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Abstract. In the context of striving to enhance the efficiency of fresh produce 

logistics distribution and achieving energy saving and emission reduction goals, 

this paper delves into the optimization of fresh produce logistics routes based on 

electric vehicles. Considering the unique requirements of fresh produce delivery, 

the paper comprehensively examines factors such as transportation costs, carbon 

emissions, refrigeration effects, goods damage, and time window constraints to 

construct an optimization model aimed at minimizing total costs. Compared to 

existing literature, this study particularly emphasizes a thorough consideration of 

the costs associated with goods damage, aiming to ensure high precision in the 

model through more detailed and comprehensive analysis. To solve the model, 

an improved particle swarm algorithm is introduced. The effectiveness of the 

optimization model and algorithm is validated using the Solomon dataset. Ex-

perimental results indicate that the model performs well in reducing total costs 

and enhancing delivery efficiency. Specifically, it achieved an average reduction 

of 14.52% in total costs, a 41.15% decrease in carbon emissions, and a significant 

reduction in time window violations, averaging a 30.83% decrease. 

Keywords: Fresh Produce Logistics; Low-Carbon; Electric Vehicle Delivery; 

Route Optimization; Improved Particle Swarm Algorithm 

1 INTRODUCTION 

The commitment to reach a carbon peak by 2030 and achieve carbon neutrality by 2060 

has intensified carbon emission constraints on high-carbon industries, necessitating 

significant technological upgrades and innovations for a transition to a low-carbon 

economy. This is particularly relevant in the fresh produce transportation sector, where 

substantial amounts of carbon dioxide are emitted during transportation and refrigera-

tion processes. Consequently, the adoption of electric vehicles for the delivery of fresh 

produce has emerged as a new and sustainable distribution model. 

Numerous scholars have studied the distribution of fresh produce logistics. Shen 

Li[1] conducted a detailed analysis of goods damage and carbon emissions, establish 
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ing an optimization model aimed at minimizing total costs, and solved it using a genetic
algorithm. Wu[2] considered the cost of carbon taxes, utilizing an improved A* algo-
rithm and ant colony optimization to construct a delivery model with an objective
function aimed at minimizing total costs while maximizing satisfaction. Wen
Tingxin[3], from a low-carbon perspective, used a knowledge-based ant colony algo-
rithm to optimize and construct a route optimization model for electric vehicles with
soft time windows and multi-temperature co-distribution. Wen Tingxin[4] and others
developed an optimization model for multi temperature joint allocation paths in electric
vehicles in a time-varying network with a soft time window, taking into account carbon
emissions. Liu[5] and others developed an integer programming model aimed at
minimizing total costs, using a genetic algorithm to extensively study the two-level
route optimization problem from "production site to multiple distribution centers to
multiple customers.

In recent years, some scholars have also focused on the optimization of electric ve-
hicle routes. Mavrovouniotis[6] and colleagues incorporated electric vehicle charging
strategies into their considerations and planned EV routes using an improved ant col-
ony algorithm. Song Liying[7] and others considered carbon emissions and customer
time windows, and established a route optimization model for mixed fleets of fuel
vehicles and electric vehicles using an improved ant colony algorithm. Alizadeh[8]
took into account electric vehicle charging locations, charging amounts, and dynamic
electricity pricing based on location to optimize EV routing and charging path plan-
ning. Jiu Yanni[9]  considered that different fresh products have different require-
ments for freshness, so they proposed the concept of freshness coefficient for fresh
products, and thus constructed a freshness difference function for fresh agricultural
products. They designed a hybrid particle swarm algorithm to solve the problem.

In summary, scholars both domestically and internationally have extensively studied
the optimization of fresh produce delivery routes using electric vehicles. However,
there has been a lack of detailed consideration of carbon emissions and goods damage
associated with electric vehicles. Building on previous research, this paper categorizes
goods damage costs into three types: damage due to loading and unloading or colli-
sions, damage from the respiration of fresh produce, and damage due to temperature
changes when refrigerated truck doors are opened during unloading. It also considers
various costs associated with vehicle emissions, transportation, refrigeration, and time
window violations. An optimization model aimed at minimizing total costs is con-
structed and solved using an improved particle swarm algorithm. The effectiveness of
the model and algorithm is validated through simulation experiments.

