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Abstract. PT Adhikara Wiyasa Gani (AWG) faces a physical track especially 

a magnetic tape durability issue on its Automated Guided Vehicle (AGV) due to 

crossing by heavy-duty vehicles. Free navigation and path planning can be a 

solution that allows the AGV to dynamically adjust its path without relying on 

physical trajectories. For free navigation to be realized, the robot needs a map or 

knowledge of its working area. This research uses Iterative Closest Point (ICP) 

and Pose Graph Optimization (PGO) for mapping methods with LSLiDAR N10 

and DDSM115 motors on three different artificial maps. The robot has a 

differential drive steering model with dimensions of 35 cm x 30 cm. The mapping 

results were compared to ground truth maps using Average Distance Nearest 

Neighbor (ADNN) and Structural Similarity Index Measure (SSIM) metrics. The 

results show that mapping method can be used for room localization and mapping 

quite well. The ground truth map is formed on a 10 x 6 squares grid map, with 

dimensions of 60 cm x 60 cm for each square. Mapping with the combination of 

ICP, PGO, and wheel odometry produced ADNN and SSIM values of 5,5 cm and 

0,601; 8,8 cm and 0,669; and 8,5 cm and 0,629, respectively, for the three maps 

tested. The largest value of the ADNN metric is 8,8 cm, this value is used as 

padding in the robot dimensions so that there is a remaining 16,2 cm on the length 

side of the robot and 21,2 cm on the width side of the robot with respect to a 

square grid. 

Keywords: Mobile Robot, Iterative Closest Point, Indoor, Mapping, Pose Graph 

Optimization 

1 Introduction 

Automated Guided Vehicle (AGV) is a mobile robot that navigates using the existing 

infrastructure in its operating environment [1]. The AGVs are commonly used for 

transporting goods automatically in factories, assembly lines, or warehouses. There are 

many methods to enable the AGV’s automatic navigation. The most common method 

is by navigating through the physical tracks such as colored or magnetic lines.  
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is by navigating through the physical tracks such as colored or magnetic lines. How-

ever, the use of physical tracks is not suitable in the high traffic workplaces since it is 

not durable if other vehicles are continuously passing on it. Thus, it can disturb the 

operation of the AGV in the long term especially in factories. Another issue is that the 

robot must strictly follow the track in order to navigate.  Therefore, the AGV is difficult 

to perform free navigation to find the shortest path flexibly without considering the 

tracks [2].  Furthermore, if the AGV faces some obstacles, it is difficult to avoid the 

obstacles dynamically by leaving the track. 

The use of physical tracks can make AGVs struggle with navigation and obstacle 

avoidance dynamically. Additionally, the vulnerability of the physical track to damage 

is another issue for AGVs. PT Adhikara Wiyasa Gani uses Automated Guided Vehicles 

(AGVs) with magnetic tape to transport goods from multiple stations. It faces magnetic 

tape durability issues due to passing by heavy load vehicles while it is on the floor, 

necessitating daily replacements. Free navigation and path planning can solve the flex-

ibility issues of AGVs [2]. Free navigation allows AGVs to dynamically adjust their 

movement path, avoid obstacles, and adapt to environmental changes without requiring 

additional physical track. 

Nowadays, many researchers work extensively on AGV’s navigation without using 

physical tracks. The challenge in AGV’s navigation is to move from the starting point 

to the destination without causing damage to the surrounding environment [3]. This 

challenge arises because, to determine the path, the robot must know its position and 

orientation in real-time (localization) and the target position and orientation relative to 

its working environment and time. Localization using maps or landmarks is reliable and 

highly accurate, indicating that good navigation requires a map to obtain trustworthy 

position and orientation data. Accurate position and orientation provided from maps 

and landmarks enables an AGV to determine an efficient route matching the robot's 

destination [4]. Mapping can be done by combining two models, observation model 

and motion model [5]. The work environment mapping can be generated from the com-

bination of a 2D LiDAR sensor as the observation sensor and a wheel encoder as the 

motion sensor. The use of LiDAR is due to its high accuracy and stability against light-

ing changes [6].  

