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Abstract. One of the methods for improving the efficiency of power system 

transmission is the Optimal Reactive Power Dispatch (ORPD). The ORPD 

technique has been used to minimize the transmission network's power loss by 

regulating the system control variables. The control variables regulated by ORPD 

control the reactive power generated sources, such as generator voltage, tap ratio 

setting for transformers, and reactive power injected by VAR compensator 

devices. On the other hand, ORPD is a non-linear and non-convex problem, so it 

needs an optimizer algorithm capable of solving its characteristics. This article 

discusses using a meta-heuristic algorithm (MA) to solve the ORPD problem. 

The MA used is one kind of physical phenomena-inspired optimizer called 

Archimedes optimization algorithm (AOA). The AOA tracks the best 

combination of all control variables, producing the maximum total active power 

loss. The performance of AOA tracking used in ORPD problem solving is tested 

using a standard IEEE 30 bus system. The AOA is compared to other MAs in 

comparison analysis to perform its superiority. AOA was also tested in 

correlation analysis to determine the best value of population size and the 

maximum number of iterations based-on its tracking accuracy, speed of 

convergence, and processing time. The results show that ORPD problem-solving 

with AOA has the advantage of reducing power loss by 11.9 %. The simulated 

results confirm the efficiency and robustness of AOA for solving the ORPD 

problem. 

Keywords:  Archimedes optimization algorithm, meta-heuristic optimization, optimal 

reactive power dispatch, power system, transmission network.

1 Introduction 

The increasing need for electrical energy will burden the power system network. Higher 

loading will affect voltage rise and fall. This will affect the stability of the electricity 

network system[1]. A power system network that continuously experiences instability 

will result in system collapse and reduced efficiency, which will, of course, result in 

damage and a decrease in electrical power quality[2]–[4]. Therefore, electricity service 

providers must always take effective and efficient steps to protect the distribution 

network system from stability problems. When planning and operating an electricity  
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distribution system, voltage stability limitations must be considered[5]. Optimizing 

power system generation has challenges from load changes, impact on safety 

constraints, and generation scheduling. Electricity service providers must implement 

strategic steps in various optimizations to overcome these challenges and reach the 

desired limits. A single objective function must be handled within predetermined 

constraints: equality and inequality. 

One technique to maintain system stability is optimal reactive power dispatch 

(ORPD). This ORPD controls reactive power distribution from the generation side to 

maintain stability and reduce power system losses[6]–[9]. The ORPD technique also 

has constraints set on the power system parameters. Constraints are also applied to 

control variables that affect system performance, namely power loss and voltage 

deviation. The control variables regulated by ORPD are generator voltage, transformer 

tap ratio, and reactive power injected by the compensator[10]–[12]. However, ORPD 

is a non-linear and non-convex technique. Therefore, ORPD requires optimization 

techniques that suit its character but can also solve problems with high performance. 

Many non-linear optimization techniques have been developed based on 

metaheuristic algorithms (MA). Metaheuristic optimization provides random search 

performance and characteristics, accuracy in targeting global optima, and ease of 

implementation[13]. Many studies have used MA to solve ORPD problems, both 

ORPD for standard power systems and those integrated with distributed generation 

(DG).  Some developments in ORPD solved with MAs categorized as conventional 

algorithms, such as Refs. [14]–[19], some research used MAs categorized as 

evolutionary algorithm (EA), such as Refs. [20]–[23]. Previous research conducted to 

ORPD which are used natural-inspired swarm algorithm (NSA), such as Refs. [24]–

[29]. Finally, still there is no used of physical-inspired algorithm category in ORPD 

problem solving. 

In this research, ORPD solution solutions for IEEE 30 standard bus system power 

system transmission networks are discussed. Solving the ORPD problem uses the 

Archimedes optimization algorithm (AOA), where this algorithm is still very newly 

implemented for this power system case. AOA is implemented to find the best 

combination of 12 control variables on the IEEE 30 bus consisting of generator voltage, 

tap ratio transformer, and reactive power injected by compensators. 

