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Abstract. The rural logistics distribution system faces significant pressure due 

to the complexity of the terrain and the widespread dispersion of delivery 

points. To address this challenge, this study innovates upon the traditional sin-

gle-mode delivery system by proposing a “Electric Vehicle + Drone” collabora-

tive delivery model, which takes into consideration factors such as carbon 

emissions and customer satisfaction with the goal of minimizing total costs. Ini-

tially, the k-means clustering method is used to determine the stopping points of 

electric vehicles and effectively categorize customer points. Subsequently, an 

improved ant colony algorithm is employed for route planning. The model's ef-

fectiveness and practicality were verified using the Solomon dataset. Experi-

mental results show that compared to traditional vehicle-only delivery models, 

the collaborative delivery model excels in reducing total costs by 14.52% and 

significantly enhances delivery efficiency, with an improvement of 21.86%. 
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With the rapid development of internet technology and the booming rise of
e-commerce, the rural market has become a new growth point for online retail. How-
ever, due to its unique geographical environment, rural areas pose greater challenges
to the logistics distribution system, especially in achieving efficient and low-cost
"last-mile" delivery services. These challenges not only inhibit the potential growth of
rural e-commerce but also significantly affect the shopping experience and satisfac-
tion of rural consumers. Therefore, it is particularly urgent to explore and implement a
new model of rural logistics distribution that is both efficient and economical. Against
this backdrop, technological innovations in drones and electric vehicles offer fresh
perspectives and possibilities for logistics distribution in rural areas.

Numerous scholars have conducted research on drone delivery. Sawadsitang[1] and
colleagues considered the various challenges and random events that might occur
during drone delivery, proposing a multi-objective drone delivery system and a
three-stage stochastic optimization model. Ye Liwei[2] and others utilized an improved
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hybrid particle swarm optimization algorithm to study the problem of drone and vehi-
cle collaborative path scheduling with time windows. Du Pengfei[3] addressed the
issue of incomplete factors in drone delivery modeling, constructing a mul-
ti-warehouse logistics drone delivery model based on energy consumption changes,
hybrid time windows, and simultaneous pickup and delivery. Xia[4] and colleagues
designed an improved adaptive large neighborhood search algorithm, creating an
integer programming model to address the impact of drone weight on costs. Kit-
jacharoenchai[5] and others explored the last-mile delivery problem of drones, solving
it through a formulated mixed-integer programming approach.

In recent years, the application of electric vehicles (EVs) has expanded the range of
options for logistics transportation strategies, making the efficient dispatch of EVs a
hot topic among scholars. Mavrovouniotis[6] and colleagues have considered EV
charging strategies and utilized an improved ant colony algorithm for planning EV
routes. Vani[7] and others have modeled electric vehicle routes based on time-of-use
electricity pricing, proposing an optimization using a bat algorithm. Wen Hsin[8] and
colleagues, under the premise of considering carbon emissions, have developed an
optimization model for multi-temperature joint distribution paths for electric vehicles
in a time-varying network with soft time windows. Jia[9] and others have framed the
EV routing problem as a bi-level optimization issue and introduced an innovative
bi-level ant colony optimization algorithm for solving it.

In summary, despite significant progress in the field of delivery models, current
research still has certain shortcomings: (1) Most studies analyze drones, electric vehi-
cles, and time windows separately, lacking a comprehensive consideration of these
key factors. (2) Research on carbon emissions caused by the use of drones and electric
vehicles remains scarce. (3) Although some studies have mentioned the collaborative
delivery model of drones and vehicles, in-depth discussions on its application in rural
logistics are relatively insufficient. In light of this, this paper innovatively proposes a
"Electric Vehicle + Drone" collaborative delivery model for rural logistics that inte-
grates considerations of time windows and carbon emissions. Compared to existing
literature, the innovations of this study are primarily reflected in several aspects: First,
it cleverly combines the complementary advantages of electric vehicles and drones,
providing a comprehensive solution strategy for the logistics challenges faced by rural
areas. Second, the model incorporates carbon emissions and customer satisfaction as
core considerations, demonstrating how to reduce environmental impact while en-
hancing delivery efficiency. Furthermore, after k-means clustering, a hybrid binary
search is introduced to solve the initial pheromone setting issue of the ant colony
algorithm, optimizing the delivery route planning. These innovative measures not
only fill the gaps in existing research but also offer new perspectives and strategies for
the field of rural logistics delivery.

