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Abstract. Aiming to reduce the total cost of logistics distribution, this paper con-

structs a mathematical model for multi-vehicle route optimization with time win-

dow constraints. The objective is to minimize the comprehensive total cost, 

which includes fixed vehicle costs, transportation costs, carbon emission costs, 

and time penalty costs. In terms of algorithm design, this study enhances heuristic 

functions and state transition probabilities, optimizes the global pheromone up-

date strategy, and introduces a chaotic disturbance mechanism to improve the ant 

colony algorithm. Finally, MATLAB software is used for empirical analysis to 

compare the optimized ant colony algorithm with the traditional ant colony algo-

rithm. The results indicate that, compared to the basic ant colony algorithm, the 

improved ant colony algorithm reduces delivery distance by 7.2% and total de-

livery cost by 17.5%, thereby verifying the effectiveness of the proposed method. 

Moreover, the paper analyzes how delivery costs and carbon emissions change 

with fluctuations in carbon tax prices. 

Keywords: Research on path optimization; Carbon emissions; Soft time win-

dow; Improving Ant Colony Algorithm 

1 INTRODUCTION 

As China enters a new stage of high-quality development, the market size of the logis-

tics industry is expected to continuously expand. However, it faces challenges such as 

high transportation costs, insufficient efficiency, and isolated information systems. To 

address these issues and enhance competitiveness, logistics enterprises need to undergo 

strategic transformation and upgrades, utilizing advanced technologies to optimize op-

erations and reduce costs. Additionally, in response to global carbon emission concerns, 

China has implemented carbon reduction policies. The logistics sector must also prior-

itize environmental protection by optimizing delivery routes and reducing carbon emis-

sions to promote sustainable development. 

Regarding the current research on Vehicle Routing Problems considering carbon 

emissions and time windows, it has been found that the academic community has ex-

tensively explored this area and made numerous optimization attempts in VRP solution 

strategies. Xiang et al. proposed a meta-heuristic algorithm that solves dynamic vehicle 

routing problems within the framework of ant colony optimization by incorporating a  
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demand coverage diversity adaptive method, enabling the optimizer to effectively re-
spond to new customer requests that arise dynamically during route execution[1]. Li et
al. developed a multi-site green vehicle routing problem and applied an improved ant
colony optimization algorithm, effectively addressing the logistics challenge of max-
imizing revenue while minimizing costs, time, and emissions[2]. Ng et al. introduced
two new artificial bee colony algorithms that solve dynamic vehicle routing problems,
significantly reducing the risk of delayed deliveries caused by traffic congestion and
enhancing the flexibility and robustness of route optimization[3]. Chiabwoot improved
the ant colony algorithm by introducing path elimination techniques and pheromone
resetting techniques to address routing problems involving multiple pickup trucks and
delivery vehicles with time windows, enhancing the algorithm’s performance in han-
dling infeasible paths and local optima issues, and showcasing the potential application
of the improved ant colony algorithm in complex logistics and distribution domains[4].
Ozgur developed a genetic algorithm that incorporates niche techniques and constraint-
handling methods, effectively solving the green vehicle routing problem characterized
by multi-site, multi-route, heterogeneous fleets, and split delivery features[5].

Given these considerations, this paper constructs a Vehicle Routing Problem model
aimed at minimizing the total costs while considering carbon emissions and time win-
dow constraints. This research innovates the traditional ant colony algorithm, including
adjustments to the heuristic function and state transition probabilities, optimization of
the global pheromone update strategy, and the introduction of a chaos perturbation
mechanism. These enhancements enrich the application of the ant colony algorithm in
the field of route optimization and better align with national objectives for carbon neu-
trality and peak carbon emissions, as well as the practical needs of businesses.

