
Intuitionistic Fuzzy Multi-attribute Decision-making 

Based on the New Entropy and Improved TOPSIS 

Qiqing Wang1,*, Jiahang Yuan2, Cunbin Li2 

1. State Grid Energy Research Institute, Beijing, P.R. China. 102209. qiqsing@yeah.net 
2. School of Economics and Management, North China Electric Power University, Beijing, P.R. 

China. 102206 

Abstract. Given the limitations of current research on intuitionistic fuzzy en-

tropy, which often overlook the hesitancy and uncertainty degrees, this paper in-

troduces a novel intuitionistic fuzzy entropy that accounts for both deviation and 

hesitancy degrees. Subsequently, a multi-attribute decision-making model is de-

veloped, incorporating this new entropy and an enhanced TOPSIS method. The 

attribute weights are derived using both the entropy weight method and an opti-

mal model that minimizes entropy. To improve the TOPSIS method, grey rela-

tional analysis is employed instead of the traditional distance from the positive-

negative ideal solution, measuring the closeness of alternatives to these ideal so-

lutions. Finally, two examples are provided to demonstrate the effectiveness of 

our proposed method. 
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Comparing to real numbers, fuzzy sets (FS) introduced by Zadeh has proved to be a
better tool for describing the fuzziness of objective things. The fuzzy set falls short in
providing a comprehensive portrayal of all relevant information for a specific decision
problem in an uncertain environment[1]. To resolve this issue, Atanassov devised the
membership, non-membership, and hesitation functions, representing the decision mak-
er's levels of support, opposition, and hesitation, respectively. These innovations led to
the broader concept of intuitionistic fuzzy sets (IFS)[2]. In order to measure uncertain
information in IFS, intuitionistic fuzzy entropy (IFE) based on entropy has been pro-
posed by Szmidt. Due to the hesitant information in IFS, the IFE should contain uncer-
tainty degree and unknown degree while expressing the fuzziness of IFS. An approach
to IFE is centered on the subtraction of the non-membership degree from the member-
ship degree (MD)[3]. Exponential function is utilized to establish the measure of IFE
respectively[4] . However, these entropy measures become ineffective when the differ-
ence between the MD and the non-MD equals that of the other. For example, ܣ =
௜ݔ⟩} , 0.5,0.3⟩} and ܤ = ௜ݔ⟩} , 0.6,0.4⟩} are two IFSs, the entropy comparison result cal-
culated by[3] is: (ܣ)ܧ = But, apparently, the fuzziness of .(ܤ)ܧ is larger than ܣ B.
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In order to consider the comprehensive information in IFS, MD, non-MD and hesi-
tancy degree (HD) are defined by the IFE[5]. Trigonometric function is applied to IFE
in[6]. However, these entropy still cannot measure some IFSs. For example, ܣ =
௜ݔ⟩} , 0.23,0.54⟩} and ܤ = ௜ݔ⟩} , 0.14,0.522⟩}are two IFSs, the entropy comparison re-
sult calculated by[7] is: (ܣ)ܧ < which proves that the fuzziness of ,(ܤ)ܧ is less ܣ
than Nonetheless, this outcome appears illogical since a closer proximity between .ܤ
the MD and non-MDs of IFSs indicates a higher degree of fuzziness. Thus
(ܣ)ܧ  > (ܤ)ܧ  is the correct result. For example, ܣ = ௜ݔ⟩} , 0.17,0.58⟩}  and ܤ =
௜ݔ⟩} , 0.06,0.53⟩}are two IFSs, the entropy comparison result calculated by[6] is:
(ܣ)ܧ > The result which shows .(ܤ)ܧ has high fuzziness degree than ܣ -is unrea ܤ
sonable. From the view of difference between MDs, non-MDs and HDs, (ܤ)ܧ> (ܣ)ܧ
is the correct result.