2 MATHEMATICAL MODEL

2.1 Problem Description and Hypothesis

The problem studied in this paper can be specifically described as follows: A distribu-

Research on Rural Logistics Path Optimization             825



tion center reasonably plans delivery routes with the goal of minimizing total delivery
costs, taking into account customer demand. An electric vehicle carrying a drone de-
parts from the distribution center and, upon reaching a designated electric vehicle
stopping point, releases the drone. The drone then delivers goods to a fixed receiving
point in the village and returns to the electric vehicle, which ultimately returns to the
distribution center with the drone (as shown in Figure 1). To ensure the integrity of
the model constructed in this paper, the following assumptions are made:

(1) This paper only considers the delivery scenario involving a single distribution
center and multiple customer points;

(2) Each village's fixed receiving point can only be serviced once;
(3) The starting and stopping points for the electric vehicle are always the distribu-

tion center, and for the drone, they are the respective electric vehicle;
(4) The demand type for all customers is delivery, and the demand volume for each

customer is known;
(5) All roads between the electric vehicle's temporary stopping points and the dis-

tribution center are bidirectional and passable.

Fig. 1. "Electric vehicle + drone" distribution mode

2.2 Symbol Description

The symbols and meanings of the problems in this paper are shown in Table 1.

Table 1. Problem symbol and meaning description

Symbol Meaning description
A Distribution center set, A has only one element, A=0
T Electric vehicle temporary parking point collection, T={1,2···,T}
N Village fixed receiving point collection, N={1,2···,N}
H Drone assembly, H={1,2···,H}
F Electric vehicle collection, {1,2···,F}
dij Distance from node i to node j
u Time window penalty factor

QH Maximum payload of the drone
QF Maximum load of electric vehicle
xijk Variable 0-1, vehicle or drone k traveling from i to j is 1; Otherwise zero
yik Variable 0-1, vehicle or drone k at point i for service is 1; Otherwise zero
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2.3 Objective Function

The fixed costs are directly proportional to the number of electric vehicles and the
number of drones equipped with them. As the quantity of electric vehicles and drones
increases, the corresponding fixed costs also rise accordingly.

1 1 0 2jk ijk
k F j T k H i T j N

C m x m x
⊆ ⊆ ⊆ ⊆ ⊆

< ∗  (1)

Among them, m1 and m2 respectively represent the unit fixed costs of electric ve-
hicles and drones.

Transportation costs are primarily determined by the cost of electricity consumed
by electric vehicles and drones during the delivery process, and are proportional to
their travel distance. Given that this portion of the cost constitutes a significant pro-
portion of the total cost, finding a relatively shortest delivery route is particularly
important for effectively reducing transportation costs.

2 3 4
( ) ( ) ( ) ( )

ij ijk ij ijk
k F i A T j A T k H i A T j A T

C m d x m d x
⊆ ⊆ ∩ ⊆ ∩ ⊆ ⊆ ∩ ⊆ ∩

< ∗      (2)

Among them, m3 and m4 represent the unit transportation cost of electric vehicles
and drones, respectively.

Time windows can be categorized into three types: hard time windows, soft time
windows, and mixed time windows. In this paper, based on the actual situation, a
mixed time window constraint function as shown in Figure 2 is designed.

Fig. 2. Function of improved hybrid time window

In the illustration,[ei, li] represents the accepted delivery time window. If the goods
arrive within the [ai,  ei] timeframe, i.e., earlier than the scheduled time, the penalty
cost for this period will increase quadratically with the early arrival time. Conversely,
if the goods arrive within the[li, bi] timeframe, i.e., later than the scheduled time, this
may lead to customer dissatisfaction due to the prolonged wait. Therefore, in addition
to bearing a penalty cost similar to that for early arrival, a fixed cost f0 must also be
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assumed. For goods arriving between [0, ai] and [bi, +∞) since they have exceeded the
acceptable earliest or latest arrival time, they will be considered unacceptable, and a
significantly large value M is used to represent the cost of this scenario.
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Drones and electric vehicles do not directly produce carbon emissions during their
usage. Their primary carbon footprint originates from the electricity consumption and
the production of materials required for maintenance and upkeep. Therefore, the car-
bon emission costs for drones and electric vehicles are composed of two parts.