2 Basic Theory 

2.1 ORPD multi-objective functions 

In order to determine the best reactive power dispatch technique, objective functions 

must be defined. These function sets usually comprise reactive power injection from 

VAR compensator devices, tap setting settings for transformers, and generator voltage 

minimization. These goals are to maximize system stability, reduce power losses, and 

optimize voltage levels. Through the simultaneous consideration of these variables, the 

ORPD technique aims to accomplish the power system's efficient and dependable 

operation. 
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Active power loss optimization. A major goal of reactive power optimization is to 

minimize power loss in the transmission network by using the best control variable 

settings while respecting system constraints. This approach reduces operational costs 

while increasing the power system's efficiency and reliability [30]–[35]. 

 

𝑓𝑛 = ∑𝑁𝑏
𝑘=1 𝑃𝑘𝑙𝑜𝑠𝑠 = ∑𝑁𝑏

𝑘=1 𝐺𝑘(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 𝑐𝑜𝑠𝛿𝑖𝑗)    (1) 

 

In each system network, 𝑃𝑘𝑙𝑜𝑠𝑠 denotes the power loss, and Nb is the total number of 

system networks, also known as branches. Next, for every 𝑘𝑡ℎ branch, 𝐺𝑘 represents its 

conductance. For each bus i and j, the voltage magnitudes are denoted by 𝑉𝑖 and 𝑉𝑗, 

respectively, while the phase difference between 𝑉𝑖 and 𝑉𝑗is represented by 𝛿𝑖𝑗.[36]. 

Constraints. The control variables in the ORPD problem are kept within nominal 

operation by using both equality and inequality constraints. While inequality 

constraints establish restrictions on variable values, equality constraints enforce 

particular connections among variables. In order to guarantee operational viability and 

system stability, these limitations work together to influence the optimization process. 

Equality constraints. Equality constraints must constantly be applied, and they are 

linked to fulfilling particular correlations between variables. Usually, these restrictions 

stand in for load flow equations. [37], [38]. 

 

𝑃𝑔𝑖 − 𝑃𝑑𝑖 − 𝑉𝑖 ∑𝑁𝑏
𝑘=1 𝑉𝑗(𝐺𝑖𝑗  𝑐𝑜𝑠𝛿𝑖𝑗 + 𝐵𝑖𝑗  𝑠𝑖𝑛𝛿𝑖𝑗) = 0    (2)  

𝑄𝑔𝑖 − 𝑄𝑑𝑖 − 𝑉𝑖 ∑𝑁𝑏
𝑘=1 𝑉𝑗(𝐺𝑖𝑗  𝑐𝑜𝑠𝛿𝑖𝑗 + 𝐵𝑖𝑗  𝑠𝑖𝑛𝛿𝑖𝑗) = 0    (3) 

 

    Assuming that Nb is the total number of system networks or branches, 𝑃𝑔𝑖  and 

𝑄𝑔𝑖   stand for the generator's active and reactive power. For each 𝑖𝑡ℎ bus, the active and 

reactive power of the loads are denoted by 𝑃𝑑𝑖  and 𝑄𝑑𝑖 . The conductance and 

susceptance between the 𝑖𝑡ℎ and 𝑗𝑡ℎ buses are represented by 𝐺𝑖𝑗 and 𝐵𝑖𝑗  [39], [40]. 

Inequality constraints. However, factors like generator voltage, transformer tap 

settings, and VAR compensator devices are usually governed by inequality constraints. 

To combat the ORPD, the generator's initial active and reactive power outputs as well 

as the magnitude of its voltage are limited within predetermined bounds [41]. 

 

𝑉𝑔𝑖
𝑚𝑖𝑛 ≤  𝑉𝑔𝑖 ≤  𝑉𝑔𝑖

𝑚𝑎𝑥 ,                       𝑖 = 1, … , 𝑁𝑔   (4) 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤  𝑃𝑔𝑖 ≤  𝑃𝑔𝑖

𝑚𝑎𝑥 ,                       𝑖 = 1, … , 𝑁𝑔   (5) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤  𝑄𝑔𝑖 ≤  𝑄𝑔𝑖

𝑚𝑎𝑥 ,                     𝑖 = 1, … , 𝑁𝑔    (6) 

 

    In this case, 𝑁𝑔 stands for the total number of generator buses. The generator 

voltages, active power, and reactive power minimum limits are 𝑉𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑖𝑛 , and 𝑄𝑔𝑖
𝑚𝑖𝑛 . 

