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Abstract. Loose Palm Fruit (LPF) is an oil palm fruit that has ripened and fallen 

from its bunch, containing high oil content. Each loss of LPF affects the oil 

extraction rate and results in financial losses. Existing LPF collection methods 

are not very effective as they require human control and supervision. 

Conventional methods, such as mechanical and roller-type LPF collectors, are 

inefficient because LPF is scattered over extensive plantations. Therefore, an 

autonomous LPF detection system is necessary. However, image-based detection 

systems are often disturbed by environmental factors such as brightness and 

grass, and the LPF location changes with the robot and camera position. The 

general objective of this study is to develop an accurate and efficient image-based 

LPF detection algorithm. This requires an efficient detection algorithm for real-

time applications based on deep learning. Additionally, accurately determining 

the LPF location using image depth (RGB-D) is essential. This project employs 

a YOLOv4 object detector with high efficiency and accuracy to achieve real-time 

LPF detection. The LPF location is determined through the distance between the 

center coordinates of the LPF bounding box and the camera using depth images 

and the horizontal field of view of the Intel RealSense D435i camera. This system 

is integrated into the Robot Operating System (ROS) to ensure usability in robots. 

The system achieved a Mean Accuracy (mAP@IoU 0.5) of 98.74%, an average 

loss of 0.124, and a detection time of 5.14ms. For LPF location determination, 

the difference between the algorithm's calculated locations and manual 

measurements is only 3.82cm for the X coordinate and 1.80cm for the Y 

coordinate. 
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1 Related works 

The oil palm plantation sector plays a vital role in Malaysia due to its oil production, 

ranked second among the most significant contributors to the nation's coffers. The oil  
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fruits contain 26% more oil than fresh fruit bunches. Loose fruit is the ripening and 

falling palm fruit and is rarely collected. According to the survey, 11.1% of full-time 

and 10% of part-time smallholders neglect loose fruit collecting. Two common ap-

proaches, mechanical and roller-typed loose fruit collectors, have been introduced to 

facilitate loose fruit collection [1]. However, these manual approaches need a large 

workforce and are less efficient since loose fruit is scattered everywhere, and oil palm 

fields are vast. 

Image-based loose fruit identification using deep learning has been introduced, such 

as a two-stage object detection model (Faster R-CNN) by [2] and a single-stage detec-

tion model (YOLOv3) [3]. Two-stage detection models require region proposals, while 

single-stage models do not. The single-stage detection approach is faster but less accu-

rate than the two-stage model. Brightness and grass can hinder image-based loose fruit 

detection. Hence, the loose fruit detecting algorithm must be efficient and accurate to 

track the camera's movement. Table 1 compares the single-stage detection model's ef-

ficiency and accuracy. YOLOv4 achieves the highest detection speed with higher ac-

curacy. 

One key aspect that existing approaches for detecting loose fruit lack is a robust lo-

calization system. The ability to determine the precise location of loose fruit is crucial 

in improving the efficiency of loose fruit collection. With a reliable localization system, 

workers can focus on collecting loose fruit, rather than wasting time searching for it. 

This paper presents a solution to these challenges, an algorithm that uses RGB-D im-

ages and the YOLOv4 detection model with an IntelRealsense D435i camera to auto-

matically recognize and locate loose fruits. By eliminating the need for manual detec-

tion, this algorithm has the potential to significantly enhance the efficiency of loose 

fruit collection in oil palm plantations. 

 

TABLE 1. Comparison of the speed and accuracy of different object detector 

 

Detection Model Reference 

PASCAL VOC 

2007 + 2012 

COCO dataset 

(test-dev 2017) 

mAP, 

% 
FPS 

mAP, 

% 
FPS 

Fast R-CNN (Girshick 2015) [4] 68.4 0.5   

Faster R-CNN 

VGG-16 
(Ren et al. 2017) [5] 73.2 7   

SSD300 (Liu et al. 2016) [6] 74.3 46   

SSD512 (Liu et al. 2016) [6] 76.8 19   

YOLOv1 
(Redmon et al. 

2015) [7] 
63.4 45   

YOLOv2 
(Redmon & Farhadi 

2016) [8] 
76.8 67   

YOLOv3 
(Redmon & Farhadi 

2018) [9] 
  57.4 60 
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YOLOv4 
(Bochkovskiy et al. 