Therefore, considering the drawbacks of history research, this paper proposes a
novel IFE which not only takes the difference between the MD and non-MD into ac-
count, but also includes the HD in the entropy measure.

As to decision making models with entropy, lots of achievements have been made.
A new algorithm is presented for analyzing large and complex datasets based on fuzzy
entropy and support vector machine[8]. An iterative Clustering around Latent Varia-
bles-based objective entropy-weighted TOPSIS method is created to benchmark build-
ing energy performance considering multiple factors[9]. Shannon entropy is used to
obtain weights and ranked the alternatives with fuzzy TOPSIS[10]. Intuitionistic fuzzy
TOPSIS given by[11] is a decision making method with flexible entropy, and applied
to supplier selection problem.

From the above research, we can find that TOPSIS and entropy are effective tools
for fuzzy decision making. However, the existing TOPSIS method can overlook the
common issue of multicollinearity, potentially leading to misleading decisions[9]. So,
this paper utilizes grey theory to improve TOPSIS method. And then, we construct a
multi-attribute decision making (MADM) model based on the new entropy and im-
proved TOPSIS method. Two illustrative examples and a comparative analysis are pro-
vided to demonstrate the effectiveness of the proposed approach. The research pipelines
are shown in Fig.1 below.
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Fig. 1. The research pipelines

2 PRELIMINARIES

Definition 2.1. Consider ܺ as a fixed finite universe set. An IFS defined on ܺ can be
denote as ܣ = ௜ݔ⟩} , ,(௜ݔ)஺ߤ ௜ݔ|⟨(௜ݔ)஺ߥ ∈ ܺ} where ܺ:(௜ݔ)஺ߤ → [0,1] , ܺ:(௜ݔ)஺ߥ →
[0,1] denote the MDs and non-MDs of ௜ݔ ∈ respectively, and satisfy the condition ,ܣ
that 0 ≤ (௜ݔ)஺ߤ + (௜ݔ)஺ߥ ≤ 1  for ݔ∀ ∈ ܺ . Besides, (ݔ)஺ߨ = 1 − (௜ݔ)஺ߤ − (௜ݔ)஺ߥ
is declared as the HD.

The complimentary set of A is ௖ܣ = ௜ݔ⟩} , ,(௜ݔ)஺ߥ ௜ݔ|⟨(௜ݔ)஺ߤ ∈ ܺ}. If there is only
one element in ܺ, then can be called the intuitionistic fuzzy number (IFN) , which ܣ
is often denoted in bracketed form: ܣ = ஺ߤ) , .(஺ߥ

Definition 2.2. Consider A, B as two IFSs on ܺ. Some oprators and operations be-
low can be given for the IFSs.

