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Abstract. The main goal of this research is to find torque criteria for the stable 

2-DOF planar manipulator robot (PMR) with identical Stokes damping in a slow-

varying (SV) regime. The analysis starts by finding the 2-DOF PMR with Stokes 

damping Equation of Motion (EOM) via the Lagrangian mechanics. In the next 

step, the SV approximation is applied to those EOMs and produce new EOMs 

with identical Stokes damping. These SV approximation EOM stability criteria 

are analyzed using the Jacobian formalism. From the Jacobian formalism, this 

research found that the SV regime stability criteria for identical Stokes damping 

do not depend on the value of damping constants. Then, from these stability 

criteria, this research also found six possibilities of stable eigenvalue regions with 

the example of PMR link masses 𝑀1 = 𝑀2 = 𝑀 and PMR link lengths 𝑎1 =
𝑎2 = 𝑎. All six stable eigenvalue regions correspond to the interval of the 2-DOF 

PMR joint angles. In general, those six stable eigenvalue regions are the same, 

so this research only picked one of the six stable eigenvalue regions, the fifth 

region. The fifth region leads to the two scenarios of joint angle intervals, 

{𝜃1
∗, 𝜃2

∗} = {(𝜋, 2𝜋), (−𝜋, 0)}; {(𝜋, 2𝜋), (0, 𝜋)}. According to those joint angle 

intervals, the torque criteria for the stable 2-DOF PMR with identical Stokes 

damping in an SV regime should be  

{𝜏1
′ , 𝜏2

′ } = {(−2𝑀𝑔𝑎, 2𝑀𝑔𝑎), (−0.5𝑀𝑔𝑎, 0.5𝑀𝑔𝑎)} and  

{𝜏1
′ , 𝜏2

′ } = {(−2𝑀𝑔𝑎, 1.5𝑀𝑔𝑎), (−0.5𝑀𝑔𝑎, 0)}. 

Keywords: First Keyword, Second Keyword, Third Keyword. 

1 Introduction 

Our world is now in the era of the 4.0 industry revolution. The 4.0 industry 

revolution insists on the vast development of robotics technology in the industrial 

sector. It happens because people's need is increasing over time. In the industrial sector, 

the manipulator robot is the most preferable robot type. The manipulator robot is the 

most preferable because this robot type can manipulate the object's position and 

orientation accurately using some links and joints [1]. The popularity of this robot type 

in industrial applications leads many scientists and engineers to study its dynamics and 

how to control it. In reality, manipulator robot dynamics are not completely easy to 

examine. One of the obstructions is the presence of the so-called Stokes damping in the  
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of the obstructions is the presence of the so-called Stokes damping in the manipulator's 

motors. The presence of the Stokes damping makes all of the equations more complex. 

According to this fact, this research tried to model and analyze one of the dynamical 

system parameters, the so-called stability, for the manipulator robot with the Stokes 

damping. As the first attempt to get the stability analysis of the manipulator robot with 

the Stokes damping, this research used the simple manipulator robot, the 2-degree of 

freedom (DOF) manipulator. This research also used the identical damping constant in 

the two motors. This research employed the Jacobian formalism to find the stability of 

the 2-DOF PMR produced from the 2-DOF PMR Equation of Motions (EOMs) via the 

Lagrangian mechanics. The stability criteria for the 2-DOF PMR with identical Stokes 

damping is easier to understand using the language of physics. The language of physics 

for the manipulator robot is the motor's torque. The torque is the input for the manipu-

lator robot movement. Therefore, this research also produced the torque criteria for the 

2-DOF PMR with identical Stokes damping as the manifestation of the stability criteria. 

Through this manifestation, the researchers hope that the results are more applicable 

and give insight to another advanced research in the scope of the dynamics of the PMR 

with Stokes damping. 

2 Kinematics and Dynamics of 2-dof Planar Manipulator Robot 

(PMR) 

The 2-DOF Planar Manipulator Robot (PMR) is a simple example of a manipulator 

robot that moves in a two-dimensional plane and only has two revolute joints and two 

links [1]. In this part, the kinematic and dynamic equations are explained first before 

their implementation in this research. 

 

a. Kinematics of 2-DOF PMR using Denavit-Hartenberg Convention 

The kinematic formula of the manipulator robot shows the position and orientation 

of the robot's end-effector relative to the robot's base in terms of joint parameters (angle 

or displacement) [2]. There are many methods to obtain the kinematic formula of the 

manipulator robot. One can use the trigonometry relation, but it becomes complicated 

for a manipulator robot with a high degree of freedom (DOF). The kinematic formula 

also enables us to describe the velocity and acceleration of the robot's end-effector rel-

ative to the robot's base in terms of joint speed and acceleration. For the open-chain 

manipulator robot, the general method to calculate the set of kinematic formulas is the 

Denavit-Hartenberg (D-H) convention. The DH convention employs the successive ho-

mogeneous transformation 𝑇𝑖  (part of the SE(3) group) for each robot's arm reference 

frame with specific rules for those reference frame establishments [2]. The equation of 

𝑇𝑖  is shown in Eq. (1) below.  