In addition, the maximum limits of the generator voltages, active power, and reactive 

36             P. Megantoro et al.



 

power are denoted as 𝑉𝑔𝑖
𝑚𝑎𝑥, 𝑃𝑔𝑖

𝑚𝑎𝑥, and 𝑄𝑔𝑖
𝑚𝑎𝑥. At the 𝑖𝑡ℎ bus, 𝑉𝑔𝑖, 𝑃𝑔𝑖 , and 𝑄𝑔𝑖  represent 

the generator voltages, active power, and reactive power, respectively.[42]–[45]. 

 

𝑇𝑖
𝑚𝑖𝑛 ≤  𝑇𝑖 ≤  𝑇𝑖

𝑚𝑎𝑥 ,                       𝑖 = 1, … , 𝑁𝑇  (7) 

 

    𝑇𝑖  is the tap setting of the transformer position at the 𝑖𝑡ℎ bus, 𝑇𝑖
𝑚𝑖𝑛 denotes its 

minimum limitations, and 𝑇𝑖
𝑚𝑎𝑥  denotes its maximum limits. These are the transformer 

restrictions. 𝑁𝑇 is the total number of tap-changing transformers [46]. 

 

𝑄𝑐𝑖
𝑚𝑖𝑛 ≤  𝑄𝑐𝑖 ≤  𝑄𝑐𝑖

𝑚𝑎𝑥 ,                       𝑖 = 1, … , 𝑁𝑐  (8) 

 

   Reactive power injection is expressed as 𝑄𝑐𝑖, where 𝑄𝑐𝑖
𝑚𝑖𝑛  denotes the minimum and 

𝑄𝑐𝑖
𝑚𝑎𝑥 denotes the maximum limits of the reactive power injection. 𝑁𝑐 is the total 

number of shunt compensator devices. 

3 Method To Problem-Solving 

In earlier studies, meta-heuristic algorithms (MAs) have been used to answer a large 

number of ORPD problems. Given that the formulations of ORPD problems are non-

convex and non-linear, MAs are especially well-suited because of their strong random 

searching powers. Voltage stability in power systems can be greatly enhanced and 

power loss can be much decreased by using MAs in ORPD. Furthermore, MAs work 

well at managing the multi-objective character of ORPD situations by striking a balance 

between a variety of restrictions and goals. Their adaptability to various load conditions 

and system configurations improves the overall dependability and efficiency of the 

power grid. Additionally, even greater performance and optimization outcomes for 

upcoming ORPD difficulties are promised by the ongoing development of advanced 

MAs. 

3.1 Implementation of Mas 

The meta-heuristic algorithms that are covered in this article are mostly nature-inspired 

swarm algorithms (NSAs) and evolutionary algorithms (EAs). These meta-heuristic 

methods handle the multi-objective functions of ORPD and the uncertainty of power 

generation from DGs in the ORPD problem with renewable-sourced DG integration. 

Meta-heuristic algorithms are durable and flexible, which enables them to efficiently 

address dynamic and complex optimization issues. They do have certain drawbacks, 

though, namely the possibility of becoming trapped in local optima and the requirement 

for meticulous parameter tweaking. Despite these difficulties, the development of 

hybrid techniques and the ongoing refinement of MAs offer hope for future ORPD 

problems that can be solved with greater efficiency and dependability. 
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3.2 Simulation Setup 

The equality and inequality requirements outlined in subsections B.2.1 and B.2.2 apply 

to the modeling of the non-linear and non-convex ORPD problem. Equations (1) and 

(2) provide the foundation for the real power loss and voltage deviation goal functions. 

The control variables consist of the voltage of the generator, the tap-setting of the 

transformer, and the reactive power injected by the VAR compensator devices. The 

IEEE 30 bus system's single-line diagram can be seen in Figure 5. 