In this paper, we propose an implementation of Levenberg-Marquardt Point to Line 

Iterative Closest Point (LM-PLICP) and Pose Graph on a differential wheeled mobile 

robot to generate maps. The LM-PLICP is used as a scan matcher to generate maps 

from the 2D LIDAR. Pose Graph used to correct the drifting trajectory and wheel odom-

etry used as initial guess transformation on LM-PLICP process. 

We organize this paper as follows: Section 2 describes the related works of our pro-

posed method. Section 3 discusses the implementation of LM-PLICP and Pose Graph 

Optimization on a differential wheeled mobile robot. Section 4 verifies the proposed 

method for generating maps. Section 5 provides the conclusion of this paper. 
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2 Related Work 

2.1 Wheel Odometry 

Odometry from moving mobile robots requires kinematics of the steering method of 

the robots. The robots is driven by two wheels on the side of the body frame named as 

differential drive. It moves based on the difference in speed of both wheels. 

The robot coordinates q, q element 3x1 in generalized coordinate system is defined 

as follows: 

𝑞 = [𝑥 𝑦 𝜃] (1) 

Where x and y are the position of the robot in x-axis and y-axis in generalized coor-

dinates, respectively, and 𝜃 denotes the orientation of the robot. The robot has one non-

holonomic constraint which is expressed as follows : 

�̇�  sin 𝜃 − �̇�  cos 𝜃 =  0 (2

) 

Where �̇� and �̇� denote the rate of robot position in x-axis and y-axis, respectively. 

The non-holonomic constraint in Equation (2) can be expressed in as follows : 

J(𝑞) = [sin 𝜃 − cos 𝜃 0] (3

) 

There exist a null matrix S(𝑞), so that 

S𝑇(𝑞)J𝑇(𝑞) =  0 (4

) 

Which yield 

S𝑇(𝑞) = [
cos 𝜃 sin 𝜃 0
0 0 1

] (5

) 

and 

�̇� =  S𝑇(𝑞)𝑢 = [
cos 𝜃 0
sin 𝜃 0
0 1

] [
𝑣
𝜔
] (6

) 

Where u is a input vector. Therefore, by considering the robot rates of q (�̇� element 

3x1) is obtained as follows : 

�̇� = [�̇� �̇� �̇�] = [𝑣 ∙ cos 𝜃 𝑣 ∙ sin 𝜃 𝜔] (7

) 
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Fig. 1. Kinematics of Differential Drive Mobile Robot 

The linear and angular velocity on Equation (7) can be achieved by using inputs 

control of both wheels. The v and ω described by a set of equations : 

Where ωl and ωr are the angular velocity of wheels on the left and right, respectively. 

Distances between two wheels b, and radius of the wheel r. The trajectory of robot can 

be achieved using 2nd-order Runge-Kutta integration [7]. It requires linear velocity v, 

angular velocity ω from Equation (8), and sampling period Δt.  

[

𝑥𝑡
𝑦𝑡
𝜃𝑡
] =

[
 
 
 
 𝑥𝑡−1 + 𝛥𝑡 𝑣 cos (𝜃𝑡−1 +  𝛥𝑡 

𝜔

2
)

𝑦𝑡−1 + 𝛥𝑡 𝑣 sin (𝜃𝑡−1 +  𝛥𝑡 
𝜔

2
)

𝜃𝑡−1 + 𝛥𝑡 𝜔 ]
 
 
 
 

 
(9) 

Pose at time t denoted by (xt , yt , θt). Being position on x and y axis at previous time 

step, xt-1 and yt-1.  

  

[
𝑣 
𝜔
] = [

𝜔𝑟𝑅𝑟 +𝜔𝑙𝑅𝑙
2

𝜔𝑟𝑅𝑟 −𝜔𝑙𝑅𝑙
𝑏

] = [

𝑣𝑟 + 𝑣𝑙
2

𝑣𝑟 − 𝑣𝑙
𝑏

] 
(8) 
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2.2 Levenberg-Marquardt Point to Line Iterative Closest Point Algorithm 

Iterative Closest Point aims to align two point clouds P and Q by finding a rigid-

body transformation (R, t) applied to point  cloud P and iteratively minimizes the error 

metric. Point to Point distance of vanilla ICP [8] uses Euclidean distance between cor-

respondences points. Point to Line Iterative Closest Point (PLICP) is a variant of ICP 

with a difference in error metric. PLICP computes error metric by projecting distances 

of correspondence points to the normal vector of the target point cloud [9]. PLICP can 

be solved by an optimization process such as Gauss-Newton and Levenberg-Marquardt 

methods [11, 10]. The error metric of PLICP is expressed by: 