 

𝑇𝑖 = [

𝑐𝜃𝑖
−𝑠𝜃𝑖

0 0

𝑠𝜃𝑖
𝑐𝜃𝑖

0 0

0 0 1 0
0 0 0 1

] [

1 0 0 𝑎𝑖

0 1 0 0
0 0 1 𝑑𝑖

0 0 0 1

] [

1 0 0 0
0 𝑐𝛼𝑖

−𝑠𝛼𝑖
0

0 𝑠𝛼𝑖
𝑐𝛼𝑖

0

0 0 0 1

] 

                 = 𝑅̅𝑍(𝜃𝑖)𝑃̅(𝑎𝑖 , 𝑑𝑖)𝑅̅𝑋(𝛼𝑖) 

 

(1) 
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where 𝜃𝑖 is the rotation angle about the 𝑍𝑖−1 axis of the link i-1 to align the 𝑋𝑖−1 axis 

to the 𝑋𝑖 axis, 𝛼𝑖 is the twist angle about the 𝑋𝑖−1 axis of the link i-1 to align the 𝑍𝑖−1 

axis to the 𝑍𝑖 axis, 𝑎𝑖 is the perpendicular distance between the 𝑍𝑖−1 axis to the 𝑍𝑖 axis, 

and 𝑑𝑖 is the joint offset. The symbols  𝑅̅𝑍(𝜃𝑖),  𝑃̅(𝑎𝑖 , 𝑑𝑖), and  𝑅̅𝑋(𝛼𝑖) here are the 

rotation about the Z-axis, the translation in the X and Z direction, and the rotation about 

the X-axis, respectively, in the form of homogeneous transformation. The kinematic 

equations obtained from the D-H convention are equal to the total composition trans-

formation of TI as follows (Eq. (2)). Here, the N denotes the number of robot links. The 

𝑅3×3 and 𝑃3×1 in Eq. (2) are the kinematic equations (orientation and position, respec-

tively).  

 

𝑇 = 𝑇1 ∘ 𝑇2 ∘ 𝑇3 …∘ 𝑇𝑁 = [
𝑅3×3 𝑃3×1

01×3 1
] 

(2) 

 

In this paper, the 2-DOF Planar Manipulator Robot (PMR) is the object of this 

study. Therefore, the kinematic equations for this 2-DOF PMR are obtained in advance 

by the D-H Convention (via the rules in [2] and using Eq. (1)). This kinematic analysis 

is a primary point to obtain the dynamical analysis of the 2-DOF PMR in this research. 

The schematic diagram for the 2-DOF PMR is shown in Fig. (1) below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. The schematic diagram of the 2-DOF PMR: TCP is the abbreviation of the Tool 

Center Point and the part of the  end-effector, 𝐿1 is the length of the first link, and 𝐿2 is the 

length of the second link. 
 

Based on the D-H convention rules in [2], for this 2-DOF PMR, the D-H parameters 

(𝑎𝑖, 𝑑𝑖, 𝜃𝑖, and 𝛼𝑖) can be tabulated in Table 1. Using Eq. (1) and all of the parameters 

in Table 1, one can obtain the expression of homogeneous transformation for each link 

as follows (Eq. (3) and Eq. (4)). 

 
TABLE 1. The tabulation of the D-H parameters for the 2-DOF PMR 

 (𝜃𝑜1 and 𝜃𝑜2 are the initial configurations of the joint angle of the first and the second arm) 

 

Link 𝒂𝒊 𝜽 𝒅𝒊 𝜶𝒊 

1 𝐿1 = 𝑎1 𝜃1 + 𝜃𝑜1
 0 0 
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2 𝐿2 = 𝑎2 𝜃2 + 𝜃𝑜2 0 0 

𝑇1 =

[

cos(𝜃1 + 𝜃𝑜1
) − sin(𝜃1 + 𝜃𝑜1

) 0 𝑎1 cos(𝜃1 + 𝜃𝑜1
)

sin(𝜃1 + 𝜃𝑜1
) cos(𝜃1 + 𝜃𝑜1

) 0 𝑎1 sin(𝜃1 + 𝜃𝑜1
)

0 0 1 0
0 0 0 1 ]

 (3) 

𝑇2 =

[

cos(𝜃2 + 𝜃𝑜2
) − sin(𝜃2 + 𝜃𝑜2

) 0 𝑎2 cos(𝜃2 + 𝜃𝑜2
)

sin(𝜃2 + 𝜃𝑜2
) cos(𝜃2 + 𝜃𝑜2

) 0 𝑎2 sin(𝜃2 + 𝜃𝑜2
)

0 0 1 0
0 0 0 1 ]

  (4) 

Using Eq. (2) and the results of Eq. (3) and Eq. (4), one can obtain the 𝑃3×3 for the 2-

DOF PMR as follows (Eq. (5)). By taking the derivative of all of the elements in Eq. 

(5) to time, the velocity of the end-effector follows Eq. (6).

𝑃3×1 = [
𝑋
𝑌
𝑍
] = [

𝑎1 cos(𝜃1 + 𝜃𝑜1
) + 𝑎2 cos(𝜃1 + 𝜃2 + 𝜃𝑜1

+ 𝜃𝑜2
)

𝑎1 sin(𝜃1 + 𝜃𝑜1
) + 𝑎2 sin(𝜃1 + 𝜃2 + 𝜃𝑜1

+ 𝜃𝑜2
)

0

] 

𝑃̇3×1 = [
𝑋̇
𝑌̇
𝑍̇

] = [

−𝑎1𝜃̇1 sin(𝜃1 + 𝜃𝑜1
) − 𝑎2(𝜃̇1 + 𝜃̇2) sin(𝜃1 + 𝜃2 + 𝜃𝑜1

+ 𝜃𝑜2

𝑎1𝜃̇1 cos(𝜃1 + 𝜃𝑜1
) + 𝑎2(𝜃̇1 + 𝜃̇2) cos(𝜃1 + 𝜃2 + 𝜃𝑜1

+ 𝜃𝑜2
)

0

] 

b. Dynamics of ideal 2-DOF PMR using Lagrangian Mechanics

Manipulator robot dynamical equations are hard to obtain due to their structural

complexities (for example, the number of the degree of freedom). One of the easiest 

methods to find the manipulator robot's dynamical equations is the Lagrangian mechan-

ics [3]. In physics, Lagrangian mechanics obtain the physical system's equation of mo-

tion (EOM) by minimizing the system's action 𝑆 (Eq. (7)). 