Table 1 describes the simulation setup for the meta-heuristic methods used to address 

the ORPD problems AOA and PFA. A population size of 50 (itMax) and a maximum 

of 100 iterations (nB) are used by all MAs for ORPD. The number of populations 

indicates the search resolution in a meta-heuristic search, whereas the number of 

iterations influences the search range. As a result, while looking for the global optimum 

(GBest), more iterations and a larger population translate into increased accuracy. 

Table 1. Standard IEEE 57 bus system test used for the implementation. 

 

Items 

System configurations 

Quantity Details 

Buses 30 - 

Branches 40 - 

Thermal generators 6 Buses: 1, 2, 5, 8, 11 and 13 

VAR compensator 2 Buses: 10 and 24 

Transformer with tap changer 4 Branches: 6-9, 6-10, 4-12, and 28-27 

Control variables 12 - 

Bus voltage limits 40 [0.95 – 1.05] p.u. 

 

Variations in constant types and values define each algorithm. The AOA is based on 

five constants that affect how quickly and where objects move. Table 2 presents the 

ORPD problem and how each optimization algorithm's tracking parameters are used 

Table 2. Algorithm tracking parameters for ORPD problem solving with RE-sourced DG. 

Parameters AOA PFA 

Search agents Object Path 

nB 48 48 

itMax 100 100 

Constants d = 9; C1 = 1.4; C2 = 6; C3 = 1; C4 = 3; N/A 

 

    The standard IEEE system bus is chosen in the first stage of the ORPD, as seen in 

Fig. 2, and the dataset array of buses, branches, and generators is then extracted. 

Matpower 7.0 provides all of these IEEE bus standard datasets. The Newton-Raphson 

method is then applied to the dataset in order to determine the power flow. The initial 

assessment for the power flow computation is the overall active power loss. 
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Fig. 1. Single line diagram of standard IEEE 30 bus system 

    The second stage involves defining the algorithm parameters for each optimization 

method, which are listed in Table 2; nB represents the total number of populations, and 

itMax denotes the maximum number of iterations. The first population is then created, 

with each member serving as a search or tracking agent and representing the problem's 

solution. Control factors, such as generator voltage, transformer tap settings, and 

reactive power injected by compensators, make up the ORPD's problem solution. To 

compute the power flow and determine the overall active power loss (PLoss), the 

control variable dataset is injected into the chosen standard bus system. This comprises 

the assessment phase. 

    Transforming the control variables dataset into search agent values is the third stage. 

In PFA, the pathfinder's distance serves as a proxy for the search agent. The location, 

density, and volume of the object within the fluid serve as the search agent's 

representation in AOA. Subsequently, each search agent is processed by its 

corresponding algorithm in order to identify the optimal local optima. An index 

contains the dataset of the top search agents (local optima/local best) from each loop, 

together with the parameters of the search agents, control variables, and output 

parameters (Ploss). 
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    There are two ways to end an iteration loop: either by exceeding the maximum 

number of iterations (IT stop) or by meeting the convergence condition (CV stop). 

When the ideal point remains constant over the course of the next 100 repetitions, the 

CV stops. The global best optima (GBest) will be found by setting the least value of the 

output parameters, then the control variables dataset and algorithm's parameters, once 

the termination condition has been met. By acquiring the GBest, the optimization of 

ORPD problem-solving will be completed. 

 

 

 

Fig. 2. Workflow diagram of meta-heuristic optimization technique used to solve ORPD. 
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3.3 ORPD optimization enhancement  

A power system network's efficiency and performance can be enhanced by the ORPD 

technique, which modifies the system characteristics indicated by the control variables. 

Transformer tap ratio, generator voltage, and reactive power injected by VAR 

compensators are the control variables employed in ORPD. Numerous combinations of 

the three system parameters or control variables exist for each power system that is 

standardized in the IEEE bus system. As an illustration, Table 1 lists the parameter 

combinations for the 12 control variables included in a typical IEEE 30 bus system. 

However, in a power system network, the primary issue is system efficiency, which 

impacts power loss. 