1 2( )
100

ij

use tax

d
FC FC

C k C
λ

∗ ≥
< φ φ (4)

p i iC m k<  φ (5)

3 use pC C C< ∗ (6)

Among them, FC1 and FC2 respectively represent the power consumption of elec-
tric vehicles and drones traveling 100 kilometers, μ represents the charging efficiency,
k represents the carbon emission factor of power consumption, mi represents the qual-
ity of substance i that needs to be supplemented, and ki represents the carbon emission
factor of substance i that needs to be used.

2.4 Model Establishment

Objective function:

1 2 3( )iminZ C C P t C< ∗ ∗ ∗ (7)

Constraints:
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In the model described above, equations (8) and (9) indicate that the total load of
goods carried by the electric vehicle or drone is less than its maximum carrying ca-
pacity; equations (10) and (11) specify that each drone will provide delivery service to
each village's fixed receiving point only once; equation (12) signifies that the electric
vehicle departs from and eventually returns to the distribution center; and equation
(13) denotes that the drone departs from the electric vehicle's temporary stopping
point and ultimately returns to this stopping point.

3 ALGORITHM DESIGN

This paper addresses the issue of collaborative distribution logistics in rural areas,
taking into consideration multiple factors such as customer satisfaction and carbon
emissions, and proposes an effective distribution optimization scheme. Initially, the
k-means clustering algorithm is utilized to determine the stopping point locations for
electric vehicles, optimizing the distribution network layout for efficient resource
utilization. Subsequently, an improved ant colony algorithm is introduced to optimize
the delivery routes, aiming to further reduce delivery costs, shorten delivery times,
and decrease carbon emissions, thereby enhancing the environmental friendliness of
the overall logistics system.

3.1 k-Means Clustering to Determine the Position of Stopping Point
of Electric Vehicle

The k-means algorithm, with its straightforward implementation, efficient computa-
tional performance, and wide applicability, has been universally applied in the fields
of data classification and cluster analysis. Faced with the challenges of rural logistics
distribution, especially the complexity of the terrain and the widespread distribution
of delivery points, the k-means algorithm can effectively determine the stopping
points for electric vehicles, crucially reducing logistics costs and significantly en-
hancing delivery efficiency.

Step 1: Data Preparation. Set D={d1,d2,...,dn} as the collection of all fixed receiving
points in the villages. Where, d1=（x1，y1）represents the coordinates of the distribution
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center.
Step 2: Selecting the Number of Clusters k. The number of clusters is predeter-

mined, This paper sets k according to the actual situation.
Step 3: Assigning Cluster Centers. For each village's fixed receiving point di, cal-

culate its distance to each cluster center and assign it to the nearest cluster center.

2

( , )
1

( )
i j

d

x x ik jk
k

d x x
,

< , (14)

Step 4: Updating Cluster Centers. For each cluster, recalculate the average position
of all member delivery points and set this average position as the new cluster center.

1
| |

i j

j i
d Sj

c d
S ⊆

<  (15)

Where, Sj is the set of fixed receiving points of all villages assigned to clustering
center cj, and

| Sj | is the number of fixed receiving points of villages in the set.
Step 5: Repeat the iteration. Repeat Step3 and Step4 until the clustering center no

longer changes or a preset upper limit of iterations is reached.
Step 6: Output clustering results.

3.2 Improved Ant Colony Algorithm

In addressing the rural logistics distribution problem, considering the complexity of
delivery routes and the diversity of demands, this study opts for the ant colony opti-
mization (ACO) algorithm for route optimization. The ACO algorithm is a heuristic
algorithm that simulates the foraging behavior of ants in nature and is suitable for
solving combinatorial optimization problems. However, in the application of the ACO
algorithm, the setting of the initial pheromone level significantly affects the algo-
rithm's performance. Too high or too low initial pheromone concentration can lead to
premature convergence or inefficient search processes, impacting the quality of the
final solution. To address this issue, this paper obtains a superior initial solution
through a hybrid binary method, providing a better foundation for the subsequent
iterations of the ACO algorithm. This effectively enhances the algorithm's perfor-
mance and stability in solving practical logistics distribution route optimization prob-
lems.

Step 1 involves using a hybrid binary algorithm to find initial solutions and update
pheromone levels[10]. The first method, Variable Neighborhood Search, starts with an
initial solution, searches within different neighborhood structures for improved solu-
tions, and updates the current solution if a better one is found. If not, it moves to the
next neighborhood structure. The second method, Greedy Search, begins with the
distribution center initiating delivery, selecting the nearest electric vehicle stopping
point within the maximum load capacity of both the electric vehicle and drones.
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Drones are then deployed from these points, prioritizing the nearest customer points
and ensuring each delivery does not exceed the drone's weight limit. This process
continues until all customers are served, with drones eventually returning to the elec-
tric vehicle, which then returns to the distribution center.