2 MATHEMATICAL MODEL

2.1 Problem Description and Hypothesis

To ensure the completeness of the model construction in this paper, the following
assumptions are made regarding the problem:

(1) Electric refrigerated trucks depart from and return to the distribution center.
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(2) Electric refrigerated trucks start their journey from the distribution center at full
battery capacity. When the vehicle's battery level is low, it needs to recharge quickly at
customer points, incurring a certain cost.

(3) The study focuses on a single distribution center serving multiple customer
points.

(4) Fresh produce distribution is unidirectional, with each customer being served
only once.

(5) Distances between nodes are known, and the vehicle's speed is fixed.
These assumptions help simplify the complexity of the problem and facilitate the

establishment and solution of the model. However, it is necessary to explicitly state in
the discussion and conclusion sections how these assumptions affect the research
results.

2.2 Symbol Description

The symbols and meanings of the problems in this paper are shown in Table 1.

Table 1. Problem symbol and meaning description

Symbol Meaning description
0 Distribution center, starting from 0 and ending at 0 '
N Customer point collection, N={1,2···N}
K Electric refrigerated vehicle collection,K={1,2···K}
dij The distance from node i to node j
u Time window penalty coefficient
ti The time when the vehicle arrived at point i

xijk Variable 0-1, vehicle traveling from i to j is 1; Otherwise zero
yik  Variable 0-1, vehicle at point i for service is 1；Otherwise zero

2.3 Objective Function

The objective of this study is to establish an optimization model for the delivery routes
of electric refrigerated vehicle fleets distributing fresh goods, aiming to minimize the
total cost. The total cost is composed of fixed costs (C1), transportation costs (C2),
penalty costs for time window violations (C3), refrigeration costs (C4), product damage
costs (C5), and carbon emission costs (C6). A detailed analysis of these costs is pro-
vided below:

(1) Fixed Costs
Fixed costs are directly proportional to the quantity of electric refrigerated vehicles.

As the number of vehicles increases, the fixed costs also rise accordingly.

1 1 0 jk
k K j N

C m x
⊆ ⊆

<  
(1)

In the equation, m1represents the fixed cost per unit of electric refrigerated vehicle.
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(2) Transportation Costs
Transportation costs are determined by the cost of electricity consumed during the

delivery process and are directly proportional to the driving distance of the electric
refrigerated vehicles.

2 2
k

m ij ijk
K i N j N

C d x
⊆ ⊆ ⊆

<   
(2)

In the formula, m2 represents the unit transportation cost of an electric refrigerated
vehicle.

(3) Time Window Penalty Costs
Time window penalty costs are incurred when a delivery vehicle arrives at customer

i at a time ti that is outside the acceptable service time window [ei, li].

1

3 i

2

( - )       0
0

( - )

i i i i

i i

i i i i

u e t t e
C e t l

u t l t l

; ′
< ; ′
 =

(3)

(4) Refrigeration Costs
Electric refrigerated vehicles use electricity as their power source, with batteries

supplying power to operate the refrigeration units. These units rely on the cyclical
changes of refrigerant through the compressor, condenser, expansion valve, and
evaporator, along with the precise regulation by an intelligent control system, to
maintain a low-temperature environment within the vehicle.

4 3 4m ij ijk ik ik
k K i N j N k K j N

C t x m s y
⊆ ⊆ ⊆ ⊆ ⊆

< ∗     (4)

In the formula, the first and second terms represent the refrigeration costs incurred
during vehicle transportation and at the point of unloading at location i , respectively.
Here, m3 denotes the unit refrigeration cost per unit of time during transportation, m4
represents the unit refrigeration cost per unit of time during unloading services, and sik
indicates the service time of vehicle k at location i.

(5) Product Damage Costs
Fresh products are notably perishable. Based on an analysis of actual damage sce-

narios, the damage to fresh products can be categorized into three parts:
5.1 Damage during loading and unloading, and from collisions. The bumps and jolts

that occur during the handling and transportation of products can cause actual damage
to fresh goods.

51 ( )ik i
k K i N

C y p qΙ
⊆ ⊆

<   (5)
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In the equation, p represents the unit value of the fresh products, ϑ denotes the
damage rate of the fresh products, and qi indicates the demand quantity of fresh
products by customer i.