The random searching that characterizes MAs was discussed in the preceding 

section. MAs, such as ORPD, can solve the optimization problem because of their non-

convex and non-linear formulation. As long as the limits specified throughout the 

operation are followed, the tracking or searching procedure of MAs can handle multi-

objective and multi-input problems. Experience with applying MAs to the ORPD 

problem in both general and particular circumstances suggests that MAs can help keep 

all varieties of standard IEEE 30 bus system networks operating at peak efficiency and 

minimize power loss. 

3.4 Archimedes optimization algorithm (AOA) enhancement 

Optimizing swarm algorithms (PSA) influenced by physical phenomena, the 

Archimedes Optimization Algorithm (AOA) is a meta-heuristic algorithm with 

balanced convergence, exploration, and exploitation capabilities. Sophisticated 

optimization problems can be solved with the AOA. The Archimedes principle of 

physics serves as the foundation for AOA. The theory goes like this: if an object is 

submerged, whether completely or partially, the liquid will push it upward by the 

weight of the liquid that the object has displaced. It's known as the buoyant force, which 

is upward. The boundary force acting on an object submerged in liquid is equal to the 

weight of the liquid that has been displaced [47], [48].  

Different accelerations are caused by variations in the density and volume of 

submerged objects [49]. When the weight of the item (𝑊𝑜) equals the buoyant force 

(𝐹𝑏) exerted by the fluid, these objects find equilibrium. Until the termination condition 

is satisfied, this procedure keeps repeating itself. An excellent solution or hitting a cap 

on the number of iterations are two examples of criteria that can be used to define 

termination conditions. To attain the intended balance, the object's density, volume, and 

acceleration are changed at each iteration[50], [51].  

 

● Initialize the position of all objects. 

      𝑂𝑖 =  𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖); 𝑖 =
1, 2, … , 𝑁   (9) 

Where 𝑂𝑖  is the i object inside the amount of N population. 𝑙𝑏𝑖  and 𝑢𝑏𝑖 is the upper 

and lower limits of the searching range. Then (vol) is volume initialization and (den) 

is the density for each i- object. 
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      𝑑𝑒𝑛𝑖 = 𝑟𝑎𝑛𝑑; 𝑣𝑜𝑙𝑖 = 𝑟𝑎𝑛𝑑  

        (10) 

Where rand is the dimensional vector which generate the number between 0 and 1 

randomly. Acceleration (acc) from the object number i. 

● Update the density and volume value. The i object’s density and volume for iteration 

number i + 1 will be updated. 

𝑑𝑒𝑛𝑖
𝑡+1 = 𝑑𝑒𝑛𝑖

𝑡+1 + 𝑟𝑎𝑛𝑑 × (𝑑𝑒𝑛𝑏𝑒𝑠𝑡 − 𝑑𝑒𝑛𝑖
1)      (11) 

𝑣𝑜𝑙𝑖
𝑡+1 = 𝑣𝑜𝑙𝑖

𝑡+1 + 𝑟𝑎𝑛𝑑 × (𝑣𝑜𝑙𝑏𝑒𝑠𝑡 − 𝑣𝑜𝑙𝑖
1)          (12) 

Where 𝑑𝑒𝑛𝑏𝑒𝑠𝑡  dan 𝑣𝑜𝑙𝑏𝑒𝑠𝑡  is the density and volume of the best i object which is 

chosen by uniform rand. 

● The density factors and transfer operators. After a while, items start to collide and 

attempt to find equilibrium or a balancing point. Transfer functions (TF) are 

required in the implementation of AOA in order to move search from exploration 

to exploitation. 

𝑇𝐹 =𝑒𝑥𝑝 𝑒𝑥𝑝 (
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
)           

(13) 

Where TF increases over time until it reaches 1. Here, t and 𝑡𝑚𝑎𝑥 are the number of 

iterations and the maximum number of iterations. The density decreasing factor (d) 

helps the AOA for global search to local search, which decreases in time. 

𝑑𝑡+1 =𝑒𝑥𝑝 𝑒𝑥𝑝 (
𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥
) − (

𝑡

𝑡𝑚𝑎𝑥
)                           (14) 

The regions that have been designated as promising can host meetings when 

𝑑𝑡+1 lowers over time. In AOA, a balance between exploration and exploitation can 

be ensured by managing these variables well. 