 (1) ܣ ⊂ ܤ ⇔ ݔ∀ ∈ ܺ, (௜ݔ)஺ߤ ≤ (௜ݔ)஺ߥ,(௜ݔ)஻ߤ ≥ (௜ݔ)஺ߥ

 (2) ܣ = ܤ ⇔ ܣ ⊂ ܤ and ܤ ⊂ ܣ

 (3) ܣ ∩ ܤ = ,ݔ⟩} (௜ݔ)஺ߤ ∧ (௜ݔ)஺ߥ,(௜ݔ)஻ߤ ∧ ݔ|⟨(௜ݔ)஻ߥ ∈ ܺ}

 (4) ܣ ∪ ܤ = ,ݔ⟩} (௜ݔ)஺ߤ ∨ (௜ݔ)஺ߥ,(௜ݔ)஻ߤ ∨ ݔ|⟨(௜ݔ)஻ߥ ∈ ܺ}

 (5) ܣ + ܤ = ,ݔ⟩} (௜ݔ)஺ߤ + (௜ݔ)஻ߤ − ݔ|⟨(௜ݔ)஻ߥ(௜ݔ)஺ߥ,(௜ݔ)஻ߤ(௜ݔ)஺ߤ ∈ ܺ}

 (6) ܣ ⋅ ܤ = ,ݔ⟩} (௜ݔ)஺ߤ ⋅ (௜ݔ)஺ߥ,(௜ݔ)஻ߤ + (௜ݔ)஻ߥ − (௜ݔ)஻ߥ ⋅ ݔ|⟨(௜ݔ)஺ߥ ∈ ܺ}

Definition 2.3. Define :ܧ (ܺ)ܵܨܫ → [0,1] as an IFE if it satisfies

 (1) (ܣ)ܧ = 0 if A is a crisp set;
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 (2) (ܣ)ܧ = 1 if (௜ݔ)஺ߤ = for (௜ݔ)஺ߥ ݔ∀ ∈ ܺ;

 (3) (ܣ)ܧ = for (௖ܣ)ܧ ݔ∀ ∈ ;(ܺ)ܵܨܫ

 (4) (ܤ)ܧ ≤ (ܣ)ܧ  if (௜ݔ)஻ߤ ≤ (௜ݔ)஺ߤ  and (௜ݔ)஺ߥ ≤ (௜ݔ)஻ߥ  for (௜ݔ)஺ߤ ≤
or (௜ݔ)஺ߥ (௜ݔ)஻ߤ ≥ and (௜ݔ)஺ߤ (௜ݔ)஺ߥ ≥ for (௜ݔ)஻ߥ (௜ݔ)஺ߤ ≥ .(௜ݔ)஺ߥ

3 EXISTING IFE MEASURES AND A NEW ENTROPY

Example 1.The IFE defined by[12] is

(ܣ)ଵܧ = ଵ
௡
∑ ቂ(√2ܿݏ݋ ఓಲ(௫೔)ିఔಲ(௫೔)

ସ
ߨ − 1) × (√2 + 1)ቃ௡

௜ୀଵ (1)

The IFE defined by[13] is

(ܣ)ଶܧ = 1− ଵ
௡
∑ (௜ݔ)஺ߤ| − ௡|(௜ݔ)஺ߥ
௜ୀଵ (2)

The IFE defined by[4] is

(ܣ)ଷܧ = ଵ
௡(√௘ିଵ)

∑ ൤ఓಲ(௫೔)ାଵିఔಲ(௫೔)
ଶ

݁ଵି
ഋಲ൫ೣ೔൯శభషഌಲ൫ೣ೔൯

మ + ఔಲ(௫೔)ାଵିఓಲ(௫೔)
ଶ

݁ଵି
ഌಲ(ೣ೔)శభషഋಲ(ೣ೔)

మ − 1൨௡
௜ୀଵ

(3)

Where ௜ݔ ∈ ܺ, ݅ = 1,2, . . . ,݊, the same below.
It is unreasonable for those measures that just consider the MDs and non-MDs. The

entropy values of ଵܣ = (0.5,0.3) and ଶܣ = (0.3,0.1) obtained by Eqs.(1) to (3) re-
spectively are the same, which is unreasonable because on condition that the differences
between the MDs and non-MDs are the same, larger HD means higher uncertainty and
fuzziness degree, namely, E(ܣଶ) > E(ܣଵ).

Example 2. The IFE defined by[3] is

ସ(A)ܧ = ଵ
௡
∑ (௜ݔ)஺ߤ) ଶ݃݋݈

ఓಲ(௫೔)
భ
మ[ఓಲ(௫೔)ାఔಲ(௫೔)]

+ (1− ((௜ݔ)஺ߤ ଶ݃݋݈
ଵିఓಲ(௫೔)

ଵିభమ[ఓಲ(௫೔)ାఔಲ(௫೔)]
)௡

௜ୀଵ  (4)

The IFE proposed by[7] is

ହ(A)ܧ = ଵ
௡
∑ ଵି|ఓಲ(௫೔)ିఔಲ(௫೔)|మାగಲ

మ (௫೔)
ଶ

௡
௜ୀଵ (5)