𝑆 = ∫𝐿(𝑞𝑘, 𝑞̇𝑘 , 𝑡)𝑑𝑡
(7) 

The Lagrangian function 𝐿(𝑞𝑘 , 𝑞̇𝑘, 𝑡) is a function that describes the total kinetic 𝑇(𝑞̇𝑘)
and potential energy 𝑉(𝑞𝑘) of the system as 𝐿(𝑞𝑘, 𝑞̇𝑘 , 𝑡) = 𝑇(𝑞̇𝑘) − 𝑉(𝑞𝑘). Here, the

variables 𝑞𝑘 and  𝑞̇𝑘  are the generalized coordinates and the generalized speeds. From

the functional derivative to Eq. (7) through 𝑞𝑘 → 𝑞𝑘 + 𝜖𝛿𝑞𝑘, one can write 𝛿𝑆 as fol-

lows (Eq. (9)). 

𝛿𝑆 = ∫ [
𝜕𝐿

𝜕𝑞𝑘

𝛿𝑞𝑘 +
𝜕𝐿

𝜕𝑞̇𝑘

𝛿𝑞̇𝑘] 𝑑𝑡 = ∫ [
𝜕𝐿

𝜕𝑞𝑘

𝛿𝑞𝑘 +
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑘

𝛿𝑞𝑘) −
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑘

) 𝛿𝑞𝑘] 𝑑𝑡
(8) 

𝛿𝑆 = ∫ [
𝜕𝐿

𝜕𝑞𝑘

−
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑘

)] 𝛿𝑞𝑘𝑑𝑡 + ∫
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑘

𝛿𝑞𝑘) 𝑑𝑡 = ∫ [
𝜕𝐿

𝜕𝑞𝑘

−
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑘

)] 𝛿𝑞𝑘𝑑𝑡 + 𝜕Ω
(9) 
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Minimizing the system's action leads to the 𝛿𝑆 = 0 (Any physical system should follow 

the shortest path with minimum energy). So, Eq. (9) turns into Eq. (10) as follows.  

 

∫[
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑘

) −
𝜕𝐿

𝜕𝑞𝑘

] 𝛿𝑞𝑘𝑑𝑡 = ∫
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑘

𝛿𝑞𝑘) 𝑑𝑡 = 𝜕Ω 
 

(10) 

 

The integrand on the left side of Eq. (10) is the generalized Euler-Lagrange (EL) 

equation. This EL equation is related to the generalized force 𝐹𝑘 (translational forces 

and torques).  

 

𝐹𝑘 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑘

) −
𝜕𝐿

𝜕𝑞𝑘

 
 

(11) 

 

Eq. (11) acts as the generalized EOM of the physical system. 

 

 

 

 

 

 

 

FIGURE 1. Action minimization : This process finds 𝑞𝑘 from A to B by variating 𝑞𝑘 with the 

small parameter 𝜖 of 𝛿𝑞𝑘. 

 

The physical system might have several damping factors. Damping is one of the kinds 

of friction that acts on the system. Damping induces the reduction of energy in the 

physical system (energy losses). The manifestation of the damping is the so-called Ray-

leigh dissipation term (𝑅) in Eq. (12) [4]. Rayleigh dissipation term (𝑅) is a function 

the generalized velocities 𝑞̇𝑘. 

 

𝐹𝑘 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑘

) −
𝜕𝐿

𝜕𝑞𝑘

+
𝜕𝑅

𝜕𝑞̇𝑘

 
 

(12) 

 

3 Stability Criterion in Dynamical System 

2-DOF PMR is one of the dynamical systems. The generalized coordinates for 2-

DOF PMR are 𝜃1 and 𝜃2 (joint angles). Then, the generalized forces for 2-DOF PMR 

are 𝜏1 and 𝜏2 (torques for first and second motors). All EOM produced from Eq. (11) 

provides complete dynamical relation between those joint angles and torques in the 

form of Ordinary Differential Equations (ODE). This ODE can use to see some prop-

erties of the 2-DOF PMR, such as stability and controllability. Before finding the torque 

criteria for stable 2-DOF PMR, this section describes a general mathematical method 

to deduce the stability criterion from the ODE first. 

 

𝐴 

𝐵 

𝑞𝑘 + 𝜖𝛿𝑞𝑘 

𝑞𝑘 

𝛿𝑞𝑘 
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a. Mathematical Method to Analyze Stability Via ODE 

In mathematics, there are two kinds of ODE of the Dynamical System. Those kinds 

of ODE are autonomous and non-autonomous [5, 6]. This part emphasizes the autono-

mous-type ODE only. The Autonomous-type ODE is the ODE that does not explicitly 

depend on the independent variable [6]. If the variable is time t, this ODE is sometimes 

called a time-invariant (TI) ODE. So, the autonomous-type ODE describes in the fol-

lowing form (see Eq. (13) below). 

               𝑥̇ = 𝑓(𝑥)     𝑓: 𝐷 → ℝ𝑛 (13) 

 

Here D is an open and connected subset of ℝ𝑛, and f is a local Lipschitz map from D 

into ℝ𝑛.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Illustration of Stable Equilibrium Point of Autonomous ODE [6] 

 

Let the autonomous ODE has an equilibrium point at 𝑥 = 𝑥𝑒 = 𝑥∗, so 𝑓(𝑥𝑒) = 0. 

The equilibrium point 𝑥𝑒 = 𝑥∗ of the autonomous ODE is said to be stable if for each 

𝜀 > 0, ∃𝛿 = 𝛿(𝜀) > 0 [6]  

 
‖𝑥(0) − 𝑥𝑒‖ < 𝛿 → ‖𝑥(𝑡) − 𝑥𝑒‖ < 𝜀     ∀𝑡 ≥ 𝑡𝑜 (14) 

 

The illustration of the equilibrium point of the autonomous ODE describes in Fig. 2. If 

the condition in Eq. (13) does not occur, the equilibrium point of the autonomous ODE 

is unstable. Eq. (14) can precisely describe in the following way. Let 𝜆 = 𝜆(𝑡) be a 

small perturbation to the 𝑥𝑒, so 𝑥′ = 𝑥𝑒 + 𝜆(𝑡). Then,  

 

𝑥̇′ = 𝑓(𝑥′) →
𝑑𝑥𝑒

𝑑𝑡
+

𝑑𝜆

𝑑𝑡
= 𝜆̇ = 𝑓(𝑥𝑒 + 𝜆) 

 

(15) 

 

Taking the Taylor series to 𝑓(𝑥𝑒 + 𝜆), then Eq. (15) can be written in Eq. (16). 