● Exploration phase (a collision occurs between objects). If the TF value ≤ 0.5, a 

collision between objects occurs, therefore a random material (mr) is selected and 

the object speed is updated. 

𝑎𝑐𝑐𝑖
𝑡+1 =  

𝑑𝑒𝑛𝑚𝑟+𝑣𝑜𝑙𝑚𝑟×𝑎𝑐𝑐𝑚𝑟

𝑑𝑒𝑛𝑖
𝑡+1×𝑣𝑜𝑙𝑖

𝑡+1                                (15) 

Where 𝑑𝑒𝑛𝑖 ,  𝑣𝑜𝑙𝑖, and 𝑎𝑐𝑐𝑖  are the density, volume, and velocity of the i object. 

Where 𝑑𝑒𝑛𝑚𝑟 , 𝑣𝑜𝑙𝑚𝑟 , 𝑎𝑐𝑐𝑚𝑟  are the density, volume, and velocity of the random 

material. Note that TF ≤ 0.5 ensures exploration for one-third of the iterations. 

Using values other than 0.5 may change the usual exploration and exploitation. 

● Exploitation phase Exploitation phase (no collisions on objects). If TF > 0.5, no 

collisions occur between objects, at t + 1 the object velocity is updated. 

  𝑎𝑐𝑐𝑖
𝑡+1 =  

𝑑𝑒𝑛𝑏𝑒𝑠𝑡+𝑣𝑜𝑙𝑏𝑒𝑠𝑡×𝑎𝑐𝑐𝑏𝑒𝑠𝑡

𝑑𝑒𝑛𝑖
𝑡+1×𝑣𝑜𝑙𝑖

𝑡+1                           (16) 

42             P. Megantoro et al.



 

Where 𝑎𝑐𝑐𝑏𝑒𝑠𝑡  is the best object’s velocity 

Step 4.3. Normalizing speed to calculate percentage change  

  𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 =  𝑢 ×

𝑎𝑐𝑐𝑖
𝑡+1−𝑚𝑖𝑛 (𝑎𝑐𝑐)

(𝑎𝑐𝑐) −𝑚𝑖𝑛 (𝑎𝑐𝑐)
+ 𝑙             (17) 

Where i and l are normalization terms which are set to 0.9 and 0.1. 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1   

determines the percentage of moves that will be changed by each agent. The speed 

value will grow if object I is distant from the global optimal value, indicating that it 

is either in the exploration or exploitation phase. This demonstrates the transition of 

the search process from the phase of exploration to that of exploitation. Typically, 

the speed factor begins at a high value and gradually drops. In this approach, 

searching agents will be assisted in moving away from local solutions and toward 

the greatest global options at the same time. Some search agents, however, stay in 

the exploration phase longer than is typical. As a result, in AOA, exploration and 

exploitation can coexist in equilibrium. 

● Update the position. In the exploration phase (TF ≤ 0.5) the position of the i object 

in the next iteration t + 1. 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐶1 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 × 𝑑 × (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖

𝑡)         (18)  

Where 𝐶1 is a constant value of 2. However, if TF > 0.5 (exploitation phase) the 

object updates its position. 

𝑥𝑖
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

𝑡 + 𝐹 × 𝐶2 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 × 𝑑 × (𝑇 × 𝑥𝑏𝑒𝑠𝑡 −  𝑥𝑖

𝑡)          (19)   

Where 𝐶2 is a constant value of 6. The value of T increases over time and is 

proportional to the transfer operator and can be defined as 𝑇 = 𝐶1 × 𝑇𝐹. The T 

value increases with time in the term [𝐶3 × 0.3, 1] and takes a certain percentage of 

the best position. Starting with a low percentage, it results in a big number of 

journey steps in the random search since there is a significant disparity between the 

optimum position and the current position. The percentage gradually rises as the 

search goes on in an effort to close the gap between the current and ideal positions. 

A balance between exploration and exploitation may result from this. The sign to 

change the direction of movement can be symbolized by F, where 𝑃 = 2 × 𝑟𝑎𝑛𝑑 −
𝐶4. 