Step 2: Calculate the path selection probability. Calculating route selection proba-
bility is the core mechanism of ant colony algorithm, which guides ants to make deci-
sions when constructing distribution routes. Specifically, when the ants choose the
next distribution point to travel, they calculate the probability based on the pheromone
concentration and distance from the current location to other distribution points.

[ ( )] [ ( )]
,

[ ( )] [ ( )]

0,
k

ij ij
k

is isij s allowed

k

t t
j allowed

t tP

j allowed

 α

 α

σ γ
σ γ

⊆


⊆

< 


∈

 (16)

Here, allowedk is a collection of cities that the KTH ant has not visited.
Step 3: Update pheromone concentration. Updating the pheromone concentration is

a crucial step in the iterative process of the algorithm. The purpose is to enhance the
pheromone on the superior paths, thereby guiding ants to prefer these paths in subse-
quent iterations. This step ensures that the algorithm progressively converges towards
the most efficient routes by reinforcing positive feedback on successful paths, which
is a fundamental principle of the ant colony optimization algorithm.

1
( 1) (1 ) ( ) m k

ij ij ijk
t tσ θ σ σ

<
∗ < , ∗ Χ (17)

k
ij

k

Q
f

σΧ < (18)

Where fk represents the total cost of the ant's route.
Step 4: Repeat iterations. Repeat Steps 2 and 3 until the optimal solution no longer

changes or until the preset maximum number of iterations is reached. This iterative
process allows the algorithm to refine the solutions continuously by exploring new
paths and reinforcing the pheromone on the most successful ones, gradually converg-
ing towards the most efficient and cost-effective delivery routes.

Step 5: Output the optimal route.

4 EXPERIMENTAL SIMULATION AND RESULTS
ANALYSIS

4.1 Experimental Case Study

In this study, we utilize the renowned Solomon[11] benchmark dataset to validate the
effectiveness and efficiency of the proposed algorithm. Specifically, we carefully
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selected two different instances from the dataset: C101, R101, and RC101, each rep-
resenting different delivery scenarios. To construct the experimental case study, we
chose the first 30 delivery points from each instance for analysis. This selection is
designed to demonstrate the versatility and adaptability of our algorithm in handling
different types of routes (C-type for clustered routes, R-type for random routes). By
testing on these classic experimental instances, our aim is to comprehensively assess
the algorithm's performance in practical applications, especially its capability in route
optimization and cost reduction.

4.2 Algorithm Parameters

This study uses k-means clustering algorithm and improved ant colony algorithm, and
the specific parameters are as follows:

The number of iterations G=50, the number of clusters k=3, the number of ants
m=50, the pheromone evaporation rate ρ=0.5, the pheromone influence factor α=1,
the heuristic influence factor β=2, and the updating pheromone concentration Q=100.

4.3 Model Parameters

The model parameter Settings are shown in Table2.

Table 2. Model parameter table

Argument Numerical value Argument Numerical value

QE 4t m2 100RMB/piece

Qt 80kg m3 0.65RMB/km

VE 60km/h m4 0.40RMB/km

VD 40km/h ki 2.50RMB/kg

m1 500RMB/vehicle

4.4 Algorithm Analysis

In order to fully evaluate the effectiveness of the proposed improved algorithm, de-
tailed tests will be performed on two selected instances of the Solomon dataset, C101,
R101. These examples represent different types of customer distributions, providing
us with rich test scenarios to examine the applicability and performance of the algo-
rithm. The focus of the test will be on the optimal solution that the algorithm can
achieve and the number of iterations required to achieve this optimal solution.The
specific results are shown in Figure 3 and Figure 4.
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Fig. 3. C101 iteration diagram

Fig. 4. R101 iteration diagram

According to the data in Table 3, it is clear that the improved ant colony algorithm
outperforms the traditional ant colony algorithm in terms of obtaining the optimal
solution, the average quality of solutions, and the number of iterations. Specifically,
the performance of the improved ant colony algorithm has increased by 33.06% in
terms of optimal solution, by 31.28% in the quality of average solutions, and the
number of iterations has been reduced by 36.93%. These data not only prove the ef-
fectiveness of the improved algorithm but also highlight its efficiency in solving spe-
cific problems.