5.2 Damage caused by respiration is represented by a continuous lifecycle function
that describes the exponential decay of fresh products over time. This lifecycle func-
tion aptly reflects the spoilage characteristics of fresh products. The remaining quality
of the fresh products after time t (i.e., the decay function of the fresh products) is given
by:

1( ) tQ t e,∝< (6)

To better depict the function, the Arrhenius equation is introduced to express the
relationship between the reaction rate g and temperature T, which improves the model
for Q(t) :

/E LTg Ue,< (7)

1( ) tQ t ge,∝< (8)

In the equation, E represents the activation energy of the reaction, and U is the
frequency factor; both parameters are empirical constants derived from research. L
denotes the gas constant, while ∂ଵ and ∂ଶ represent the spoilage rates of fresh prod-
ucts, which are dependent on temperature. The cost of product damage caused by
respiration during transportation, after the refrigerated vehicle departs from the dis-
tribution center, is:

1 0 1 0( +t )
22 ( ( ))kit t

ik i
k K i N

C y pq e ge,∝ ,∝

⊆ ⊆

< ,  (9)

In the equation, t0 represents the total time from when the fresh products are har-
vested to when they are transported and stored at the distribution center. tki denotes the
time it takes for vehicle k to travel from the distribution center to customer location i.

5.3 Damage during unloading due to temperature changes caused by opening the
doors of the refrigerated vehicle. After the doors of the refrigerated vehicle are opened,
the function describing the change in the interior temperature (Tin) is derived from data
fitted according to measurements by Lv Ning [10]:

1

2 1 2

2

2.65ln 14,      0
,

4 4s 4,
in

ik ik

t t t
T T t t t

t t t s

∗ ; ;
< ′ ′
, ∗ ∗ ; ′

(10)

After the doors are opened, the interior temperature of the vehicle Tin suddenly rises
and then stabilizes; when the doors are closed, Tin gradually decreases. The trend of
Tin over time t is shown in Figure 1. In Figure 1: T1 is the interior temperature during
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transportation; T2 and t1 represent the steady temperature reached inside the com-
partment after the doors are opened and the time required to reach this steady temper-
ature, respectively; t2 is the time when the doors are closed. The spoilage rate of fresh
products ∂ଶ also varies with temperature, described by a linear function using the
formula proposed by Mukhopadhyay:

2 inaT∝ < (11)

In the equation, a is a coefficient, which is a constant value. The cost of product
damage incurred due to opening the doors for unloading upon arrival at customer i is:

1 0 2 0( )
53 ( ( ))it t t

ik i
k K i N

C y pq e ge,∝ ,∝ ∗

⊆ ⊆

< ,  (12)

Fig. 1. Temperature changes inside the carriage during unloading

In summary, the total cost of product damage occurring during the delivery and
transportation process can be expressed as:

1 0 1 0 2 0( +t ) ( +t )
5 51 52 53

k
( ( 2 -ge ge ))ki ikt t s

ki i
K i N

C C C C y pq eΙ ,∝ ,∝ ,∝

⊆ ⊆

< ∗ ∗ < ∗ , 
(13)

(6) Carbon Emission Costs
The carbon emission costs of electric refrigerated vehicles consist of two parts: the

carbon emissions generated during vehicle charging, and the emissions produced from
the manufacture of materials required for maintenance and upkeep.

6 use pC C C< ∗ (14)

( )
100

ij

use tax

d
FC

C k C
λ

≥
< √ √ (15)

p i iC m k<  φ (16)
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Here, FC represents the electricity consumption of the electric refrigerated vehicle
per 100 kilometers, μdenotes the charging efficiency, and k is the carbon emission
factor for the electricity consumed. mi indicates the mass of material i that needs re-
plenishing, and ki represents the carbon emission factor associated with the use of
material i.

2.4 Model Establishment

Objective function:

1 2 3 4 5 6min Z C C C C C C< ∗ ∗ ∗ ∗ ∗ (17)

Constraints:

max       ( )ik
i K

q Q k K
⊆

′ ⊆
(18)

1      ( )ijk
k K i N

x j N
⊆ ⊆

< ⊆ 
(19)

1      ( )ijk
k K j N

x i N
⊆ ⊆

< ⊆ 
(20)

0 0 '
,   ( 0, 0 ', )ijk jik

i j
x x i j k K

⊆ ⊆

< ⊆ ⊆ ⊆ 
(21)

0 max ,      ( )kQ Q k K< ⊆ (22)

In the model described above, Equation (18) specifies that the total load of the
electric refrigerated vehicle must be less than its maximum carrying capacity. Equa-
tions (19) and (20) ensure that each customer is served by only one refrigerated vehicle.
Equation (21) indicates that the electric vehicles depart from the distribution center and
eventually return to it. Equation (22) stipulates that vehicle k starts its route from the
distribution center with a full battery.