𝐹 = {+1 𝑖𝑓 𝑃 ≤ 0.5 − 1 𝑖𝑓 𝑃 > 0.5                                             (20) 

● Evaluation. Each object calculated its own fitness value by the objective function 

F, then entered the best optima found in the variables 

𝑥𝑏𝑒𝑠𝑡  , 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 , 𝑣𝑜𝑙𝑏𝑒𝑠𝑡 , 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 . Then the optima can be set as the solution for the 

optimization problem[52]. 

 

Due to its multi-objective and meta-heuristic characteristics, AOA can be applied to 

ORPD problems. The swarm idea is a feature of AOA, a kind of EA. Figure 3 illustrates 

the process flow of the ORPD problem-solving program employing AOA.  
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Fig. 3.  Workflow diagram of AOA enhancement for ORPD 

    Initializing algorithm parameters, such as the number of populations, number of 

iterations, and algorithm constants, is the first step in the optimization procedure. 

Selecting the IEEE bus system and then extracting the dataset from it are the first steps 

in initializing the ORPD parameters. Generator, bus, branch, and VAR compensator 

device parameters are all included in the dataset. 

    The first population is formed randomly, adhering to the MAs rule, and each 

individual has an initial density, volume, and position. The ORPD control variables are 

reflected in the individual's parameters. The fitness value which is the sum of the power 

loss and voltage deviation is then calculated for each individual utilizing the objective 

fitness function provided by equation (1). The first iteration's starting circumstances are 

then determined by the individual parameters and fitness levels.   

    The ORPD control variables must be translated into volume and density values in 

order to run the optimization method because the AOA will use these. The best person 

and their best fitness value (GBest) are then found or tracked using the optimization 

procedure. 

4 Result and Discussion 

4.1 Optimization performance comparison and analysis 

The analysis technique was conducted to determine the performance comparison of the 

four evolutionary algorithms represented in this research: PFA representing the 

conventional meta-heuristic algorithm, and AOA representing the physical swarm-

inspired algorithm. Each algorithm has different characteristics in this ORPD case. 

Tables 3 display the running results of the two optimization algorithms. Each algorithm 

is executed with the parameter setup described in Table 3. The comparison of the 
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algorithms is based on the parameters of the ORPD results, including control variables, 

power loss. Meanwhile, the parameters resulting from tracking include the best iteration 

and processing time. 

Table 3. Running result AOA and FOA for ORPD control variables 

Control variable Base case AOA FOA 

Vg1 1.0600 1.0592 1.0596 

Vg2 1.0450 1.0568 1.0309 

Vg5 1.0100 1.0518 1.0337 

Vg8 1.0100 1.0544 0.9986 

Vg11 1.0820 1.051 0.95921 

Vg13 1.0710 1.0575 1.0145 

T11 0.9780 1.0181 0.91105 

T12 0.9690 1.0243 1.092 

T15 0.9320 1.0251 0.97888 

T36 0.9680 1.0253 1.0116 

Q10 19 15.9681 11.49 

Q24 4.3 3.6033 3.1146 

 

Table 4 shows the result of optimization process of AOA as the implementation on 

ORPD problem solving of IEEE 30 bus system. The tracking process shows that AOA 

has superiority in tracking the best combination of control variables which produce 

minimum power loss 1.11 % lower than FOA did. The voltage deviation produced by 

AOA 42.86 % lower than FOA, also the result of VSI is 17.9 % higher that FOA. 

 

Table 4. Running result AOA and FOA for ORPD parameters 

Parameters AOA PFA 

Power loss (MW) 15.1849 15.3559 

Voltage deviation (p.u.) 0.78375 1.3718 

VSI (p.u.) 0.21415 0.17581 

No. under voltage bus 0 12 

No. over voltage bus 6 1 

No. convergence 77 57 

Processing time (s) 99.0765 141.616 

 

From the result of number of buses which experienced undervoltage, can be 

concluded that the system regulate by AOA is more stable, looked from zero value. 