 

𝜆̇ = 𝑓(𝑥𝑒) + 𝜆 [
𝑑𝑓

𝑑𝑥
]
𝑥=𝑥𝑒

+ 𝑂(𝜆2) 
 

(16) 
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Because 𝑓(𝑥𝑒) = 0 (equilibrium point of the autonomous ODE), then Eq. (16) can be 

written in Eq. (17). 

 

𝜆̇ = 𝜆 [
𝑑𝑓

𝑑𝑥
]
𝑥=𝑥𝑒

+ 𝑂(𝜆2) = 𝜆𝑓′(𝑥𝑒) + 𝑂(𝜆2) 
 

(17) 

 

The perturbation 𝜆(𝑡) is small enough compared to the 𝑥𝑒. So, the dominant term in the 

series in Eq. (17) is only the first term. This argument leads to the neglect of higher 

terms. Then, Eq. (17) can be written in Eq. (18) and Eq.(19) as follows. 

 

𝜆̇ ≈ 𝜆𝑓′(𝑥𝑒) → ∫
𝑑𝜆

𝜆

= ∫𝑓′(𝑥𝑒)𝑑𝑡 → ln 𝜆(𝑡) = 𝑓′(𝑥𝑒)𝑡 + 𝐶 → 𝜆(𝑡) = 𝑒𝐶𝑒𝑡𝑓′(𝑥𝑒) 

 

(18) 

 

𝜆(𝑡) = 𝜆𝑜𝑒
𝑡𝑓′(𝑥𝑒)                 𝜆𝑜 = 𝜆(0), 𝑡 ≥ 0 (19) 

 

If 𝑓′(𝑥𝑒) > 0, 𝜆 increases higher for 𝑡 → ∞. The increase in 𝜆 indicates an unstable 

equilibrium point. Meanwhile, if 𝑓′(𝑥𝑒) < 0, 𝜆 decreases for 𝑡 → ∞ and is a stable 

equilibrium point. 

 

𝑥̇1 = 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) 
𝑥̇2 = 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) 

⋮ 
𝑥̇𝑛 = 𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) 

 

 

 

(20) 

The analysis in Eq. (18) and Eq. (19) works well for the single autonomous ODE. 

How about the autonomous-type ODE system like in Eq. (20)? For the autonomous-

type ODE system, the Jacobian formalism is more convenient to figure out the stability 

problem. The first step is the same as the one ODE, that is, finding the equilibrium 

point. Then, to obtain the Jacobian of the ODE system, write Eq. (20) into the matrix 

equation as Eq. (21). 

 

[

𝑥̇1

𝑥̇2

⋮
𝑥̇𝑛

] =

[
 
 
 
 
 
 
 
𝜕𝑥̇1

𝜕𝑥1

𝜕𝑥̇1

𝜕𝑥2

…
𝜕𝑥̇1

𝜕𝑥𝑛

𝜕𝑥̇2

𝜕𝑥1

𝜕𝑥̇2

𝜕𝑥2

…
𝜕𝑥̇2

𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑥̇𝑛

𝜕𝑥1

𝜕𝑥̇𝑛

𝜕𝑥2

…
𝜕𝑥̇𝑛

𝜕𝑥𝑛]
 
 
 
 
 
 
 

[

𝑥1

𝑥2

⋮
𝑥𝑛

] = 𝐽(𝑥1, 𝑥2, … , 𝑥𝑛) [

𝑥1

𝑥2

⋮
𝑥𝑛

] 

 

 

 

(21) 

 

The stability of the ODE system via Jacobian formalism obtains from the eigenvalue 𝜖 

of the Jacobian. To find the eigenvalue of the Jacobian, solve the secular equation first 

(Eq. (22)).  
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det|𝐽(𝑥1, 𝑥2, … , 𝑥𝑛) − 𝜖𝐼| = 0 (22) 

 

where 𝐼 is the identity matrix. When the 𝑅𝑒(𝜖(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗)) < 0 ∀𝜖(𝑥1

∗, 𝑥2
∗, … , 𝑥𝑛

∗), 

the ODE system is stable. The ODE system is unstable if there is one of the 

𝜖(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗) with 𝑅𝑒(𝜖(𝑥1

∗, 𝑥2
∗, … , 𝑥𝑛

∗)) > 0. 

4 Results 

This section starts from the formulation of EOM for the 2-DOF PMR with Stokes-

type damping. After that, the explanation will continue to the implementation of the SV 

approximation and identical Stokes damping to those EOMs. The final part describes 

the stable torque criteria analysis for the 2-DOF PMR with identical Stokes damping in 

the SV regime in detail via the Jacobian formalism. 

 

a. Equation of Motion for the 2-DOF PMR with Stokes-Type Damping 

The EOM for the 2-DOF PMR with Stokes-type damping starts from writing the 

kinetic energy of each link. Let 𝑀1 and 𝑀2 be the link masses, 𝑎1 and 𝑎2 be the link 

lengths, 𝐼1 and 𝐼2 be the link moment of inertia, and then the kinetic energy for each 

link is written in Eq. (23) and Eq. (24). 