𝐸(𝐱)  = ∑[(𝑹(𝐱𝜃 )𝑝𝑖  +  𝑡(𝐱𝑥, 𝐱𝑦)   − 𝑞𝑖)  ⋅ 𝑛𝑞,𝑖]
2

𝑖

  , for  
𝑹 ∈  𝑆𝑂(2)

𝑡 ∈  ℝ2
 (1

0) 

Refer to Equation  (10), the error metric of PLICP E computed by given parameters 

𝐱 consisting of (x, y, θ), rotation matrix and translation vector in 2 dimensions R and t 

obtained from x, correspondences of source and target point cloud p and q, normals 

vector of target point cloud nq. Left terms in the bracket of Equation (10) describe the 

distance of correspondence point in the transformed source point to target point. The 

right terms describes projecting the distance to normals of target point. 

Levenberg-Marquardt (LM) is an optimization procedure that attempting reduce a 

the value of non-linear function (E(x) in this case) [10, 12]. Minimizing E needs to 

compute Gradient and Hessian matrix of E  at any parameters [10]. Given current initial 

guess �̆� and perturbation of x donated by ∆𝐱. 

Let 𝐞𝑖(𝐱) = (𝑹(𝐱𝜃)𝑝𝑖 + 𝑡(𝐱𝑥, 𝐱𝑦) − 𝑞𝑖) ⋅ 𝑛𝑞,𝑖 , 

𝐸(𝐱)  = ∑𝐞𝑖(𝐱)
𝑇𝐞𝑖(𝐱)⏟      
𝐸𝑖𝑖

 (1

1) 

Thus, optimal parameters 𝐱∗ expressed by 

𝐱∗ = argmin
𝐱

 𝐸(𝐱) (1

2) 

Equation (11) can be approximated by using first-order Taylor expansion around 

current initial guess �̆� [12, 13]. 

𝐞𝑖(�̆� + 𝛥𝐱) = 𝐞𝑖(�̆�) + 𝛻𝐞𝑖(�̆�) ∙ 𝛥𝐱

⬚ ≃ 𝐞𝑖(�̆�) + 𝐉𝑖  𝛥𝐱
 

(1

3) 

 

Substitute Equation (13) to Ei in Equation (11), 
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𝐸𝑖(�̆� + 𝛥𝐱) ≃ (𝐞𝑖(�̆�) + 𝐉𝑖 𝛥𝐱)
𝑇(𝐞𝑖(�̆�) + 𝐉𝑖 𝛥𝐱)

⬚ = 𝐞𝑖
𝑇𝐞𝑖⏟  
𝐜𝑖

+ 2𝐞𝑖
𝑇𝐉𝑖⏟
𝐛𝑖

 𝛥𝐱 + 𝛥𝐱𝑇 𝐉𝑖
𝑇𝐉𝑖⏟
𝐇𝑖

 𝛥𝐱 
(1

4) 

Rewrite error metric in Equation (11) with Equation (14) by using the same method 

in [13].  

𝐸(�̆� + 𝛥𝐱) =  𝐜 + 2𝐛𝛥𝐱 + 𝛥𝐱𝑇𝐇  (1

5) 

Thus, we can obtain 𝛥𝐱∗ by solving linear system and Levenberg-Marquardt 

𝛥𝐱∗ = −(𝐇 + 𝜆𝐈)−1 𝐛  (1

6) 

𝛥𝐱∗ = −(𝐉𝑇𝐉 + 𝜆𝐈)−1𝐉𝑇𝐞  (1

7) 

A damping factor 𝜆 becomes smaller when 𝐸(𝐱) reduced, and the behaviors of  are 

optimization more like gradient descent. When it is big, the behaviors more like Gauss-

Newton. Optimal rigid-body transformation 𝐱∗ can be obtained by adding an initial 

guess �̆� to computed perturbation 𝛥𝐱∗. 

