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Abstract. This paper proposes enhancements to the traditional ant colony opti-

mization (ACO) algorithm for path planning. Firstly, it improves the heuristic 

function by combining current step size ε and the Euclidean distance of the end-

point μ, strengthening path directionality. Secondly, it updates pheromone volat-

ilization dynamically, enhancing convergence. Compared to the classical ACO, 

the improved algorithm increases the likelihood of ants choosing optimal paths, 

avoids local optima, and enhances convergence speed and global search ability. 
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1 INTRODUCTION 

Mobile robot path planning is an important part of the research field of robotics[1]，It 

is widely used in unmanned vehicles, navigation systems, warehousing and logistics 

and other fields. Scholars at home and abroad have done a lot of research on robot path 

planning algorithms, and the commonly used algorithms include A* algorithm[2]、

particle swarm algorithm[3]、ACO algorithm[4]。Among them, the ant colony algo-

rithm has the characteristics of robustness and parallelism, which has been favored by 

a large number of scholars. With the deepening of the research, it is found that the ant 

colony algorithm also has the shortcomings of slow convergence, low search efficiency 

and easy to fall into the local optimum, inspired by the above studies, this paper adopts 

the following improvement strategies for the classical ACO algorithm, which is gener-

ally easy to fall into local optimization and prone to stagnation and other shortcomings.  

Firstly, the heuristic function is improved by combining the current step length and 

the Euclidean distance of the end point, and the directionality of the search path is 

strengthened by referring to the front position factor 𝜀 and the end position factor 𝜇. 

Secondly, the pheromone volatilization degree is changed to a dynamic updating 

method, which makes the algorithm possess better convergence[5].  
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2 MODELING OF ROBOTIC WORKING
ENVIRONMENTS

Path planning is crucial for mobile robots, involving finding a safe, collision-free path
from start to end in complex environments. Global path planning does this in static
environments with known global information, while local path planning adapts to dy-
namic environments, updating based on sensor data when environment knowledge is
limited or absent[6]. Robot path planning is complex and multi-constraint. Environ-
ment representation methods include raster maps, feature maps, direct representation,
and topological maps[7]. Among them, the raster map method of modeling has the
characteristics of simplicity, ease of implementation, and intuitiveness, so the raster
map method is chosen for environment modeling in this chapter[8]. The raster map
method assigns 0 to obstacle-free areas and 1 to areas with obstacles, simplifying the
physical environment into a binary matrix. See Figure 1 for an example.

Raster decomposition of the x, y coordinate axes and general coordinate axes in the
same order of increasing. There are i rows and m columns in the raster decomposition
diagram, and the length of a single raster is 1. The center coordinate of each raster can
be expressed as shown in equation (1).

ቊ
ݔ = 1 ∗ −(݉,݅)ܾ݀݉) 0.5)
ݕ = 1 ∗ ൫݉ + 0.5− ݈ܿ݁݅(݅/݉)൯ (1)

In equation (1), xi and yi represent the horizontal and vertical coordinates of the
center of the point; mod(*) represents the remainder of the division; and ceil(*) repre-
sents the closest number of each element rounded up to a number greater than or equal
to this element.

Fig. 1. Mobile robot environment model

In addition, in general, when the robot moves within the range of the grid, its trajec-
tory direction can be simplified and equated to 8 directions, as shown in Fig.2.
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Fig. 2. Robot movement direction diagram

3 CLASSICAL ANT COLONY ALGORITHM (ACO)

3.1 Algorithmic Principle

The ant colony algorithm mimics the behavior of ants when searching for food, and
achieves path search by releasing and sensing pheromones. The algorithm uses a posi-
tive feedback mechanism to make paths with high pheromone concentration more pre-
ferred by ants, while the pheromone evaporates over time to avoid falling into a local
optimum. In the algorithm, ants select paths according to the pheromone concentration
and heuristic information, and keep searching iteratively until the stopping condition is
satisfied. This algorithm is suitable for solving problems such as combinatorial optimi-
zation and path planning, and shows good results when dealing with complex search
spaces.

3.2 Algorithm Formula

According to the operation process of the ant colony algorithm, there are a total of M
ants, and the ants k ( k = 1, 2, ..., M) will be influenced by the pheromone concentration
to choose the next path to visit，p୧୩୩  (t) denotes the probability that ant k moves from
grid i to grid j at time t. Its calculation formula is shown in equation (2) and (3).