3 ALGORITHM DESIGN

This paper addresses the fresh food logistics delivery problem by considering a variety
of factors including costs and carbon emissions, and proposes an effective optimization
solution for distribution. In order to solve the problem of premature convergence of
PSO, the hybrid binary method is used to generate high quality initial solution, and then
the hybrid particle swarm optimization strategy (GA-PSO) combined with genetic
algorithm is introduced to enhance the search efficiency and optimization performance.
Specific operations are as follows:
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Step1: Mixed binary method generates the initial solution. Greedy algorithm: Each
step selects the point that has the least impact on the total cost as the next delivery
customer point. Neighborhood search: After defining the neighborhood structure, the
search begins, and the local search is carried out systematically in the current neigh-
borhood to find the optimal solution. Finally, the solutions of the above algorithms are
sorted, and the three solutions with the best quality are selected as the initial solutions.

Step2: Introduce a good solution. The excellent solution of hybrid binary method is
taken as the initial solution of particle swarm optimization algorithm. Each particle
represents a distribution path, and its position vector is composed of customer points,
and the velocity vector is initialized for each particle.

Step 3: Fitness Calculation. For each particle, the fitness function is defined as the
sum of fixed costs, transportation costs, time window penalty costs, refrigeration costs,
product damage costs, and carbon emission costs, with the objective to minimize this
total sum.

1
min

f
Z

<
(23)

Step 4: Update Individual and Global Best Solutions. Individual best update: If the
current fitness of a particle is better than its historical best fitness, then update its
individual best solution. Global best update: Identify the best solution from all indi-
vidual bests of the particles and update the global best solution.

Step 5: Hybrid Operations. In the route optimization problem, the fitness function
may have multiple local optima, making PSO susceptible to getting trapped in these
local optima. By introducing adaptive crossover and mutation strategies, the algorithm
can increase the diversity of the population when necessary, thereby improving the
probability of finding the global optimum. The specific formulas for crossover and
mutation are as follows:

, ,(1 ) s
c c base c base

m

nP P P
n

< ∗ , ≥
(24)

, ,(1 ) s
m m base m base

m

nP P P
n

< ∗ , ≥
(25)

Here, Pc,base and Pm,base are the base crossover and mutation rates, respectively.
ns and nm represent the number of stopping iterations and the maximum number of
iterations, respectively.

Step 6:Velocity Update. In addition to the standard velocity updating, a dynamic
inertia adjustment strategy is employed.

( 1) ( ) ( ) (
1 1 2 2( , ) (t t t t

i i best i best iv w v c r p i x c r g x∗ < √ ∗ √ √ , ∗ √ √ , ）） (26)
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max max min ) c

m

Iw w w w
I

< , , ≥（
(27)

Here, w is the inertia weight, with wmax and wmin representing the maximum and
minimum values of the inertia weight, respectively. Ic and Im)are the current iteration
number and the maximum number of iterations, respectively. c1and c2 are the learning
factors, and r1 and r2 are random numbers.

Step 7: Position Update. Ensure that the route optimization remains within permis-
sible limits.

( 1) t) ( 1)t t
i i ix x v∗ ∗< ∗（

(28)

Step 8: Termination Condition. Check whether the maximum number of iterations or
other termination conditions have been reached. If the termination conditions have not
been met, return to Step 2.

Step 9: Output the Optimal Solution. Output the best delivery route solution, which
minimizes the total sum of fixed costs, transportation costs, time window penalty costs,
refrigeration costs, product damage costs, and carbon emission costs.

4 EXPERIMENTAL SIMULATION AND RESULTS
ANALYSIS

4.1 Experimental Case Study

In this study, we utilize the Solomon benchmark dataset to test the effectiveness and
efficiency of the proposed algorithm. Specifically, we selected three instances that
represent different delivery scenarios: C107, R105, and RC201. To set up experimental
cases, we chose a subset of delivery points from each instance for analysis. This se-
lection strategy aims to demonstrate the broad applicability and flexibility of our al-
gorithm in handling various types of delivery routes—C-type for clustered routes,
R-type for random routes, and RC-type for a combination of both. By testing on these
classic experimental cases, our goal is to comprehensively evaluate the performance of
the algorithm in practical use, particularly in terms of route optimization and cost
reduction.

4.2 Algorithm Parameters.

In this study, we combine a hybrid Particle Swarm Optimization strategy with Genetic
Algorithms, with the following specific parameters: Number of particles N = 50,
Learning factor 1 c1=2.05, Learning factor 2 c2=2.05, Inertia weight =0.9, Population
size m=60, Crossover rate (Pc)=0.7, Mutation rate（Pm）=0.05, Number of iterations
G=50.
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4.3 Model Parameters

The model parameter Settings are shown in the following table.