2 PROBLEM DESCRIPTION AND MODEL
ESTABLISHMENT

2.1 Problem Description

This model addresses a logistics issue where a fleet composed of various types of ve-
hicles performs delivery tasks from a single distribution center to numerous customer
nodes. In the set scenario, the geographical locations and demand volumes of all cus-
tomer nodes are known. Different types of vehicles have varying load capacities and
cost characteristics. Each vehicle departs loaded with known goods, completes deliver-
ies, and returns to the distribution center. According to regulations, each vehicle can
only serve a fixed route, and each customer node is served by only one vehicle. Given
the time window constraints at each customer node, failure to complete delivery within
these windows results in additional time penalty costs.
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2.2 Model Assumptions

(1) The demand for customer orders is one-time and complete; that is, orders cannot be
divided into multiple parts to be delivered by different vehicles in separate batches.
Instead, they must be entirely delivered by a single vehicle in one go.

(2) Customer demand volumes are accurately known prior to delivery and remain
unchanged throughout the delivery process, requiring vehicles to load goods based on
these known quantities.

(3) During delivery, it is assumed that all vehicles travel at a constant speed and only
stop at delivery points as necessary to load and unload goods.

(4) The distribution center has an adequate supply of goods, enabling vehicles to
load freely according to demand volumes without being affected by shortages or stock-
ing times.

(5) Vehicles of the same type have uniformity in load capacity and energy consump-
tion, meaning each vehicle type has the same parameters in terms of carrying capacity
and fuel efficiency.

(6) External factors that might affect delivery efficiency and costs, such as drivers'
driving behaviors, actual road conditions, and weather conditions, are not considered
during the delivery process.

2.3 Model Establishment

Symbols And Parameters. The following symbols and their definitions are provided:
U0={0,1,2,…,n} represents the set of customer points and the distribution center, where
i represents the distribution center; U1={1,2,3,…,n} represents the set of customer
points; K={1,2,3,…,mc+md} represents the set of all vehicles; Kc={1,2,3,…,mc}rep-
resents the set of light-duty fuel vehicles; Kd={me+1,…,mc+md} represents the set of
medium-duty fuel vehicles; Wc represents the maximum load capacity of light-duty
fuel vehicles; Wd represents the maximum load capacity of medium-duty fuel vehicles;
qi represents the demand at customer point i; dij represents the delivery distance be-
tween node i and node j; Wijkc represents the load carried by light-duty fuel vehicles
from node i to node j; Wijkd represents the load carried by medium-duty fuel vehicles
from node i to node j; ρ1 represents the fuel consumption per unit distance when light-
duty fuel vehicles are unladen; ρ2  represents the fuel consumption per unit distance
when light-duty fuel vehicles are fully laden; ρ3 represents the fuel consumption per
unit distance when medium-duty fuel vehicles are unladen; ρ4 represents the fuel con-
sumption per unit distance when medium-duty fuel vehicles are fully laden; ti  repre-
sents the arrival time of vehicles at node i; tij represents the travel time of vehicles
between node i and node j; tsi represents the service time at node i; [ETi，LTi] repre-
sents the desired service time window at customer point i; tik represents the arrival time
of vehicle k at customer point i; c1 represents the fixed usage cost of light-duty fuel
vehicles; c2 represents the fixed usage cost of medium-duty fuel vehicles; c3 represents
the fuel price; c4 represents the variable cost of light-duty fuel vehicles; c5 represents
the variable cost of medium-duty fuel vehicles; ଵ represents the unit penalty cost forߣ
early arrival; ଶ represents the unit penalty cost for late arrival; v represents the vehicleߣ
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speed; μ represents the fuel carbon emission coefficient; ω represents the carbon tax;
 is a 0-1 variable, indicating whether the transportation vehicle k has passed throughݔ
the road section from customer point i to j; - is a 0-1 variable, indicate whether cusݕ
tomer point i is served by vehicle k.

Mathematical Model.