 

𝑇1 =
1

2
𝑀1𝑎𝑐1

2 𝜃̇1
2 +

1

2
𝐼1𝜃̇1

2 
(23) 

 

𝑇2 =
1

2
𝑀2𝑎1

2𝜃̇1
2 + 𝑀2𝑎1𝑎𝑐2

cos 𝜃2 [𝜃̇1
2 + 𝜃̇1𝜃̇2] +

1

2
𝑀2𝑎𝑐2

2 𝜃̇1
2 + 𝑀2𝑎𝑐2

2 𝜃̇1𝜃̇2 + 𝑃 (24)
 

 

The 𝑃 =
1

2
𝑀2𝑎𝑐2

2 𝜃̇2
2 +

1

2
𝐼2𝜃̇1

2 + 𝐼2𝜃̇1𝜃̇2 +
1

2
𝐼2𝜃̇2

2, and 𝑎𝑐1
 and 𝑎𝑐2

 are 
1

2
𝑎1 and 

1

2
𝑎2.  

This 2-DOF PMR only experienced the gravitational potential energy. Eq. (25) and 

Eq. (26) show the gravitational potential energy for each link in the 2-DOF PMR. 

 

𝑉1 = 𝑀1𝑔𝑎𝑐1
sin 𝜃1 (25) 

 

𝑉2 = 𝑀2𝑔𝑎1 sin 𝜃1 + 𝑀2𝑔𝑎𝑐2
sin(𝜃1 + 𝜃2) (26) 

 

The Lagrangian 𝐿 in general is as 𝐿 = 𝑇 − 𝑉. The total Lagrangian for each link will 

lead to the 2-DOF PMR Lagrangian. To introduce the Stokes-type damping, define the 

two Rayleigh dissipation terms as a function of the motor’s angular velocity  𝜃̇1 and  𝜃̇2 

as 𝑅1 = 𝛼𝜃̇1
2  and 𝑅2 = 𝛽𝜃̇2

2. The 𝑅1 and 𝑅2 are chosen as the Rayleigh dissipation 

because the derivation of 𝑅1 and 𝑅2 to the  𝜃̇1 and 𝜃̇2 are analogous to the damping due 

to the viscosity of a fluid with damping coefficients 𝛼 and 𝛽 [7]. Therefore, the Lagran-

gian for each link has 𝑅1 and 𝑅2 terms as Eq. (27) and Eq. (28). 

 

𝐿1 = 𝑇1 − 𝑉1 + 𝑅1 = 𝑇1 − 𝑉1 + 𝛼𝜃̇1
2 (27) 
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𝐿2 = 𝑇2 − 𝑉2 + 𝑅2 = 𝑇1 − 𝑉1 + 𝛽𝜃̇1
2 (28) 

 

According to the EL equation in Eq. (12), one can obtain the full EOMs for each 2-

DOF PMR robot link with Stokes-type damping (Eq. (29)) in the matrix form.  

 

𝜏 = [
𝜏1

𝜏2
] = 𝑀2×2(𝑞⃗)𝑞̈⃗ + 𝐶2×2(𝑞⃗, 𝑞̇⃗)𝑞̇⃗ + 𝐺2×1(𝑞⃗) (29) 

 

Where M, C, and G are inertia, Coriolis, and gravity matrices of the 2-DOF PMR with 

Stokes-type damping (see Eq. (30), Eq. (31), and Eq. (32)). 

 

𝑀2×2(𝑞⃗)

= [
𝑀1𝑎𝑐1

2 + 𝑀2𝑎1
2 + 2𝑀2𝑎1𝑎𝑐2

cos 𝜃2 + 𝑀2𝑎𝑐2
2 + 𝐼1 + 𝐼2 𝑀2𝑎1𝑎𝑐2

cos 𝜃2 + 𝑀2𝑎𝑐2
2 + 𝐼2

𝑀2𝑎1𝑎𝑐2
cos 𝜃2 + 𝑀2𝑎𝑐2

2 + 𝐼2 𝑀2𝑎𝑐2
2 + 𝐼2

] 

 

(30)  

 

𝐶2×2(𝑞⃗, 𝑞̇⃗) = [
−2𝑀2𝑎1𝑎𝑐2

𝜃̇2 sin 𝜃2 + 2𝛼 −𝑀2𝑎1𝑎𝑐2
𝜃̇2 sin 𝜃2 

𝑀2𝑎1𝑎𝑐2
𝜃̇1 sin 𝜃2 2𝛽

] 
 

(31)  

 

𝐺2×1(𝑞⃗) = [
𝑀1𝑔𝑎𝑐1

cos 𝜃1 + 𝑀2𝑔𝑎1 cos 𝜃1 + 𝑀2𝑔𝑎𝑐2
cos(𝜃1 + 𝜃2)

𝑀2𝑔𝑎𝑐2
cos(𝜃1 + 𝜃2)

] 
 

(32)  

 

 

b. Slow-Varying Equation of Motion for the 2-DOF PMR with Stokes-Type 

Damping 

The slow-varying approach (SV) is the approximation method that assumes 𝜃̇1 and 

𝜃̇2 are small enough. So, the second derivative of 𝜃1 and 𝜃2 to the time (acceleration) 

is approaching zero (𝜃̈1 = 𝜃̈2 ≈ 0). The SV approach reduces the full EOMs of the 2-

DOF PMR with Stokes-type damping in Eq. (29) to become Eq. (33) and Eq. (34). 

 

𝜏1 = 𝑀1𝑔𝑎𝑐1
cos 𝜃1 + 𝑀2𝑔𝑎1 cos 𝜃1 + 𝑀2𝑔𝑎𝑐2

cos(𝜃1 + 𝜃2) + 2𝛼𝜃̇1 (33)  

 

𝜏2 = 𝑀2𝑔𝑎𝑐2
cos(𝜃1 + 𝜃2) + 2𝛽𝜃̇2 (34)  

 

Let  𝛼̃ =
𝑀1𝑔𝑎𝑐1

2𝛼
,  𝛽 =

𝑀2𝑔𝑎1

2𝛼
,  𝛾̃ =

𝑀2𝑔𝑎𝑐2

2𝛼
,  𝛿 =

𝜏1

2𝛼
,  𝜀̃ =

𝑀2𝑔𝑎𝑐2

2𝛽
, and  𝑓 =

𝜏2

2𝛽
, and re-

write Eq. (33) and Eq. (34) in the form of  𝜃̇1 and  𝜃̇2, one can obtain Eq. (35) and Eq. 