Let Aଵ = (0.25,0.55) and Aଶ = (0.18,0.53) be two IFSs. By Eq. (4) and (5), we
obtain ௃௓(Aଵ)ܧ = 0.071 < ௃௓(Aଶ)ܧ = 0.107  and (Aଵ)ீܧ = 0.475 < (Aଶ)ீܧ =
0.4808, which indicates that the fuzziness of ଵ is less thanܣ ଶ. Unfortunately, theܣ
calculation result is unreasonable because the closer the distance between MDs and
non-MDs of IFSs, the higher the fuzziness degree. Thus is the correct (Aଶ)ܧ< (Aଵ)ܧ
result.

Example 3. The IFE defined by[6] is

଺(A)ܧ = ଵ
௡
∑ )ݏ݋ܿ ఓಲ(௫೔)ିఔಲ(௫೔)

ଶ(ଵାగಲ(௫೔))
௡(ߨ

௜ୀଵ (6)
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The IFE defined by[14] is

଻(A)ܧ = ଵ
௡
∑ ଵି୫ୟ୶{ఓಲ(௫೔),ఔಲ(௫೔)}

ଵି୫୧୬{ఓಲ(௫೔),ఔಲ(௫೔)}
௡
௜ୀଵ (7)

Where the max{} and min{} function can output the maximum and minimum ele-
ment in the given set.

Consider two IFSs ଵܣ = (0.14,0.54) and ଶܣ = (0.08,0.525). By Eqs. (6) to (7),
we obtain, ଺(Aଵ)ܧ = ଺(Aଶ)ܧ<0.888 = 0.877, ଻(Aଵ)ܧ = 0.534> ଻(Aଶ)ܧ = 0.516.
The result is unreasonable because it shows ଵ has high fuzziness degree thanܣ .ଶܣ
However, from the perspective of difference between MDs, non-MDs and HDs, (Aଵ)ܧ
.is the correct result (Aଶ)ܧ>

From the above analysis, it can be seen that existing IFE measurements are difficult
to meet the needs of practical decision application, especially in the multi-attribute de-
cision problem considering uncertainty. In this paper, we define a new IFE.

Definition 3.1. For an IFS A = ௜ݔ⟩} , ,(௜ݔ)஺ߤ ௜ݔ|⟨(௜ݔ)஺ߥ ∈ ܺ}, the IFE of A is given
below.

(ܣ)ܧ = ଵ
௡
∑ )ݐ݋ܿ ଵ

ସ
ߨ + ଵ

ସ
ଶ(௜ݔ)஺ߤ|ߨ − ଶ|)௡(௜ݔ)஺ߥ

௜ୀଵ (8)

We use an example to prove the new IFE has overcome the disadvantages in history
research.

Example 4. Let ܣ = {⟨5,0.1,0.7⟩, ⟨6,0.3,0.6⟩, ⟨7,0.4,0.5⟩, ⟨8,0.7,0.1⟩, ⟨9,0.9,0⟩} be
an  IFS  on ܺ = {5,6,7,8,9} for risk level assessment. ,ܣ√ ,ܣ ,ଶܣ ଷ andܣ ସ mayܣ
be viewed as “light”, “severe”, “farely severe”, “very severe” and “extremely severe”
respectively. Therefore, the IFS entropy order for them should be: E(√ܣ) > E(A) >
E(ܣଶ) > E(ܣଷ) > E(ܣସ).