ܥ݊݅݉ = ܿଵ    ݔ
∈∈బ∈బ

+ ܿଶ    ݔ
∈∈బ∈బ

  + ܿସ    ݀ݔ
∈∈బ∈బ

+ ܿହ    ݀ݔ
∈∈బ∈బ

+ ߱ ቌߠ    ݔ
∈∈బ

݀
∈బ

݂ + ߤ    ݔ
∈∈బ∈బ

݀ ݂ቍ

+ ଵߣ    ܧ}ݔ݉ܽݔ ܶ  − ݐ , 0}
∈∈బ∈బ

+ ଶߣ    ݐ}ݔ݉ܽݔ − ܮ ܶ , 0}
∈∈బ∈బ

(1)

∑ ∑ ∈∈బݔ + ∑ ∑ ∈∈బݔ = 1, ∀݆ ∈ ܷ (2)

∑ ∑ ∈∈బݔ = ∑ ∑ ∈∈బݔ , ∀݆ ∈ ܷ (3)

∑ ∑ ∈∈బݔ = ∑ ∑ ∈∈బݔ (4)

∑ ∑ ∈బ∈బݍݕ ≤ ܹ  , ∀݇ ∈ ܭ (5)

∑ ∑ ∈బ∈బݍݕ ≤ ௗܹ   , ∀݇ ∈ ௗܭ (6)

ݐ + ݐ + ௦ݐ = ݐ  , ∀݅, ݆ ∈ ܷ (7)

݅ܶܧܧ ≤ ݐ ≤ ݅∀   ,݅ܶܮܮ ∈ ܷ , ݇ ∈ ܭ (8)

ݔ ∈ {0,1}, ݅, ݆ ∈ ܷ, ݇ ∈ ܭ (9)

In the model, Equation (1) represents the objective function, which aims to minimize
the total distribution cost, the cost mainly consists of fixed costs, transportation costs,
carbon emission costs, and penalty costs. Equation (2) ensures that each customer is
serviced exactly once by one type of vehicle. Equation (3) stipulates that after servicing
a demand point, a vehicle must leave that point. Equation (4) requires that each vehicle
returns to the distribution center after completing its tasks. Equations (5) and (6) specify
that the load of fuel vehicles during delivery should not exceed their rated capacity.
Equation (7) ensures the continuity of the delivery process. Equation (8) ensures that
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service times fall within the designated time windows. Finally, Equation (9) defines the
range of values for the decision variables.

3 ALGORITHM DESIGN

Ant Colony Optimization (ACO), as a leading intelligent heuristic search technology,
has demonstrated significant results in various fields, particularly in handling Vehicle
Routing Problems (VRP). The algorithm effectively plans optimal routes from starting
points to destinations and exhibits remarkable stability. However, ACO also faces sev-
eral limitations, such as tendencies to converge prematurely, become trapped in local
optima, and experience slow optimization speeds and low efficiency. To overcome
these challenges, this paper introduces innovative improvements in heuristic function
and state transition rules, global pheromone update strategies, and the incorporation of
chaos perturbation mechanisms.

3.1 Improved Heuristic Function and State Transition Probability

In the Ant Colony Optimization algorithm, the heuristic information initially considers
only the distance between the current and potential customer points, which can leave
ants directionless during the early stages of the search. To address this, the improved
heuristic additionally considers the distance between the chosen customer point and the
target customer point. The improved heuristic information is represented as Equation
(10).

ߟ = ଵ
ఠభௗೕାఠమௗೕಸ

(10)

In the equation, ݀  represents the distance from the i-th customer point to the j-th
customer point, and ݀ீ  represents the distance from the candidate j-th customer point
to the target customer point G. The distance weighting coefficients are ߱ଵand ߱ଶ , with
߱ଵ + ߱ଶ = 1.

Given the context of this paper, which includes considerations of deviation from
time window penalties and carbon emission costs, differing from traditional routing
optimization problems, the model aims to more accurately simulate the decision-mak-
ing process of actual vehicle distribution. The model incorporates factors related to the
time window widths between customers i and j, as well as carbon emission factors,
leading to the following improved state transition probability formula:

ܲ
 = ቐ

(ఛೕ)ഀ(ఎೕ)ഁ(ଵ/௪ௗ௧ೕ)ം(ଵ/ೕ)ക

∑  ೕ∈ೌೢೖ (ఛೕ)ഀ(ఎೕ)ഁ(ଵ/௪ௗ௧ೕ)ം(ଵ/௭ೕ)ക , ݆ ∈ ݀݁ݓ݈݈ܽ

                      0 ݆ ∉ ݀݁ݓ݈݈ܽ

(11)