2020) [10] 
  62.8 96 

YOLOv5- (Ge et al. 2021) [11]   63.1 90.1 

 

2 Methodology 

This section outlines the methodology for loose fruit detection and localization, com-

prising four key steps. First, pre-processing is performed to enhance image quality 

through normalization, augmentation, and alignment. Next, the YOLO detection frame-

work is employed to identify and classify loose fruit within the images, utilizing various 

YOLO models to determine the most effective architecture. The detection performance 

is then evaluated based on mean average precision (mAP), average loss, and detection 

time to assess the models' accuracy and efficiency. Finally, the localization algorithm 

calculates the precise real-world coordinates of the detected loose fruit by processing 

the bounding boxes and camera parameters. Together, these steps ensure a comprehen-

sive approach to achieving accurate and efficient loose fruit detection and localization. 

 

2.1 Pre-processing 

The data preprocessing procedures include resizing, enhancing, labeling, and anno-

tating; 405 loose fruit images were collected and resized to 416×416. Blurring, rotation 

anti-clockwise, rotation clockwise, flipping, brightness fluctuation, saturation fluctua-

tion, noise, and shearing are used to boost the detection model's efficiency from the 

fewest datasets. Mixed and separate dataset augmentations were used. Mixed augmen-

tation uses all augmentation methods on one image. Separate augmentation applies sin-

gle augmentation to a single image, producing more datasets.  

Figures 1 and 2 illustrate mixed and separate augmentation. Mixed augmentation 

yields 1164, and separate yields 11964. This dataset has been split meticulously in a 

75:20:5 ratio between training, validation, and testing, ensuring a comprehensive train-

ing process. The dataset will be labeled and annotated with Roboflow and saved as text. 

 

 
Figure 1. Mixed augmentation – combining rotation and noise augmentation 
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Figure 2. Separate augmentation – blurring 

 

 

2.2 Loose Fruit Detection Model using YOLOv4 and YOLOv4-Tiny 

Object detection is crucial in computer vision, enabling systems to identify and locate 

objects within an image. YOLOv4 (You Only Look Once, version 4) is one of the lead-

ing Convolutional Neural Network (CNN)-based object detectors, recognized for its 

high accuracy and speed in single-frame detection. It utilizes YOLOv3 as the detection 

head. Equations (1) and (2) are used to calculate object location, while Equations (3) 

and (4) determine object size, with parameters illustrated in Figure 3.  

During model training and validation, YOLOv4 employs 137 pre-trained convolu-

tional layers. YOLOv4-Tiny, a variant of YOLOv4, shares the same detection architec-

ture but differs in the training and validation process, using only 29 pre-trained convo-

lutional layers. YOLOv4 and YOLOv4-Tiny are trained, validated, and tested on da-

tasets with mixed and separate augmentation for comparison. 

 

𝑏𝑥_𝑌𝑂𝐿𝑂𝑣4 = 𝛽 ∙ 𝜎(𝑡𝑥) −
𝛽−1

2
+ 𝐶𝑥       (1) 

 

𝑏𝑦_𝑌𝑂𝐿𝑂𝑣4 = 𝛽 ∙ 𝜎(𝑡𝑦) −
𝛽−1

2
+ 𝐶𝑦      (2) 

 

𝑏𝑤_𝑌𝑂𝐿𝑂𝑣4 = 𝜌𝑤𝑒𝑡𝑤                                (3) 

 

𝑏ℎ_𝑌𝑂𝐿𝑂𝑣4 = 𝜌ℎ𝑒𝑡ℎ                                    (4) 

 

 
Figure 3. Target object position in image 
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2.3 Performance Evaluation for Loose Fruit Detection Model 

The performance of the detection model was evaluated using several metrics: preci-

sion, recall, F1-score, mean average precision (mAP), and Intersection over Union 

(IoU).  

Precision and recall are derived from the Confusion Matrix, with precision indicating 

the accuracy of positive predictions and recall measuring the model's ability to identify 

all relevant instances.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                              (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (6) 

 

The F1-score, a harmonic mean of precision and recall, provides a single metric for 

model accuracy based on the dataset. Mean average precision (mAP) gives an overall 

measure of precision across different recall levels. IoU assesses the overlap between 

the predicted bounding box and the ground truth, reflecting the model's localization 

accuracy. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (7) 

 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1                           (8) 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
                      (9) 

 

2.4 Loose Fruit Localization Algorithm 

Accurate localization is achieved by calculating the distance between the center point 

of the detected bounding box and the camera/robot, utilizing the 87° horizontal field of 

view of the Intel RealSense D435i camera, which is determined based on the camera's 

position on the robot. 