(36) as follows. 

 

𝜃̇1 = 𝛿 − (𝛼̃ + 𝛽) cos 𝜃1 − 𝛾̃ cos(𝜃1 + 𝜃2) = 𝐹1(𝜃1, 𝜃2) (35)  

 

𝜃̇2 = 𝑓 − 𝜀̃ cos(𝜃1 + 𝜃2) = 𝐹2(𝜃1, 𝜃2) (36)  
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c. The Implementation of Stability Criterion to the Slow-Varying Equation of 

Motion 

To implement the stability criterion into the SV approach EOMs (Eq. (35) and Eq. 

(36)), find the equilibrium point for this system first as follows. 

 

𝜃̇1(𝜃1
∗, 𝜃2

∗) = 0 → 𝛿 = (𝛼̃ + 𝛽) cos 𝜃1
∗ + 𝛾̃ cos(𝜃1

∗ + 𝜃2
∗) (37) 

 

𝜃̇2(𝜃1
∗, 𝜃2

∗) = 0 → 𝑓 = 𝜀̃ cos(𝜃1
∗ + 𝜃2

∗) (38) 

 

Using Eq. (37) and Eq. (38), one can obtain the equilibrium joint angles for each arm 

as Eq. (39) and Eq. (40). 

 

𝜃1
∗ = arccos [

𝜀̃𝛿 − 𝛾̃𝑓 

𝜀̃(𝛼̃ + 𝛽)
] 

 

(39) 

 

𝜃2
∗ = arccos [

𝑓

𝜀̃
] − arccos [

𝜀̃𝛿 − 𝛾̃𝑓 

𝜀̃(𝛼̃ + 𝛽)
] 

 

(40) 

 

 

After determining the equilibrium joint angles for each arm, the next step is forming 

the Jacobian matrix (Eq. (41)). The formation of the Jacobian matrix involves the first 

derivative of Eq. (35) and Eq. (36) to the joint angles for each arm as Eq. (21). 

 

𝐽 =

[
 
 
 
 
𝜕𝜃̇1

𝜕𝜃1

𝜕𝜃̇1

𝜕𝜃2

𝜕𝜃̇2

𝜕𝜃1

𝜕𝜃̇2

𝜕𝜃2]
 
 
 
 

= [
(𝛼̃ + 𝛽) sin 𝜃1 + 𝛾̃ sin(𝜃1 + 𝜃2) 𝛾̃ sin(𝜃1 + 𝜃2)

𝜀̃ sin(𝜃1 + 𝜃2) 𝜀̃ sin(𝜃1 + 𝜃2)
] 

 

 

(41)  

 

 

After determining the Jacobian matrix, obtain the eigenvalue (let the eigenvalue of the 

Jacobian matrix be 𝜙) of the Jacobian matrix by using the secular equation (Eq. (22)). 

One can obtain that 𝜙 as a function of the joint angles for each arm as Eq. (42) below. 

 

𝜙1,2(𝜃1, 𝜃2) =
1

2
[(𝛼̃ + 𝛽) sin 𝜃1 + (𝛾̃ + 𝜀̃) sin(𝜃1 + 𝜃2)] ±

1

2
𝑄 

 

(42) 

 

where  

𝑄 = √[(𝛼̃ + 𝛽) sin 𝜃1 + (𝛾̃ + 𝜀̃) sin(𝜃1 + 𝜃2)]
2
− 4𝜀̃(𝛼̃ + 𝛽) sin 𝜃1 sin(𝜃1 + 𝜃2) . 

According to the theory of stability criterion for autonomous ODE (see Mathematical 

Methods to Analyze Stability via ODE section), the autonomous ODE is stable if all 

𝑅𝑒(𝜙) of the Jacobian matrix's eigenvalue for all equilibrium points are negative 

𝑅𝑒 (𝜙1,2(𝜃1
∗, 𝜃2

∗)) < 0, ∀𝜙1,2(𝜃1
∗, 𝜃2

∗). By this theory, one can obtain the stability crite-

rion for the 2-DOF PMR with Stokes-damping in the SV approximation, like in Eq. 

(43). 
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𝑅𝑒 (𝜙1,2(𝜃1
∗, 𝜃2

∗)) = 𝑅𝑒 (
1

2
[(𝛼̃ + 𝛽) sin 𝜃1

∗ + (𝛾̃ + 𝜀̃) sin(𝜃1
∗ + 𝜃2

∗)]

±
1

2
𝑄(𝜃1

∗, 𝜃2
∗)) < 0 

 

(43) 

 

This research takes an example of 2-DOF PMR with identical Stokes damping (𝛼 =
𝛽 = 𝐶) where its masses and link lengths are equal (𝑀1 =  𝑀2 =  𝑀), (𝑎1 = 𝑎2 =
𝑎).  For this example, Eq. (43) becomes Eq. (45) below. 

 

𝑅𝑒 (𝜙1,2(𝜃1
∗, 𝜃2

∗)) =
𝑀𝑔𝑎

2𝐶
𝑅𝑒 (

3

4
sin 𝜃1

∗ +
1

2
sin(𝜃1

∗ + 𝜃2
∗)

± √
9

16
sin2 𝜃1

∗ +
1

4
sin2(𝜃1

∗ + 𝜃2
∗)) < 0 

 

(44)  

 

𝑅𝑒 (
3

4
sin 𝜃1

∗ +
1

2
sin(𝜃1

∗ + 𝜃2
∗) ± √

9

16
sin2 𝜃1

∗ +
1

4
sin2(𝜃1

∗ + 𝜃2
∗)) < 0 

 

(45)  

 

 

Eq. (45) shows the stability criteria for the 2-DOF PMR with identical Stokes damping 

does not depend on the value of the damping constants. The left-hand side (LHS) of the 