In the formula: ߬ represents the pheromone level between nodes i and j; ߙ is the
pheromone importance factor in the ant colony algorithm, where a larger value indi-
cates that ants are more likely to choose paths with higher pheromone concentrations;
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ߟ is the heuristic information between nodes i and j; ,ߚ and ,ߛ ߮ are factors indicating
the importance of the heuristic function in the ant colony algorithm; ℎݐ݀݅ݓ = ܮ ܶ −
ܧ ܶ represents the width of the time window for the customer, where a tighter window
indicates a more urgent need, giving priority to servicing such customers;ܼ is the
amount of carbon emissions produced by the delivery vehicle from customer point i to
j on the route, with smaller values indicating lower carbon emissions generated by the
path.

3.2 Global Pheromone Update Strategy

When the algorithm iterates a certain number of times and the quality of the solution
no longer improves, it may indicate that a global optimum has been reached or that the
algorithm is trapped in a local optimum. To address this, this paper proposes an im-
proved pheromone update strategy. The main adjustments include reducing the reten-
tion of pheromones and accelerating their evaporation rate. These changes can effec-
tively disperse the concentration of pheromones, increasing the opportunities for the
algorithm to explore unknown paths, thereby enhancing the performance of the ant col-
ony algorithm in global search. The improved pheromone update mathematical expres-
sion is as follows:

߬(ݐ + 1) = (1 − (ߩ ⋅ ߬(ݐ) + ߬߂
∗ (12)

߬߂
∗ = ொ

್ೞ
(13)

In the formula: Δ߬(ݐ)represents the concentration of pheromones on the path from
node i to node j during the t-th iteration; ߩ describes the evaporation rate of pheromones
on the path after each iteration; ߬߂

∗ represents the amount of pheromones released
by the ant that finds the optimal path between two customer points i and j during the
current iteration; ܳ is a constant that denotes the total amount of pheromones released
by an ant upon completing one cycle; ௦௧ is the total length of the path covered byܮ
the ant that finds the best path during the iteration cycle.

3.3 Chaos Perturbation Mechanism

Chaos is a deterministic yet non-periodic behavior characterized by excellent random-
ness and ergodic properties. By leveraging these characteristics of chaos, it is possible
to effectively disrupt pheromone trails, enabling the algorithm to explore a more exten-
sive solution space. The specific methods for generating chaos perturbation are as fol-
lows:

ݐ)ܨ + 1) = (ݐ)ܨߪ ∗ [1 − [(ݐ)ܨ (14)

In the formula, (ݐ)ܨ represents the chaotic variable, and ߪ is a control variable with
a typical range of values between 3.5 and 4.0.
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Additionally, this paper introduces chaos perturbation during the pheromone update
phase after the ants complete a round of search. This approach is designed to enhance
the exploratory and random aspects of the search process, thereby preventing the algo-
rithm from prematurely converging to local optima. The pheromone update expression,
after introducing chaos perturbation, is as follows:

߬(ݐ + 1) = (1 − (ߩ ⋅ ߬(ݐ) + ߬߂
∗ + (ݐ)ܨߦ (15)

In the formula, .is an adjustable coefficient ߦ

3.4 Improved Ant Colony Algorithm Implementation Steps

The specific steps of the improved ant colony algorithm are as follows:
Step 1: Initialize algorithm parameters, setting initial parameters such as ,ߙ ,ߚ and ,ߛ

߮; import information for each customer point, set the current iteration ݎ݁ݐ݅ = 0, and
the maximum number of iterations .௫ݎ݁ݐ݅

Step 2: Initialize a taboo list to ensure that each delivery vehicle (viewed as an ant)
starts from the distribution center. The taboo list is used to record visited customer
points to avoid repeated service.

Step 3: While adhering to time and load restrictions, ants choose the next point to
visit based on the updated state transition probability formula, and mark this point as
visited, adding it to the taboo list.

Step 4: If a current delivery vehicle cannot meet another customer point's require-
ments (such as time windows or exceeding load capacity), it will return to the distribu-
tion center. Subsequently, update the taboo list and repeat the selection process until all
customer points are covered, and all given constraints are satisfied.

Step 5: Calculate the objective function (lowest total cost) to determine the best route
solution for this iteration and record it.