 

The center point of the detected bounding box is calculated using Equation (10).  

 

(𝑋𝐿𝐹  , 𝑌𝐿𝐹) = (
𝑋𝑡𝑜𝑝+𝑋𝑏𝑜𝑡

2
,

𝑌𝑡𝑜𝑝+𝑌𝑏𝑜𝑡

2
)    (10) 

 

Since the horizontal field of view of the camera is 640 pixels, the 320th pixel serves 

as the reference center. This horizontal reference point is used to determine the angle 

between the camera/robot and the bounding box, as illustrated in Figure 4. The angle 

between the bounding box and the reference point is calculated using Equation (11). 
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Figure 4. Reference point for localization 

 

The distance between the reference point and the center point of the bounding 

box, 𝑋𝐷 and 𝑌𝐷 can be determined by the Equation (12) and Equation (13).  

 

𝜃𝐿𝐹 = {
(𝑋𝐿𝐹 − 320) × (

87

640
) , 𝑋𝐿𝐹 ≥ 320

(320 − 𝑋𝐿𝐹) × (
87

640
) , 𝑋𝐿𝐹 < 320

   (11) 

 

𝑋𝐷 = 𝐷𝐿𝐹 × sin (𝜃𝐿𝐹)                        (12) 

 

𝑌𝐷 = 𝐷𝐿𝐹 × cos (𝜃𝐿𝐹)                        (13) 

 

To determine the real-world coordinates(𝑋𝑊 , 𝑌𝑊) of the loose fruit, the distances 𝑋𝐷 

and 𝑌𝐷 are added to or subtracted from the camera/robot’s location (𝑋𝑅 , 𝑌𝑅) as described 

in Equations (14) and (15). In this scenario, (𝑋𝑅 , 𝑌𝑅) is assumed to be (0,0) due to the 

stationary position of the camera. Figures 5 and 6 illustrate the overall concept of lo-

calizing the real-world coordinates of the loose fruit. 

 

𝑋𝑊 = {
𝑋𝑅 + 𝑋𝐷 , 𝑋𝐿𝐹 ≥ 320
𝑋𝑅 − 𝑋𝐷 , 𝑋𝐿𝐹 < 320

                  (14) 

 

𝑌𝑊 = 𝑌𝑅 + 𝑌𝐷                                     (15) 
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Figure 5. Concept of localizing the real-world coordinate X 

 

 
Figure 6. Concept of localizing the real-world coordinate Y 

 

3 Results and Discussions 

In this study, we evaluated the performance of several models for loose fruit detection 

and localization. The hyperparameters set for training, validation, and testing as fol-

lows:  

learning rate = 0.00261, momentum = 0.9, decay = 0.0005, and batch size = 64. Four 

distinct models were developed: YOLOv4-Mixed Augmentation, YOLOv4-Separate 

Augmentation, YOLOv4-Tiny-Mixed Augmentation, and YOLOv4-Tiny-Separate 

Augmentation. Each model was rigorously trained and tested to assess its effectiveness. 
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The result shown in Figure 7, reveals that YOLOv4-Tiny-Separate Augmentation 

achieved the highest mean average precision (mAP) across all Intersections over Union 

(IoU) thresholds and had the lowest minimum average loss.  

Detailed performance metrics are summarized in Table 2, including mAP@IoU0.5, 

true positives (TP), false positives (FP), false negatives (FN), precision, recall, F1-

score, and detection time. YOLOv4-Tiny-Separate Augmentation emerged as the top 

performer with a mAP@IoU0.5 of 98.74%, precision of 0.97, recall of 0.96, F1-score 

of 0.96, and the fastest detection time of 5.140 ms. YOLOv4-Mixed Augmentation fol-

lowed as the second-best model, with a mAP@IoU0.5 of 91.93%, precision of 0.64, 

recall of 0.96, F1-score of 0.77, and a detection time of 32.98 ms.  