Different with AOA result, the FOA experienced 12 buses are undervoltage due to 

voltage drop. AOA also has superiority in processing time which has 30 % faster 
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tracking process that FOA. But in the term of convergence speed, the AOA is slower 

that FOA. 
 

 

Fig. 4. Convergence curve of ORPD tracking process 

Fig. 4 shows the process of AOA and FOA in searching the best combination of 

ORPD control variables which produce the minimum power loss. It shows that AOA 

can accurately minimize power loss rather than FOA which represent by GBest 

variable. In the other hand, the FOA experienced convergence early than AOA.  
 

 

Fig. 5. Comparison test result for tracking the best combination of voltage generators 
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Voltage generator is part of the solution which optimized in ORPD problem solving. 

Fig. 5 shows the values of voltage generators tested in IEEE 30 bus system. From the 

graphic shows that AOA tracking tend to search in higher generator voltage mostly near 

the upper limit, such as 1.06 p.u. and FOA tend to search the generator voltage in lower 

value.  

 

 

Fig. 6. Comparison test result for tracking the best combination of voltage generators 

 

Fig. 7. Comparison test result for tracking the best combination of voltage generators 
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    Almost exactly with the tracking process of generator voltage, the tracking process 

of AOA to search the tap ratio value always keep in the higher value than FOA and 

base case. Fig. 5 shows that the value of all tap ratios are between the upper and lower 

limits of their standard values. Then Fig. 6 shows the reactive power injected in bus 

number 10 and 24. Both AOA and FOA tracked the reactive power injected higher in 

bus number 10. The combination value of voltage generator, tap ratio transformer, and 

reactive power inject are significantly affects the active power loss in IEEE 30 bus 

system. 

The statistical analysis showed in Table 5 also shows the superiority of AOA in the 

term of minimizing active power loss. AOA always produce the power loss2 % lower 

than FOA in average. Also, the running result of 33 tracking process, AOA always 

superior in both best result and worst result. 

Table 5. Comparison test result between AOA and FOA tracking ORPD process 

Parameters AOA PFA 

Best result 15.1165 15.1322 

Worst result 15.3445 16.1963 

Average result 15.1874 15.5126 

Std. deviation 0.0521 0.3507 

 

The correlation test conducted to know the relationship between algorithm 

parameters and ORPD objective parameter. The algorithm parameters considered in 

AOA are population size, number of iterations, and processing. Also, the ORPD 

objective parameters considered is only power loss. It is significant to occur the 

correlation of the parameters because it can be used to optimizing the tracking process. 

It means if population size and number of iterations are increased, the accuracy could 

be higher, but will time-consuming, and vice versa. The negative value represents the 

both parameters are inversely correlated. The positive value means that the both 

parameters are directly correlated. The test results showed in  

Table 6. Correlation test result between AOA parameters and ORPD parameters 

Parameters Power loss (MW)  Speed of convergence 

Population size (nB) -0.9678 15.1322 

No. iterations (ItMax) 0.9240 16.1963 

Processing Time (s) -0.5185 0.3507 

 

Table 6 obtained that there is significant correlation between population size and 

number of iterations to the value of power loss. It means the value of nB and ItMax will 

significantly affect to the tracking accuracy of minimum power loss. And also, the nB 

is showed significantly affects the convergence speed. 
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5 Conclusion 

In this article AOA optimization method is employed to the problem of ORPD in 

standard power system. The IEEE 30 bus system is used as test environment to obtain 

the performance of the AOA compared with another kind of metaheuristic algorithm. 

The performance test is conducted in term of searching the best combination of control 

variables which produce minimum power loss as a single-objective function in a 

standard power system network.  The control variables which being tracked by the 

optimization method including; voltage generators, tap ratio transformers, and reactive 

power injected by compensators. The optimization results confirm that the 

effectiveness of AOA in the case of standard IEEE 30 bus explain the superiority and 

robustness in solving ORPD problem. It was found that AOA has higher accuracy in 

tracking the global optima, such as minimum power loss. AOA also has faster 

processing time, but when it considered with speed of convergence AOA will lose to 

FOA. Consequently, the AOA optimization method can be advised as a highly 

promising algorithm to solve complex and non-linear issues in engineering, especially 

in power system. 
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