Step 6: Adjust the pheromone intensity on each path according to specific phero-
mone update rules.

Step 7: After each iteration, calculate and evaluate the newly obtained feasible solu-
tion, then compare it with the best feasible solution obtained in previous iterations. If
the new solution is superior, update the current record of the best solution. To avoid the
algorithm getting stuck in local optima and to maintain the dynamism of the search, if
the feasible solution remains unchanged for five consecutive iterations, a chaos pertur-
bation strategy will be employed.

Step 8: Check if the algorithm meets the termination condition ݎ݁ݐ݅ ≥ ௫. If itݎ݁ݐ݅
does, output the optimal solution; otherwise, clear the taboo list and jump to execute
Step 2.
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4 INSTANCE VERIFICATION

4.1 Basic Data

The algorithm running environment in this article is Windows 10, 64 bit system, and
MATLAB 2023a software. The study focuses on a distribution center located in a spe-
cific area, tasked with delivering products to 25 customer points. The distribution center
is equipped with more than ten delivery vehicles. The locations and demand volumes
of the distribution center and customer points are detailed in Table 1 below. The spe-
cific address information of the distribution center and the 25 stores is shown in Figure
1.

Table 1. Customer demand information table

Number x y time window service time

Distribution Center 11.1 29.4

1 11.4 35.1 9:00-11:30 10

2 7.0 24.1 8:30-10:30 20

3 1.4 19.4 9:15-11:30 10

4 0.0 23.3 9:00-17:00 15

5 4.4 6.2 10:00-12:00 10

6 17.9 18.2 10:00-18:00 15

7 6.1 15.7 9:30-17:00 25

8 9.0 7.8 9:20-11:50 10

9 10.8 12.6 8:00-11:00 20

10 17.0 9.1 11:00-13:00 20

11 17.0 5.5 9:15-11:15 15

12 24.8 5.2 11:00-13:00 25

13 24.4 9.0 9:00-17:00 15

14 33.6 9.0 8:30-17:30 20

15 29.2 10.3 10:00-12:00 25

16 29.8 15.3 9:00-17:00 10

17 29.1 19.8 9:30-12:30 20

18 24.3 22.9 8:00-10:00 15

19 40.0 10.7 9:30-18:00 15

20 17.2 30.4 11:00-13:00 20

21 32.4 29.4 9:00-17:00 20

22 38.8 31.0 9:30-11:00 10

23 39.5 17.6 9:00-11:30 20

24 35.4 23.7 9:30-18:00 20

25 25.6 32.8 14:00-18:00 15
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Fig. 1. Customer Center and Store Coordinate Map

Other parameter settings: The fixed cost for vehicles is set at 200 yuan. The variable
cost for light-duty fuel vehicles is 5 yuan per kilometer, and for medium-duty fuel ve-
hicles, it is 6 yuan per kilometer. The vehicles travel at a speed of 50 kilometers per
hour. The rated carrying capacity of light-duty fuel vehicles is 1.5 tons, while that of
medium-duty fuel vehicles is 2.5 tons. The penalty cost for early delivery is 20 yuan,
and for late delivery, it is 40 yuan. The fuel consumption of light-duty fuel vehicles is
0.15 liters per kilometer when unladen and 0.3 liters per kilometer when fully laden.
For medium-duty fuel vehicles, the consumption is 0.2 liters per kilometer when unla-
den and 0.4 liters per kilometer when fully laden. Additionally, a carbon tax of 0.05
yuan per kilogram is applied.

4.2  Comparative Analysis

For the aforementioned instance, the model was executed ten times in MATLAB, and
the best result from these runs was selected as the optimal solution for the model. This
solution is recorded along with the distribution route maps generated by both the basic
ant colony algorithm and the improved ant colony algorithm. The specific details are
illustrated in Figures 2 and Figures 3.
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a Vehicle delivery route diagram                 b Ant colony algorithm iteration curve chart

Fig. 2. Schematic diagram of running results before algorithm optimization

a Vehicle delivery route diagram                b Ant colony algorithm iteration curve chart

Fig. 3. Schematic diagram of running results after algorithm optimization

The costs of the solutions generated by the basic ant colony algorithm and the im-
proved ant colony algorithm are compared. Given that this paper primarily considers
the impacts of time windows and carbon emissions on route optimization, the compar-
ison is conducted from several perspectives as shown in Table 2.