Table 2. Model parameter table

Argument Numerical value Argument Numerical value
A 1 m2 100RMB/vehicle
N 20 ki 2.50RMB/kg

Qmax 1100kg ∂ 0.05
Vk 50km/h u1 20RMB/h
m1 500RMB/vehicle u2 15RMB/h

4.4 Algorithm Analysis

To comprehensively validate the performance of the proposed improved algorithm, this
study will conduct in-depth testing on three carefully selected instances from the
Solomon dataset: C107, R105, and RC201. We will primarily focus on the optimal
solutions achieved by the algorithm and the number of iterations required to reach these
solutions. The specific data are presented in the table below:

Table 3. Algorithm comparison table

Data
set

Standard particle swarm optimization
algorithm

Improved particle swarm optimization
algorithm

Optimal
solution

Mean
solution

Mean fre-
quency of

convergence

Optimal
solution

Mean
solution

Mean fre-
quency of

convergence

C107 4678.9 4735.23 46.87 4047.34 4177.89 27.63

R105 4866.73 4855.74 58.65 4287.65 4365.57 32.49
RC201 4933.78 5035.83 65.33 4356.23 4472.81 39.85

4.5 Cost Analysis

In conducting a cost analysis of the logistics delivery system, this study will focus on
comparing two different delivery modes: electric vehicle mode and traditional fuel
vehicle mode. The purpose of this analysis is to delve deeper into the differences be-
tween these two modes in terms of transportation costs and carbon emissions. Figures 2
to 4 present the optimal route maps for electric vehicle mode under scenarios C107,
R105, and RC201, each with 30 selected customer points.
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Fig. 2. C107 Optimal roadmap

Fig. 3. R105 Optimal roadmap

Fig. 4. RC201 Optimal roadmap
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According to Table 4, compared to traditional fuel vehicle fleets, the total costs
under the pure electric vehicle delivery mode have significantly decreased, with re-
ductions of 13.35%, 16.95%, and 19.66% across the three datasets, respectively. In
terms of environmental impact, carbon emissions are also lower in the pure electric
vehicle mode than those of fuel vehicle fleets, with reductions of 44.34%, 43.53%, and
40.98%. Additionally, due to the efficiency of collaborative delivery, penalties for time
window violations decreased by 46.30%, 24.01%, and 20.54%, respectively.

Analyzing the results of these experiments, the delivery mode combining drones
with electric vehicles demonstrates outstanding performance in reducing delivery costs
and carbon emissions through its efficiency, flexibility, and eco-friendly approach.
This model leverages the advantages of drones for direct delivery of goods and the
efficient energy conversion characteristics of electric vehicles, effectively avoiding
traffic congestion and unnecessary long-distance transport. This greatly enhances
delivery efficiency and reduces energy consumption.

Table 4. Comparative statement of costs

Data set Fuel fleet Electric fleet

Total cost Carbon
emission

Time window
penalty

Total
cost

Carbon
emission

Time win-
dow penalty

C101 2832.68 194.65 264.43 2454.62 108.34 136.62
R101 3425.89 228.67 248.62 2845.32 129.11 188.92

RC101 3267.45 224.67 230.89 2625.17 132.59 183.47

5 CONCLUSIONS

This study comprehensively considers multiple factors such as transportation costs,
carbon emissions, refrigeration effects, goods damage, and time window constraints. It
constructs an optimization model with the objective of minimizing total costs and
solves it using an improved particle swarm algorithm. Experimental results validate the
effectiveness of the model and algorithm, demonstrating significant advantages of
using electric vehicles for fresh produce delivery in reducing total costs, decreasing
carbon emissions, and improving delivery efficiency. Compared to traditional
fuel-based delivery modes, the electric vehicle mode achieves an average reduction of
14.52% in total costs and a 41.15% decrease in carbon emissions across different
datasets. Additionally, the penalty for time window violations decreases significantly
by an average of 30.83%. These findings not only confirm the dual advantages of the
electric vehicle delivery mode in terms of economic and environmental benefits but
also highlight its potential in enhancing logistics efficiency and customer satisfaction.
Future research could further explore the adaptability and optimization strategies of this
mode in different geographical environments and scales, providing theoretical and
practical support for the low-carbon transformation of the logistics industry..
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