 = ቐ
ൣఛೕ(௧)൧ഀ∙ൣఎೕ(௧)൧ഁ

∑ ൣఛೕ(௧)൧ഀ∙ൣఎೕ(௧)൧ഁೞ∈ೌೢೖ

, ݏ ∈ ݀݁ݓ݈݈ܽ

0, ݏ ∉ ݀݁ݓ݈݈ܽ
(2)

ߟ = 1/݀ (3)

In equation (2), τ୧୨(t) denotes the pheromone concentration on i to j at time t; and
η୧୨(t) is the heuristic function, denotes the expectation level of the ants from i to j;
allow denotes a map point that belongs to the one that can be traveled; and α denotes
the pheromone importance factor; the β denotes the heuristic function important fac-
tor. While the ant colony will leave the pheromone after passing through a certain path,
the original pheromone concentration will slowly decrease, and the set parameter 0 )ߩ
< denotes the volatilization degree of the pheromone. Therefore, after cycling (1 > ߩ
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once, the pheromone concentration on each path that has been traveled will change, and
its formula is shown in equation (4).

ቊ
߬(ݐ + 1) = (1 − (ߩ ∗ ߬(ݐ)+ ∆߬

∆߬ = ∑ ∆߬
ୀଵ

,0< ߩ < 1 (4)

In equation (4). ∆τ୧୨୩  denotes the pheromone left by the kth ant when i passes
through the j-path. ∆τ୧୨ denotes the sum of pheromone concentrations left behind by
the ants that have passed through i to j.

4 IMPROVEMENT OF ANT COLONY ALGORITHM

4.1 Improvement of the Heuristic Function

The heuristic function in the ant colony algorithm usually considers only the Euclidean
distance to the endpoint, which is too simplistic and prone to local optima. By incorpo-
rating the distance from the current position to the next selectable position into the for-
mula, the path search directionality is improved. Adding position factors allows flexible
adjustment of distance weights. See equation for details. (5).

ߟ = ଵ

൫ఌ∗ௗೞାఓ∗ௗೕಶ൯
య
మ

(5)

In equation (5), d୧ୱ denotes the Euclidean distance from the current node and the
next node to be selected; d୨ denotes the Euclidean distance from the next to-be-
selected node to the endpoint of E; ε denotes the current position factor; μ denotes
the end position factor.

4.2 Improvement of Pheromone Volatilization

Through pheromone release and volatilization, the ant colony gradually converges to
better solutions while exploring the solution space extensively to find the global opti-
mum. Dynamically updating pheromone volatilization enhances path exploration, with
decreasing volatilization leading ants toward paths with higher pheromone concentra-
tion, boosting convergence speed. See equation for details(6).

ݐ)ߩ + 1) = ௧
்

× ଵ
|భషഐ()| (6)

In equation (6), T represents the total number of iterations; t represents the current
number of iterations.
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5 SIMULATION EXPERIMENT VERIFICATION AND
ANALYSIS

5.1 Simulation Experiment Parameters

In order to verify the feasibility and effectiveness of the improved ACO algorithm, the
improved ACO algorithm in this chapter is compared with the traditional ACO algo-
rithm. MTALAB2022a programming software is chosen to program the improved
ACO algorithm and conduct simulation experiments. The operating system is Windows
11, the processor is AMD R7-6800H CPU, the memory is 16 GB, and the start point
and the end point are set at the upper left and lower right of the raster decomposition
graph respectively. Basic algorithm parameters: number of iterations K= 100 ; Number
of ants M= 50 ; Pheromone importance factor α = 1. 2; Starting position factor ε = 0. 4;
endpoint position factor μ = 0. 6; Heuristic function significant factor β = 8; Degree of
pheromone volatilization ρ = 0. 6。

5.2 Raster Decomposition Map Simulation

Based on the parameter indexes given in the table, simulation experiments are carried
out on the classical ACO and the improved ACO algorithm using the grid decomposi-
tion graph of 20×20 fixed obstacles, and the results are shown in Fig. 3 and Fig. 4, and
the results are compared. From the simulation results, the optimal path length and the
number of iterations of the improved ACO algorithm are 28. 62 m, which are 9.39%
less than that of the classical ACO algorithm. The simulation results show that the con-
vergence speed of the improved ACO algorithm is higher than that of the classical ACO
algorithm, and at the same time, it is easy to see that its indexes are more superior.

(a) Convergence curves (a) Convergence curves
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(b) Trajectories (b) Trajectories

Fig. 3. Trend and movement of convergence
curve of classical ant colony algorithm

Fig. 4. Trend of convergence curve and
movement trajectory of improved ACO al-

gorithm

6 CONCLUSION

In summary, this paper through two groups of comparison experiments in the 20 × 20
raster decomposition map of the optimal path length of path planning, the number of
iterations to find the optimal path and other data, it shows that the improved ant colony
algorithm can effectively reduce the number of iterations of the optimal path to speed
up the convergence speed, increase the smoothness of the planning trajectory and other
aspects are better than the classic ant colony algorithm, and the classical ant colony
algorithm in dealing with the more complex maps will be In addition, the classical ant
colony algorithm will have various problems when dealing with more complex maps,
which proves the practicality of this algorithm in solving the path planning problem[9].
This improvement can enable the robot to select paths more accurately and ensure its
stable operation and safe operation in various complex environments[10].
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