Table 2. Result comparison table

Algorithm Total Driving
Distance(km)

Total Cost
(CNY)

Carbon Emission
Cost (CNY)

Penalty Cost
(CNY)

Basic Ant Colony
Algorithm 389.24 3941.87 8.83 213.84

Improved Ant
Colony Algorithm 361.35 3252.78 6.84 139.55

From the analysis of multiple graphs, it is evident that in terms of iteration numbers,
the ant colony algorithm before optimization begins to converge around the 280th iter-
ation, while after optimization, it starts converging around the 180th iteration. The op-
timized ant colony algorithm demonstrates a more stable convergence process, faster
convergence speed, and higher efficiency. The improved ant colony algorithm and the
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basic ant colony algorithm achieved minimum delivery distances of 361.35 km and
389.24 km, and minimum total delivery costs of 3252.78 CNY and 3941.87 CNY, re-
spectively, representing reductions of 7.2% and 17.5%. Based on these results, the im-
proved ant colony algorithm provides more optimal delivery solutions for solving the
Vehicle Routing Problem with multiple vehicle types.

4.3 Carbon Emission Price Sensitivity Analysis

In the model solution discussed in this paper, the preliminary carbon tax price was set
at 0.05 CNY/kg. To further analyze the impact of different carbon tax levels on the
results, this study conducted 10 simulation solutions for each of the following carbon
tax prices: 0.03 CNY/kg, 0.06 CNY/kg, 0.08 CNY/kg, and 0.1 CNY/kg. The optimal
results for each scenario are recorded and detailed as follows Table 3 and Figures 4:

Table 3. Table of Solution Results for Different Carbon Taxes

Carbon Tax (CNY/kg)） Total Cost (CNY) Carbon Emissions (kg)
0.03 3218.53 139.17
0.05 3252.78 136.89
0.06 3282.74 134.48
0.08 3361.28 132.52
0.1 3452.52 131.76

Fig. 4. Solution Results for Different Carbon Taxes

According to the analysis of the charts, it is evident that as the carbon tax price in-
creases, the total cost of delivery also rises accordingly. However, carbon emissions
decrease as the carbon tax price increases, but the proportion of reduction diminishes
with higher tax rates. This phenomenon suggests that governments can effectively re-
duce carbon dioxide emissions by increasing the carbon tax rate. Nevertheless, such
control must be confined within certain limits. Once these limits are exceeded, the ef-
fectiveness may not be as significant, and it could lead to increased total delivery costs
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for businesses, thereby diminishing their incentive to implement low-carbon delivery
strategies.

5 CONCLUSION

Under the drive of the "dual carbon" goals, the development philosophy of balancing
economic growth with environmental protection is increasingly becoming a focus
across all industries. This paper constructs a low-carbon logistics route optimization
model that integrates traditional logistics with the concept of a low-carbon economy
and considers the high demands of customers for delivery timeliness by incorporating
time window constraints. Consequently, an optimized model is proposed to minimize
total costs, including vehicle fixed costs, transportation costs, carbon emission costs,
and time window penalty costs. To address the issues of slow convergence and suscep-
tibility to local optima inherent in the basic ant colony algorithm, this paper improves
the heuristic function and state transition probability, adjusts the pheromone update
mechanism, and introduces a chaos perturbation mechanism to enhance the algorithm's
search efficiency and convergence. The performance of the revised algorithm is vali-
dated through case analysis using MATLAB software. By applying specific case data
to the optimized algorithm, an optimized delivery solution that minimizes total costs is
analyzed, demonstrating the effectiveness of the improved ant colony algorithm and
furthering the achievement of low-carbon economic goals. Additionally, the introduc-
tion of a carbon tax system for quantitative analysis of carbon emission costs allows for
better measurement of corporate carbon costs and analysis of how delivery costs and
carbon emissions vary with carbon tax rates.
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is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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