Further analysis of these results reveals several key factors that have positively
impacted the performance of the improved ant colony algorithm. Firstly, the optimi-
zation of the algorithm may involve improvements in the search strategy, such as
more effective use of heuristic information, enabling the algorithm to focus more
quickly on high-quality solutions. Secondly, the refinement of parameter adjustments
may also have a positive effect on the convergence speed and stability of the algo-
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rithm, thereby more effectively finding the optimal or near-optimal solutions during
the iteration process.

Table 3. Results of ant colony algorithm and improved ant colony algorithm are obtained

Data
set Standard ant colony algorithm Improved ant colony algorithm

Optimal
solution

Mean
solution

Mean fre-
quency of

convergence

Optimal
solution

Mean
solution

Mean fre-
quency of

convergence

C101 1218.56 1332.35 45.85 845.63 953.32 25.70

R101 2537.75 2758.68 61.34 1621.84 1843.29 38.59

4.5 Cost Analysis

In the cost analysis of the logistics distribution system, this study focuses on compar-
ing three different distribution modes: the electric vehicle (EV) + drone combination
mode, the pure electric vehicle mode, and the traditional fuel vehicle mode. This
analysis aims to delve into the differences between each mode in terms of operational
costs, carbon emissions, and customer satisfaction. Figures 5 to 6 are the optimal
route maps for the EV + drone mode under C101, R101(each selecting 30 customer
points), respectively.

Fig. 5. C101 Optimal roadmap
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Fig. 6. R101 Optimal roadmap

According to Table 4, it is observed that compared to conventional fleets, the total
cost under the drone + electric vehicle delivery mode has significantly decreased, with
a reduction rate of 13.72%, 13.10%, and 16.73% across the three datasets, respective-
ly. In terms of environmental protection, the carbon emissions of the drone + electric
vehicle mode are also lower than those of conventional fleets, with reductions of
43.51%, 40.55%, and 39.40%. Additionally, due to the efficiency of collaborative
delivery, penalties for violating time windows have decreased by 46.30%, 24.75%,
and 21.46%, respectively.

Analyzing the above experimental results, the combined delivery mode of drones
and electric vehicles has demonstrated exceptional performance in reducing delivery
costs and lowering carbon emissions through its efficiency, flexibility, and environ-
mentally friendly approach. This mode fully leverages the advantage of drones for
direct delivery of goods and the characteristic of electric vehicles for efficient energy
conversion, effectively avoiding congestion in ground traffic and unnecessary
long-distance transportation.

Table 4. Comparative statement of costs

Data set Regular fleet Electric vehicle + drone fleet

Total cost Carbon
emission

Time window
penalty Total cost Carbon

emission
Time window

penalty

C101 2840.32 193.38 261.34 2450.52 109.24 132.32
R101 3321.19 227.19 249.15 2885.95 135.07 187.48
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5 CONCLUSIONS

This study has constructed and validated a rural logistics route optimization model
based on the collaborative delivery of electric vehicles and drones, clearly demon-
strating the significant advantages of this innovative delivery mode in reducing total
costs, cutting carbon emissions, and enhancing delivery efficiency. The experimental
results show that, compared to traditional vehicle-only delivery modes, the electric
vehicle + drone collaborative delivery mode achieves an average total cost reduction
of 14.52%, a mean decrease in carbon emissions of 41.15%, and a significant reduc-
tion in penalties for time window violations, averaging a decrease of 30.83%. These
achievements not only confirm the dual advantages of this mode in economic and
environmental sustainability but also highlight the potential of collaborative delivery
in improving rural logistics efficiency and customer satisfaction.

Moreover, the k-means clustering algorithm and the improved ant colony algorithm
used in this study have shown strong performance in optimizing delivery routes, en-
hancing the layout of the delivery network, and effectively reducing carbon emissions
and costs during the delivery process. The successful practice of this innovative de-
livery mode provides not only an effective solution for rural logistics distribution
systems but also offers new ideas and methods for the logistics industry when facing
complex geographical environments and widely distributed delivery points.

In conclusion, the introduction of the electric vehicle and drone collaborative de-
livery mode provides reliable technical support for achieving efficient, low-cost, and
environmentally friendly rural logistics services, which is of significant importance
for promoting the development of rural e-commerce and optimizing rural logistics
systems. Future research could further explore the adaptability and optimization
strategies of this mode in different geographical environments and scales of applica-
tion, providing theoretical and practical guidance for a wider range of application
scenarios.
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