Table 1. The results from different entropy measures

ܣ√ ܣ ଶܣ ଷܣ ସܣ

ଵܧ 0.6578 0.6660 0.4963 0.3993 0.3565
ଶܧ 0.5220 0.5 0.33 0.3014 0.2740
ଷܧ 0.9298 0.9351 0.8656 0.8226 0.8029
ସܧ 0.2185 0.2642 0.1975 0.4454 -0.7775
ହܧ 0.3398 0.348 0.2691 0.2262 0.2102
଺ܧ 0.6856 0.7190 0.5578 0.4509 0.4011
଻ܧ 0.4518 0.4342 0.2767 0.2797 0.2610

ܧ this paper 0.5071 0.5058 0.3514 0.3296 0.3074
As depicted in Table 1, solely ଶ andܧ -adhere to the logical correlation. In con ܧ

trast to ଶ, the intuitionistic fuzzy entropy (IFE) advocated in this study incorporatesܧ
not just the membership degrees (MDs) and non-membership degrees (non-MDs), but
also the hesitant degree (HD), providing a more nuanced portrayal of fuzziness and
yielding a more rational outcome.
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4 THE IMPROVED TOPSIS-BASED DECISION-
MAKING MODEL

The TOPSIS method ranks alternatives based on their closeness degrees, determined
by the distance between the alternatives and ideal solutions. Although widely used
across various fields, this method has two significant limitations[15]. Firstly, the need
for predefined attribute weights restricts its applicability and appears unreasonable.
Secondly, the closeness degree accounts only for the distance between alternatives and
ideal solutions, ignoring their correlation. Additionally, if one attribute's distance is dis-
proportionately large, the influence of other attributes on the ranking order diminishes.

To address these shortcomings, we propose an enhanced TOPSIS-based decision-
making model, incorporating the novel IFE detailed in Eq. (8). Fig. 2 presents the model
framework, which consists of four steps explained in the following sections.

4.1 Initial Decision Matrix Construction

Let assume a MADM problem that consists of the sets of ݉  alternatives ܺ =
,ଵݔ} ,ଶݔ . . . , ௠} andݔ ݊ criteria ܥ = {ܿଵ, ܿଶ, . . . , ܿ௡}. The evaluation value of alternative
௜ regarding toݔ ௝ܿ  is represented by an IFN ܽ௜௝ = ௜௝ߤ) , ௜௝), whereߥ ௜௝ andߤ ௜௝ߥ  indi-
cate the satisfactory and dissatisfactory degrees of ௜ݔ  regarding to ௝ܿ  respectively,
based on the condition 0 ≤ ௜௝ߤ , ௜௝ߥ ≤ 1 and 0 ≤ ௜௝ߤ + ௜௝ߥ ≤ 1. Then the initial deci-
sion matrix ܦ = (ܽ௜௝)௠×௡ according to the evaluation information of experts can be
obtained, the weight vector ߱ = (߱ଵ , ߱ଶ, . . . ,߱௡)  with the condition ௝߱ ≥
0,∑ ௝߱

௡
௝ୀଵ = 1.

Fig. 2. An improved TOPSIS-based decision-making model framework
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4.2 Solving Weights Based on Minimizing the Fuzzy Entropy

Due to the objective environment and subjective cognition, the evaluation values are
represented by IFNs. A smaller IFE value indicates more qualitative information and
less fuzziness, signifying a better alternative. Therefore, we construct the weight opti-
mization model with the objective function aimed at minimizing the fuzzy entropy.

(1) Solving the weight with constraints

൝
ܧ݊݅݉ = ∑ ∑ ௝߱ )ݐ݋ܿ

ଵ
ସ
ߨ + ଵ

ସ
௜௝ଶߤ|ߨ − ௜௝ଶݒ |)௡

௝ୀଵ
௠
௜ୀଵ

s.t∑ ௝߱ = 1௡
௝ୀଵ , ௝߱ ∈ ܪ

(9)

where .is the constraint information of weights ܪ
(2) Solving the weight without constraints

௝߱ = (1− ଵ
௠
∑ ௠(௜௝ܽ)ܧ
௜ୀଵ )/(݊ − ଵ

௠
∑ ∑ ௠(௜௝ܽ)ܧ

௜ୀଵ
௡
௝ୀଵ ) (10)

The attribute weights are calculated according to Eq. (9) and (10).