𝐱∗ = �̆� + 𝛥𝐱∗ (1

8) 

In Equation (17), 𝐉 is a Jacobian of 𝐞𝑖(𝐱) and I is an identity matrix. Jacobian of 

𝐞𝑖(𝐱) expressed by taking partial derivatives of 𝐞𝑖(𝐱) w.r.t parameters x: 

𝐉 =  [
𝜕𝐞

𝜕𝑥

𝜕𝐞

𝜕𝑦

𝜕𝐞

𝜕𝜃
]  (1

9) 

𝐉 =

[𝑛𝑞,𝑥 𝑛𝑞,𝑦 𝑛𝑞,𝑥(−𝑞𝑥 sin 𝜃 − 𝑞𝑦 cos 𝜃 + 𝑛𝑞,𝑦(𝑞𝑥 cos 𝜃 − 𝑞𝑦 sin 𝜃)]  

(2

0) 

2.3 Pose Graph Optimization 

Pose Graph Optimization (PGO) is an algorithm to eliminate the small accumulated 

errors on the robot trajectory [14]. ICP based localization is impossible to repair the 

accumulated trajectory errors [14].  Lu and Milios [15] proposed a method to construct 

the graph by using relative motion from scan-matching and optimizing the existing 

graph by iterative. Pose Graph Optimization is a nonlinear least squares problem [16] 

that can be linearized by using Taylor expansion and solved using an optimization pro-

cedure. Grisetti et al. [13] explain the problem of PGO and derive the linearized loss 

function. On PGO, nodes are describe as poses and edges as virtual measurements. The 

loss function of nonlinear pose graph optimization expressed by : 
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𝐅(𝐩) =  ∑ 𝒆(𝐩𝑖, 𝐩𝑗 , 𝐳𝑖𝑗)
𝑇

⟨𝑖,𝑗⟩ ∈ 𝐶

𝛀𝑖𝑗𝒆(𝐩𝑖 , 𝐩𝑗 , 𝐳𝑖𝑗) 
(2

1) 

𝐩∗ = argmin
𝐩

 𝐅(𝐩) (2

2) 

Let 𝐩 = (𝐩1, 𝐩2, . . . , 𝐩𝑛)
𝑇 as parameters to optimize, where 𝐩𝑖 to represent a pose 

of node i, 𝐳𝑖𝑗 and 𝛀𝑖𝑗  describe mean and the weighting matrix of 𝐩𝑗 to 𝐩𝑖, respectively. 

Error function 𝒆(𝐩𝑖, 𝐩𝑗 , 𝐳𝑖𝑗) defines how good the virtual measurement compares to 

real measurement.  

𝒆𝑖𝑗(𝐩𝑖 , 𝐩𝑗 , 𝐳𝑖𝑗) = 𝐳𝑖𝑗 − �̂�𝑖𝑗(𝐩𝑖 , 𝐩𝑗) (2

3) 

In Equation (23), �̂�𝑖𝑗(𝐩𝑖 , 𝐩𝑗) is an inverse pose composition 𝑻𝑖
−1 ⋅ 𝑻𝑗, for 𝑻 ∈

 𝑆𝐸(2). We can be obtained �̂�𝑖𝑗 by : 

�̂�𝑖𝑗(𝐩𝑖 , 𝐩𝑗) = [
𝑹𝑖
𝑇𝑹𝑗 𝑹𝑖

𝑇(𝑡𝑗 − 𝑡𝑖)

0 1
] ≜ [

𝑹𝑖
𝑇(𝑡𝑗 − 𝑡𝑖)

𝜃𝑗 − 𝜃𝑖
]

= [
∆𝑡
∆𝜃
] , for  

𝑹 ∈  𝑆𝑂(2)

𝑡 ∈  ℝ2
 

(2

4) 

Where ≜ describes �̂�𝑖𝑗 in vector space, t represents translation vector in x and y, and 

compute 𝒆𝑖𝑗(𝐩𝑖 , 𝐩𝑗 , 𝐳𝑖𝑗).  

𝒆𝑖𝑗 ≜ [
𝑹𝑖𝑗
𝑇 (𝑹𝑖

𝑇(𝑡𝑗 − 𝑡𝑖) − 𝑡𝑖𝑗)

𝜃𝑗 − 𝜃𝑖 − 𝜃𝑖𝑗
] , for  

𝑹 ∈  𝑆𝑂(2)

𝑡 ∈  ℝ2
 

(2

5) 

Linearize the error function eij around 𝐩 by first order Tylor expansion for solving 

nonlinear least squares function 𝐅(𝐩). The step by step to linearize the equation exists 

in [13, 16]. The final linearized equation through Taylor expansion is similar to Equa-

tion (15). 