Eq. (45) has two variables, 𝜃1
∗ and 𝜃2

∗. So, the LHS of the Eq. (45) forms the so-called 

manifold (surface). Fig.3 below shows the Eq. (45) as manifold. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

(a)       (b) 

FIGURE 3. Manifold (surface) of the Stability Criteria for the 2-DOF PMR with identical 

Stokes damping. The part (a) is the LHS of the Eq. (44) by taking (+) sign and part (b) is the 
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LHS of the Eq. (44) by taking (-) sign. The interval of 𝜃1
∗ and 𝜃2

∗ are the same as 𝜃1
∗ =

[−2𝜋, 2𝜋] and 𝜃2
∗ = [−2𝜋, 2𝜋] respectively 

 

To see the region in the manifold for Fig.3(a) and Fig.3(b) that fulfill Eq. (45), plot 

those manifolds in 
2𝜙(𝜃1

∗,𝜃2
∗)

𝑀𝑔𝑎
< 0 intervals. Then, by combining those two manifolds in 

2𝜙(𝜃1
∗,𝜃2

∗)

𝑀𝑔𝑎
< 0  intervals into one plot (Fig.4), there are six stable eigenvalue regions. 

Table 2 shows those six stable eigenvalue regions.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

FIGURE 4. The Diagram of the Six Stable Eigenvalue Regions that fulfill Eq. (44) 

 

From the result in Table 2, those six stable eigenvalue regions of the 2-DOF PMR with 

identical Stokes damping follow the form of 2-DOF PMR singularity. Singularity in a 

manipulator robot is a configuration in which the manipulator robot end-effector is not 

accessible in specific directions [8]. Therefore, the singularity configuration in the ma-

nipulator robot induces instability in the controller (see Fig.5 for the singularity config-

uration in the 2-DOF manipulator robot from the kinematics).   

 

TABLE 2. The list of the Six Stable Eigenvalue Regions that fulfill Eq. (44)  

Region  Interval of 𝜽𝟏
∗  Interval of 𝜽𝟐

∗  

1 (−𝜋, 0) (−2𝜋,−𝜋) 

2 (−𝜋, 0) (−𝜋, 0) ∧ (0, 𝜋)  
3 (−𝜋, 0) (𝜋, 2𝜋) 

4 (𝜋, 2𝜋) (−2𝜋,−𝜋) 

5 (𝜋, 2𝜋) (−𝜋, 0) ∧ (0, 𝜋) 

6 (𝜋, 2𝜋) (𝜋, 2𝜋) 

 

 

 

 

 

1 

2 

3 

4 

5 

6 
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(a) (b) 

FIGURE 5. Singularity configuration of the 2-DOF PMR 
 

All of the six stable eigenvalue regions have the same TCP trajectories. The fifth region 

is enough to see the behaviour of the stability. The fifth region is enough because there 

are two scenarios of stabilities. Here are the examples of those scenarios (Fig.6). Fig.6 

was produced from the program of RoboAnalyzer 7.5 [9]. 

 

 

 

 

 

 

 

 

 

  

 

 

 

(a)                                            (b) 

FIGURE 6. Two scenarios of stabilities in the fifth region. The part (a) shows 𝜃1
∗ →

(𝜋, 2𝜋) with the example of 𝜃1
∗ = (2500, 3500) and 𝜃2

∗ → (−𝜋, 0) with the example of 𝜃2
∗ =

(−1000, −250). The part (b) shows 𝜃1
∗ → (𝜋, 2𝜋) with the example of 𝜃1

∗ = (2500, 3500) and 

𝜃2
∗ → (0, 𝜋) with the example of 𝜃2

∗ = (250, 1200) 

 

In the next section, the stability criteria for the 2-DOF PMR with identical Stokes 

damping manifested in the torque criteria as a physical language. Torque is easier to 

access by scientists and engineers because the torque becomes an input for 2-DOF 

PMR manipulation. 

 

𝜃1 

𝜃2 = 0 

𝜃2 = 𝜋 

𝜃1 

𝑎1 

𝑎2 

𝑎1; 𝑎2 
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d. Torque Criteria for the Stable Slow-Varying 2-DOF PMR with identical 

Stokes Damping 

This section focuses on the stability criteria for the 2-DOF PMR with identical 

Stokes damping in the SV regime in the form of torque criteria. From the first scenario 

in the fifth region, one can obtain Eq. (46) where Δ𝜏 = 𝜏1
′ − 𝜏2

′ .  

 

𝜃1
∗ = arccos [

2Δ𝜏

3𝑀𝑔𝑎
] →

2Δ𝜏

3𝑀𝑔𝑎
= cos 𝜃1

∗ → Δ𝜏 =
3

2
𝑀𝑔𝑎 cos 𝜃1

∗ 
 

(46) 

 

Because the 𝜃1
∗ is in the interval of (𝜋, 2𝜋), there is an allowed Δ𝜏 for the stable 2-DOF 

PMR with identical Stokes damping in the SV regime on the first scenario as the fol-

lowing equation (Eq. (47)). The minus sign represents the rotational direction of the 

motors. 

 

−
3

2
𝑀𝑔𝑎 < Δ𝜏 <

3

2
𝑀𝑔𝑎 

 

(47) 

  

By taking the cos(𝜃1
∗ + 𝜃2

∗) =
2𝜏2

′

𝑀𝑔𝑎
 and 𝜃2

∗ = (−𝜋, 0), one can determine the intervals 

of the stable 2-DOF PMR with identical Stokes damping in the SV regime on the first 

scenario torque criteria for each motor as the following equations (Eq. (48) and Eq. 

(49)). 

 

−2𝑀𝑔𝑎 < 𝜏1
′ < 2𝑀𝑔𝑎 (48) 

−
1

2
𝑀𝑔𝑎 < 𝜏2

′ <
1

2
𝑀𝑔𝑎 

 

(49) 

 

For the second scenario, the Δ𝜏 is the same as the first scenario because 𝜃1
∗ is in the 

interval of (𝜋, 2𝜋). But the 𝜃2
∗ interval is different. This difference leads to another 

stable torque criteria as follows. 