4.3 Obtain Grey Correlation Coefficients and Grey Correlation

This paper applies Deng’s grey correlation which calculates the grey correlation coef-
ficient of alternatives to the ideal solutions with respect to criteria and then obtains the
closeness degree. The grey correlation represents the relevancy between alternatives
and ideal solutions more directly than the distance measure and identification coeffi-
cient .reduces the influence of exceptional attributes ߩ

The grey correlation coefficients of ௜ to the positive and negative ideal solutionsݔ
regarding to ௝ܿ  are represented as ௜௝ା andߦ ௜௝ି, respectively. The positive ideal solutionߦ
(PIS) and negative ideal solution (NIS) are calculated as follows.

௜௝ାߦ =
୫୧୬೔൜୫୧୬ೕቄௗ(௔೔ೕ,௔ೕ

శ)ቅൠାఘ୫ୟ୶೔൜୫ୟ୶ೕቄௗ(௔೔ೕ,௔ೕ
శ)ቅൠ

ௗ(௔೔ೕ,௔ೕ
శ)ାఘ୫ୟ୶೔൜୫ୟ୶ೕቄௗ(௔೔ೕ,௔ೕ

శ)ቅൠ
(11)

௜௝ିߦ =
୫୧୬೔൜୫୧୬ೕቄௗ(௔೔ೕ,௔ೕ

ష)ቅൠାఘ୫ୟ୶೔൜୫ୟ୶ೕቄௗ(௔೔ೕ,௔ೕ
ష)ቅൠ

ௗ(௔೔ೕ,௔ೕ
ష)ାఘ୫ୟ୶೔൜୫ୟ୶ೕቄௗ(௔೔ೕ,௔ೕ

ష)ቅൠ
(12)

Where ௝ܽ
ା = (max௜൛ߤ௜௝ൟ, min௜൛ݒ௜௝ൟ) and ௝ܽ

ି = (max௜൛ݒ௜௝ൟ, min௜൛ݑ௜௝ൟ) are the PIS
and NIS. Usually, ߩ = 0.5. ݀(ܽ௜௝ , ௝ܽ

ା) and ݀(ܽ௜௝ , ௝ܽ
ି) are the Hamming distances be-

tween alternatives and ideal solutions denoted by

݀(ܽ௜௝ , ௝ܽ
ା) = ଵ

ଶ
௜௝ߤ|) − |௝ାߤ + ௜௝ߥ| − |௝ାߥ + ௜௝ߨ| − (|௝ାߨ (13)

݀(ܽ௜௝ , ௝ܽ
ି) = ଵ

ଶ
௜௝ߤ|) − |௝ିߤ + ௜௝ߥ| − |௝ିߥ + ௜௝ߨ| − (|௝ିߨ (14)

We obtain the grey correlation values of -௜ to the ideal solutions described as folݔ
lows.
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௜ାߛ = ଵ
௡
∑ ௜௝ାߦ ௝߱
௡
௝ୀଵ (15)

௜ିߛ = ଵ
௡
∑ ௜௝ିߦ ௝߱
௡
௝ୀଵ (16)

4.4 Rank the Alternatives

Using Eq. (17), we can obtain the closeness degree between ,௜ and the PIS. Thereforeݔ
the alternatives are ranked according to the closeness degrees and the alternative with
largest closeness degree is the optimal one.

௜݋ = ఊ೔
శ

ఊ೔
శାఊ೔

ష , ݅ = 1,2, … ,݉ (17)

5 CASE STUDY AND COMPARISON ANALYSIS

Example 5.1. In this paper, we analyze and discuss the example described in[16]. As-
sume the issue of hiring a teacher for an educational institution. Five attributes are con-
sidered in the decision making problem, including attitude ܿଵ, communication skills
ܿଶ, moral character ܿଷ, experience ܿସ and teaching ability ܿହ. The intuitionistic fuzzy
evaluation information of four candidates ସ through questionnaire is shownݔ,ଷݔ,ଶݔ,ଵݔ
in Table 2. The constraints of five attributes are ߱ଵ > 0.15, ߱ଶ > 0.2, ߱ଵ < 0.15߱ହ,
߱ସ > 0.2߱ଶ , 0.1 < ߱ଷ − ߱ସ < 0.3 and ߱ଷ −߱ଵ < ߱ହ − ߱ଶ .