𝐅(�̆� + 𝛥𝐩) =  𝐜 + 2𝐛𝛥𝐱 + 𝛥𝐱𝑇𝐇 (2

6) 

Where 𝐜 =  ∑ 𝒆𝑖𝑗
𝑇 𝛺𝑖𝑗𝒆𝑖𝑗

⬚, 𝐛 =  ∑ 𝒆𝑖𝑗
𝑇 𝛺𝑖𝑗𝐉𝑖𝑗

⬚, and 𝐇 =  ∑ 𝐉𝑖𝑗
𝑇𝛺𝑖𝑗𝐉𝑖𝑗

⬚. Solve 𝛥𝐩∗ by us-

ing optimization procedure same as Equation (16) and Equation (17). The Jacobian 

matrix contains only on row where the node i and j exist. The partial derivatives of error 

function are expressed by: 

Implementation of Levenberg-Marquardt Point to Line Iterative Closest Point             149



   

𝜕𝐞𝑖𝑗

𝜕𝐩𝑖
 =  [−𝑹𝑖𝑗

𝑇 𝑹𝑖
𝑇 𝑹𝑖𝑗

𝑇
𝜕𝑹𝑖

𝑇

𝜃𝑖
(𝑡𝑗 − 𝑡𝐼)

0 −1

] 

(2

7) 

𝜕𝐞𝑖𝑗

𝜕𝐩𝑗
 =  [

𝑹𝑖𝑗
𝑇 𝑹𝑖

𝑇 0

0 1
] 

(2

8) 

𝐉𝑖𝑗 = [0  0  0  . . .  
𝜕𝒆𝑖𝑗

𝜕𝐩𝑖
  . . .  

𝜕𝒆𝑖𝑗

𝜕𝐩𝑗
  . . .  0  0  0] 

(2

9) 

3 Experimental Results 

The mapping method tested three different artificial rooms. They are built on top of 

10 x 6 grid map with 60 x 60 cm for each grid. Data was collected by using a ros2 bag. 

The data captured are pose of the robot from wheel odometry and LiDAR data corre-

spondence.  

   
(a) (b) (c) 

Fig. 2. Artificial Maps 
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We use wheel odometry as an initial guess for LM-PLICP. Key frames for Pose 

Graph construction are selected based on the robot’s travel from wheel odometry, with 

distance threshold for both rotation and translation. LM-PLICP is also used for detect 

loop closure, the criteria for two nodes classify as loop nodes when the transformed 

point cloud at current frame has mean distance less than a threshold to loop closure 

candidate at previous nodes. A loop closure candidate is selected by calculating the 

distance between the current node and each previous node. If any of these distances is 

less than the threshold, the candidate is considered for loop closure.  

While optimizing the existing graph we need the uncertainty of each nodes. Since 

each node produce by using LM-PLICP, we implemented the method proposed by 

Yuan et al. [17], adapting their approach by changing the 3-dimensional rotation matrix 

to a 2-dimensional representation. The entire mapping implementation is outlined in 

the pseudocode Algorithm 1. 

Algorithm 1 : LM-PLICP-Pose Graph SLAM 

1: Input : {O}, {C} 

2: Params : βtranslation, βrotation, βclosure, βcandidate, βcorrespondences 

3: Output : {V}, {Cbuffer} 

4: // Pose Graph // 

5: G = {V, E} 

6: T0 = I3 

7: T0 → V1 

8: Cbuffer = {} 

9: Oprev = O0 

10: C0  → Cbuffer 

11: for i, Oi ← 1 to N:  

12:  ΔO = Oi - Oprev 

13:  if ||ΔOtranslation|| < βtranslation or ||ΔOrotation|| < βrotation :  

14:   Ptarget = Ci-1 

15:   Psource = Ci 

16:   TICP, Φ, DΦ = LM-PLICP(Psource, Ptarget, ΔO, βcorrespondences) 

17:   CovICP = KalmanICPCov(Psource, Ptarget, TICP, Φ) 

