zone. Moreover, domain experts in different fields 

can also access the data in the Distilled Zone. The Distilled Zone is modeled using 

Data Vault. In-memory processing and batch and streaming data support provided by 

Spark allow us to design real-time analytics and decision support systems. 

Explorative Zone. The Explorative Zone is a sandbox where only data scientists 

can freely explore, experiment with, and analyze data. Data scientists can transform 

data by modifying its granularity, schema, syntax, and semantics as they deem fit for 

the particular analytical purpose. However, access to sensitive data is strictly regulat-

ed. The Explorative Zone is not governed and there are no data logging requirements 

for this zone. Moreover, the Explorative Zone is non-persistent. Nonetheless, if an 

analysis yields favorable findings, it can be sent to the Distilled Zone for further re-

finement and integration before being removed from the Explorative Zone. Data sci-

entists are not limited to any particular modeling method. Spark supports various 

programming languages including Python and Scala, and has a wide variety of librar-

ies such as MLlib for machine learning and GraphX for graph processing (e.g. to 

experiment with algorithms, tune hyperparameters, and evaluate model performance). 

Jupyter Notebook performs iterative data exploration, prototyping, and visualization. 

Delivery Zone. In the Delivery Zone, subsets of data are customized to the specific 

requirements of the analytical and operational use cases. Data in the Delivery Zone is 
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governed. The data is also stored persistently, unless the use case for which it was 

processed for is no longer relevant or required. The Delivery Zone is developed to 

provide users regardless of their technical literacy. The data in this zone is structured 

and presented in such a way that users find the data easily and export it to their analy-

sis tools. The method in this zone is adaptable and can be adjusted to different use-

case situations (e.g. star schema for OLAP). PostgreSQL efficiently stores and man-

ages structured data in the Delivery Zone. It is a scalable base for data warehousing 

and reporting that enables users to run complex queries and retrieve data fast and 

efficiently. Superset is utilized to create interactive dashboards, reports, and visual 

analytics. 

4.2 Discussions 

The integration of various data sources enables the development of complex predic-

tive models and decision support tools to help farmers adapt to changing and evolving 

climatic conditions. For example, machine learning algorithms can be deployed on the 

large repository of historical weather patterns, soil moisture levels, and crop yield 

data to adjust the irrigation schedule. Moreover, data lake architecture makes it possi-

ble to develop a warning system, and climate-related hazard analysis tools through the 

use of real-time data. 

In addition, BRAID hybrid processing architecture enables the utilization of batch 

processing findings to stream processing. For instance, a crop disease detection model 

based on machine learning can be trained by analyzing crop images and will be used 

to identify potential outbreaks in real-time streams of drone imagery. The results can 

be stored persistently in the data lake for later use. The application of a zone-based 

data lake architecture complements existing IoT infrastructure, sensors, and analytics 

capabilities (Munshi & Yasser, 2017). The data lake provides the entire data cycle: 

ingestion, storage, processing, analysis, and visualization. Furthermore, it integrates 

with advanced technologies (e.g. AI, deep learning, and machine learning) to find 

hidden patterns, predict crop yields, detect crop diseases, and optimize resource allo-

cation. 

Metadata management helps solve the problem of standardization and consistency 

across data sources (e.g. different sensors use different units of measurement for the 

same parameter). Metadata management provides a structured and standardized way 

to describe and annotate the raw data with relevant context and semantics. Using 

graph technologies such as Neo4j and Apache Atlas, metadata enables flexible search 

and intuitive exploration of relationships between heterogeneous datasets from differ-

ent sources (Hai et al., 2016). Besides, including the ETL processes and data lineage 

in the metadata facilitates the automation of data preprocessing tasks. 

5 Conclusion 

Smart crop farming focuses on advanced technologies and information systems to 

improve crop cultivation process and enhance yield, quality, and minimize environ-
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mental impacts. The proposed zone-based data lake architecture adopts the zone ref-

erence model by Giebler et al. (2020). The development of this architecture follows 

the nine-step DLAF, which ensures a comprehensive design by considering the inter-

dependencies between various aspects. This architecture addresses the challenges 

associated with managing, integrating, and analyzing the vast amounts of heterogene-

ous data generated by offering a dependable, flexible, and secure environment for 

data-driven decisions. This architecture effectively integrates both batch and real-time 

processing capabilities through BRAID architecture to support the development of 

predictive models, real-time monitoring systems, and decision-support tools tailored 

to the specific needs of Vietnamese farmers. An integrated metadata management 

system also ensures compliance, data quality and lineage to facilitate efficient and 

useful agricultural data. 

Addressing the immense challenges posed by climate change and ensuring food 

security for the nation, the proposed data lake architecture enables crop yield estima-

tion, disease detection, resource optimization, and climate risk assessment. It incorpo-

rates robust data governance policies and tools, safeguarding sensitive agricultural 

data through access controls and ensuring adherence to standards. Different big data 

technologies are incorporated into a proposed technical architecture, which serves as a 

foundation for initiating a data-driven strategy in the smart crop farming domain in 

Vietnam. 
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