Table 2. The evaluation information

ଵܿ ܿଶ ܿଷ ܿସ ܿହ
ଵݔ (0.7,0.2) (0.6,0.4) (0.5,0.4) (0.3,0.4) (0.4,0.5)
ଶݔ (0.6,0.1) (0.8,0.1) (0.6,0.2) (0.7,0.1) (0.5,0.4)
ଷݔ (0.7,0.1) (0.7,0.2) (0.8,0.1) (0.6,0.3) (0.8,0.1)
ସݔ (0.6,0.2) (0.6,0.3) (0.7,0.1) (0.8,0.1) (0.7,0.2)
According to Eq. (8), we have the entropy values of five attributes. (ଵܿ)ܧ = 3.0451,

(ଶܿ)ܧ = (ଷܿ)ܧ,3.1323 = 3.1909, (ସܿ)ܧ = 3.2731, (ହܿ)ܧ = 3.4955.
Construct the weight solution model.

݉݅݊ = 3.0451߱ଵ + 3.1323߱ଶ + 3.1909߱ଷ + 3.2731߱ସ + 3.4955߱ହ

.ݐݏ

⎩
⎪⎪
⎨

⎪⎪
⎧
߱ଵ > 0.15
߱ଶ > 0.2
߱ଵ < 0.15߱ହ
߱ସ > 0.2߱ଶ
0.1 < ߱ଷ − ߱ସ < 0.3
߱ଷ − ߱ଵ < ߱ହ −߱ଶ
߱ଵ + ߱ଶ +߱ଷ + ߱ସ + ߱ହ = 1
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Through MATLAB programming, we have ߱ଵ = 0.15 , ߱ଶ = 0.3214 , ߱ଷ =
0.1643, ߱ସ = 0.0643 and ߱ହ = 0.3. Then calculate the Hamming distance and ob-
tain the grey correlation matrix according to Eqs. (13) to (16). The grey correlations of
alternatives are calculated and the results are ଵାߛ = 0.4647 , ଶାߛ = 0.7021 , ଷାߛ =
0.8795 , ସାߛ = 0.6816, ଵିߛ = 0.9571 , ଶିߛ = 0.5835, ଷିߛ = 0.5049 , ସିߛ = 0.6120.
By Eq. (17) the closeness degrees are ଵ݋ = 0.3268, ଶ݋ = 0.5461, ଷ݋ = 0.6352, ସ݋ =
0.5268. Thus the order of alternatives is ଷݔ ≻ ଶݔ ≻ ସݔ ≻ ଵ. The ranking result alignsݔ
with that of [16], confirming the feasibility and effectiveness of the proposed model. It
is noteworthy that, unlike in[17] where the decision makers' risk attitude is neutral, this
paper does not take risk attitude into account. Hence it is totally reasonable that the
ranking order is identical with[16].

For further comparison analysis, this paper utilizes the example in[18].
Example 5.2. An equipment manufacture company intends to choose a supplier. In

the decision-making process, the five attributes considered are: overall cost of the prod-
uct ܿଵ, quality of the product ܿଶ, service performance of supplier ܿଷ, supplier’s profile
ܿସ and risk factor ܿହ. The information of attribute’s weights is incomplete. The con-
straints are ߱ଵ ≤ 0.3, 0.1 ≤ ߱ଶ ≤ 0.2, 0.2 ≤ ߱ଷ ≤ 0.5, 0.1 ≤ ߱ସ ≤ 0.3, ߱ହ ≤ 0.4,
߱ଷ −߱ଶ ≥ ߱ହ −߱ସ , ߱ସ ≥ ߱ଵ  and ߱ଷ −߱ଵ ≤ 0.1 . The alternative suppliers are
.ହ. The evaluation information is illustrated in Table 3ݔ,ସݔ,ଷݔ,ଶݔ,ଵݔ