18:   Ti = Ti-1 ⋅ TICP 

19:   Ti → Vi 

20:   CovICP → Ei-1→i 

21:   Oprev = Oi 

22:   Psource → Cbuffer 
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23:   if i > 6:  

24:    {N} = KNN(Ti, T0:i-1, radius = βcandidate) 

25:    for k in N :  

26:     Ptarget = Cbuffer(k) 

27:     Tclosure, Φ, DΦ = LM-PLICP(Psource, Ptarget, βcorrespondences) 

28:     Covclosure = I3 

29:     if mean(DΦ) < βclosure :  

30:      Covclosure → Ei→k 

31:    Optimize(G) 

32:  i++ 

33: end for 

152             R. Darmawan et al.



   

This section presents an result of Levenberg-Marquardt Point to Line Iterative Clos-

est Point and Pose Graph Optimization on three maps. We used the following five pa-

rameter values in Algorithm 1 : 

Table 1. Parameters used for Mapping Method 

Parameters Values (meters) 

βtranslation 0.05 

βrotation 0.05 

βclosure 0.005 

βcandidate 0.5 

βcorrespondences 0.1 

We found misalignment in the LM-PLICP when robot moved to the corners of the 

maps, as illustrated in Fig. 3(a). This issue arises when robot cannot “see” the adjacent 

walls due to the perpendicular nature of the corners. It makes the correspondence points 

have large distances, as illustrated in Fig. 3(b). To address this problem, we applied a 

distance threshold to exclude correspondence points with excessive distances. The re-

sult shown in Fig. 4. 

  
Fig 3. LM-PLICP Misalignment 

  
Fig 4. Before and After Applied Correspondences Distance Threshold 
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For generating the occupancy grid maps, we use the Bresenham Line algorithm as 

the inverse sensor model in the occupancy grid mapping pseudocode presented in [20]. 

Evaluation metrics for calculate the performance of our maps, we use Structural Simi-

larity Index Measure (SSIM) and Average Distance Nearest Neighbor (ADNN) same 

as study from [18] and [19]. 

  

 
Fig 5. The Results of LM-PLICP and PGO 

The Average Distance Nearest Neighbor (ADNN) values for LM-PLICP and PGO 

are 5.5 cm for map I, 8.8 cm for map II, and 8.5 cm for map III. The robot dimensions 

are 35 cm x 30 cm, and the grid map measures 60 cm x 60 cm. With the largest ADNN 

value from the mapping experiment being 8.8 cm, we add this value as padding to the 

robot dimensions, resulting in adjusted dimensions of 38.8 cm x 43.8 cm. Given the 60 

cm x 60 cm grid map, there remains an empty space of 21.2 cm x 16.2 cm. Therefore, 

the mapping method can be used to navigate mobile robots. 
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4 Conclusion 

In this paper, we presented the implementation of Levenberg-Marquardt Point to 

Line Iterative Closest Point (LM-PLICP) and Pose Graph Optimization (PGO) for 2D 

room mapping using a differential drive mobile robot. The initial pose from wheel 

odometry serves as an initial guess for LM-PLICP to minimized the iterations. To han-

dle misalignment, a correspondences distances threshold is applied with values 0.1 me-

ters. The pose from LM-PLICP are then fed into pose graph, which is executed when 

loop closure is detected. Loop closure is identified using LM-PLICP, where if the av-

erage distance between corresponding points is less than 0.05 meters to loop closure 

candidate, the node is considered a loop closure. Finally, an occupancy grid map is 

constructed using the Bresenham Line algorithm. 

The performance of purposed method is evaluated using Average Distance Nearest 

Neighbor (ADNN) and Structural Similarity Index Measure (SSIM) metrics. The 

ADNN values indicate that map I, II, and III have respective values of 5.5 cm, 8.8 cm, 

and 8.5 cm, while the SSIM values are 0.601, 0.669, and 0.629, respectively. To ac-

count for the maximum ADNN error of 8.8 cm, the robot's dimensions are adjusted 

with it as padding, leaving 16.2 cm on the length side and 21.2 cm on the width side of 

the robot. 

The code for collecting the data, mapping, and evaluating our purposed method is 

available at https://github.com/drmwnrafi/ROS2-PLICP-POSE-GRAPH 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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