 

−2𝑀𝑔𝑎 < 𝜏1
′ <

3

2
𝑀𝑔𝑎 

 

(50) 

−
1

2
𝑀𝑔𝑎 < 𝜏2

′ < 0 
 

(51) 

 

To see the crude validity of Eq. (48) to Eq. (51), take the example of no-damping 

2-DOF PMR with a mass of 1 kg each and a length of 0.2 meters each with free move-

ment. The non-damping case is suitable for crude approximation to the SV regime and 

identical Stokes damping case. Because in the SV regime, the damping has little effect 

on its dynamics. Based on Eq. (48) to Eq. (51), the first and second scenarios have the 

following torque criteria. 

 

−4 < 𝜏1
′ < 4 (52) 

−1 < 𝜏2
′ < 1 (53) 

−4 < 𝜏1
′ < 3 (54) 

−1 < 𝜏2
′ < 0 (55) 
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Fig.7 shows the dynamical analysis for the no-damping 2-DOF PMR with a mass of 1 

kg each and a length of 0.2 meters each with free movement using the Robo Analyzer 

7.5 [9]. Fig.7(a) shows the minimum torque for the first and second joints is -1.6 Nm 

and -3.0 Nm for the first scenario. The maximum torque for the first and second joints 

is 5.2 Nm and 1.4 Nm for the first scenario. Meanwhile, Fig.7(b) shows the minimum 

torque for the first and second joints is -1.4 Nm and -0.4 Nm. For the second scenario, 

the maximum torque for the first and second joints is 5.4 Nm and 0.6 Nm. Table 3 

compares this SV regime analysis to the free movement no-damping case analysis.  

 

TABLE 3. Comparison of this SV regime analysis and the Free Movement No-Damping Case  

Scenario SV Regime Analysis Free Movement No-Damping 

First −4 < 𝜏1
′ < 4 

−1 < 𝜏2
′ < 1 

−1.6 < 𝜏1
′ < 5.2 

−3.0 < 𝜏2
′ < 1.4 

 

Second −4 < 𝜏1
′ < 3 

−1 < 𝜏2
′ < 0 

−1.4 < 𝜏1
′ < 5.4  

−0.4 < 𝜏2
′ < 0.6 

 

 

 

 

 

 

 

  

 

                  (a) 
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FIGURE 7. The Dynamical Analysis of the No-Damping 2-DOF PMR with Free Movement. 

The part (a) is the dynamical analysis for the first scenario and part (b) is the dynamical analy-

sis for the second scenario. The red and blue colors belong to the first and second joints 

 

From Table 3, the trend of the torque criteria for the stable SV 2-DOF PMR with 

identical Stokes damping looks similar to the no-damping free movement 2-DOF PMR 

but smaller. The SV 2-DOF PMR is smaller than the no-damping free movement 2-

DOF PMR because, in SV 2-DOF PMR, the torque in each joint acts as an input. These 

inputs torque still have a role controlling the 2-DOF PMR. Meanwhile, for no-damping 

free movement case, the torque in each joint is the effect of rotational movement due 

to the gravitational field. The dynamical analysis in the no-damping 2-DOF PMR also 

supports the SV regime analysis. All maximum torque for the no-damping case in both 

scenarios is outside the torque criteria for the SV regime analysis and has sharp peaks. 

It indicates that the no-damping case is unstable at these points. This fact supports the 

torque criteria for stable SV regime 2-DOF PMR. 

5 Conclusions 

This research gives a mathematical analysis of the stable torque criteria for SV 2-

DOF PMR with identical Stokes damping using Lagrangian Mechanics and Jacobian 

Formalism. This analysis shows there are two major conclusions. The first conclusion 

is the stability criteria of the SV regime with identical Stokes damping do not depend 

on the value of damping constants. The second conclusion shows that the stable torque 

(b) 

96             D. Senjaya and M. I. Yunus



   

 

criteria for this 2-DOF PMR are X and Y for the first and second scenarios. The dy-

namical analysis of the 2-DOF PMR with no damping and free movement (𝑀1 = 𝑀2 =
1 𝑘𝑔, 𝐴1 = 𝐴2 = 0.2 𝑚) supports the validity of the  

{𝜏1
′ , 𝜏2

′ } = {(−2𝑀𝑔𝑎, 2𝑀𝑔𝑎), (−0.5𝑀𝑔𝑎, 0.5𝑀𝑔𝑎)} and  

{𝜏1
′ , 𝜏2

′ } = {(−2𝑀𝑔𝑎, 1.5𝑀𝑔𝑎), (−0.5𝑀𝑔𝑎, 0)}. Because the maximum torque for 

both scenarios of the 2-DOF PMR with no damping and free movement is outside of 

the range of  
{𝜏1

′ , 𝜏2
′ } = {(−2𝑀𝑔𝑎, 2𝑀𝑔𝑎), (−0.5𝑀𝑔𝑎, 0.5𝑀𝑔𝑎)} and  

{𝜏1
′ , 𝜏2

′ } = {(−2𝑀𝑔𝑎, 1.5𝑀𝑔𝑎), (−0.5𝑀𝑔𝑎, 0)}. Moreover, the 2-DOF PMR with 

no damping and free movement maximum torque has sharp peaks. The sharp peaks are 

manifestations of instability outside the range of  
{𝜏1

′ , 𝜏2
′ } = {(−2𝑀𝑔𝑎, 2𝑀𝑔𝑎), (−0.5𝑀𝑔𝑎, 0.5𝑀𝑔𝑎)} and  

{𝜏1
′ , 𝜏2

′ } = {(−2𝑀𝑔𝑎, 1.5𝑀𝑔𝑎), (−0.5𝑀𝑔𝑎, 0)}. This research result is the primary 

step for further analysis to obtain stable control of the robot operations in the damping 

environment. 
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