Table 3. The evaluation information of suppliers

ଵܿ ܿଶ ܿଷ ܿସ ܿହ
ଵݔ (0.449,0.370) (0.565,0.162) (0.705,0232) (0.730,0.170) (0.646,0354)
ଶݔ (0.719,0.188) (0.630,0.232) (0.448,0.378) (0.557,0.160) (0.597,0.192)
ଷݔ (0.546,0.192) (0.727,0.182) (0.641,0.322) (0.399,0.200) (0.658,0.192)
ସݔ (0.520,0.337) (0.630,0.100) (0.539,0.271) (0.679,0.188) (0.708,0.198)
ହݔ (0.727,0.128) (0.520,0.299) (0.619,0.318) (0.618,0.229) (0.609,0.120)

Construct the linear optimization model according to Eq. (9). Then we have ߱ଵ =
0.1, ߱ଶ = 0.1, ߱ଷ = 0.2, ߱ସ = 0.25, ߱ହ = 0.35. According to the step 2 to 5 and Eq.
(17), we can obtain the grey correlations and the closeness degrees. Table 4 shows the
ranking results of the Xu’s method [18], Liu’s method [19], and the proposed method
in this paper. .

Table 4. The comparison of results

(ଵݔ)ܿ (ଶݔ)ܿ (ଷݔ)ܿ (ସݔ)ܿ (ହݔ)ܿ The ranking order
This
paper 0.5327 0.4720 0.4986 0.5550 0.5688 ହݔ ≻ ସݔ ≻ ଵݔ ≻ ଷݔ ≻ ଶݔ

Liu 0.5 0.3408 0.4708 0.8604 0.7791 ସݔ ≻ ହݔ ≻ ଵݔ ≻ ଷݔ ≻ ଶݔ
Xu 0.3674 0.3483 0.3302 0.3851 0.3964 ହݔ ≻ ସݔ ≻ ଵݔ ≻ ଶݔ ≻ ଷݔ

The worst alternative in Xu’s method is different from ours because Xu constructed
the weight optimization model by the score function ௜௝ߤ − ௜௝ߥ  without consideration
of the influence of the HD, thus the obtained weights are different. However, the weight
optimization model in this paper takes both the subjective and objective weight infor-
mation into account and accords with the practical condition. The weights calculated
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by Liu’s method are the same as ours but the ranking order is different because this
paper introduced the improved TOPSIS method which reduced the influence of excep-
tional attributes with extreme values. Thus, the proposed method is more reliable.

From the above comparison analysis, we can see that
(1) The grey correlation coefficient is more reasonable than the distance to see the

relevancy between alternatives and ideal solutions;
(2) The grey correlation is effective to reduce the influence of some exceptional at-

tributes which enlarge the effect to the ranking results due to the extreme values if dis-
tance measure is utilized.

6 CONCLUSION.

To measure the fuzziness degree of IFS more precisely, this paper introduces a novel
intuitionistic fuzzy entropy (IFE) that considers not only the difference between the
MDs and non-MDs but also incorporates the HD into the entropy measure. This new
entropy is thus better equipped to describe the uncertainty and unknown degrees of IFS,
addressing the limitation of most existing research that only considers the MD and non-
MD difference. Building on this, we establish a multi-attribute decision-making method
based on the new entropy and an improved TOPSIS method. The attribute weights are
determined by minimizing the IFE values. Additionally, we utilize grey correlation in-
stead of the traditional distance between alternatives and ideal solutions to characterize
the closeness degrees of alternatives. Finally, the ranking of alternatives is obtained
based on the comprehensive closeness degrees.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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