Based on these results, YOLOv4-Tiny-Separate Augmentation is selected for loose 

fruit detection and localization. Despite the theoretical advantage of YOLOv4 in terms 

of accuracy, it could not be fully trained due to time and memory limitations, requiring 

over 13 hours of training. However, since the aim of the project is to develop an algo-

rithm suitable for implementation on a portable GPU, achieving comparable accuracy 

with shorter training times is crucial. YOLOv4-Tiny-Separate Augmentation offers a 

balance between performance and practicality, making it the optimal choice for real-

world applications where efficiency and portability are key considerations. 

 
Figure 7. The mAPs for each model and their corresponding 

minimum average loss 
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TABLE 2. Performance evaluations for each detection models 

Model 
mAP@Io

U 0.5 

TP FP FN Precisi

on 

Rec

all 

F1-

score 

Detection 

time, ms 

YOLOv4 

Separate 

Augmentation 

91.93% 

107 60 5 0.64 0.96 0.77 32.98 

YOLOv4 

Mixed 

Augmentation 

85.68% 

111 68 1 0.62 0.99 0.76 32.95 

YOLOv4-

Tiny Separate 

Augmentation 

98.74% 

204 7 8 0.97 0.96 0.96 5.14 

YOLOv4-

Tiny Mixed 

Augmentation 

85.47% 

107 46 5 0.70 0.96 0.81 5.14 

 

The algorithm-determined world coordinates of loose fruit will be compared to man-

ual measurements. Measure the distance between the loose fruit and the camera and the 

real-world reference point to determine loose fruit's world coordinate. First, place an 

object in 320 pixels in the camera's image to find the reference point. Measure the dis-

tance between the loose fruit and the reference point, 𝑋𝐷_𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 . Next, 𝑌𝐷_𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is 

measured between loose fruit and camera. Using Equation (16) and Equation (17). As-

suming (𝑋𝑅, 𝑌𝑅) = (0,0). Figures 7 and 8 show how to measure real-world fruit coor-

dinates. 

 

𝑋𝑊 = {
𝑋𝑅 + 𝑋𝐷_𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , 𝐿𝐹 𝑜𝑛 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒

𝑋𝑅 − 𝑋𝐷𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
, 𝐿𝐹 𝑜𝑛 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒

.(16) 

 

𝑌𝑊 = 𝑌𝑅 + 𝑌𝐷_𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑               (17) 

 

 
Figure 8. Determination of distance between loose fruit and reference point 
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Figure 9. Determination of distance between loose fruit and camera 

 

The performance of the localization algorithm was assessed by comparing the algo-

rithm-determined locations with manual measurements. A total of 25 locations were 

used for this comparison. The results, illustrated in Figure 10, are presented as boxplots 

for the differences in both the X and Y coordinates. The differences in the X coordinate 

are within ±3.28 cm, while the differences in the Y coordinate are within ±1.80 cm. 

These small discrepancies indicate that the algorithm's localization accuracy is accepta-

ble and aligns well with manual measurements. 

 

 
Figure 10. Boxplot for difference of coordinate X and coordinate Y. 

 

4 Conclusions 

In this work, we have successfully trained and evaluated four loose fruit detection 

models: YOLOv4-Separate Augmentation, YOLOv4-Mixed Augmentation, YOLOv4-

Tiny-Separate Augmentation, and YOLOv4-Tiny-Mixed Augmentation. Among these, 

the YOLOv4-Tiny-Separate Augmentation has emerged as the most effective model, 
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achieving an impressive mAP@IoU0.5 of 98.74%, a minimum average loss of 0.102, 

and a detection time of 5.14 ms.  

This high level of performance has led us to select this model for integration into the 

loose fruit detection and localization algorithm. Our comparison between the algo-

rithm-detected locations and manual measurements has shown minimal discrepancies, 

with differences of only ±3.28 cm in the X coordinate and ±1.80 cm in the Y coordinate. 

These minor differences are well within acceptable limits, considering the potential for 

technical imperfections in manual measurements. Overall, the algorithm has demon-

strated high accuracy, with a mAP@IoU0.5 of 98.74%, a rapid detection time of 5.14 

ms, and minimal location deviation, confirming its effectiveness for loose fruit detec-

tion and localization. 

For future work, several opportunities to enhance the system's performance and ap-

plicability may be addressed. First, the incorporation of additional data sources or sen-

sor modalities, such as thermal imaging or multispectral data, could significantly im-

prove detection capabilities in varying environmental conditions. Second, the explora-

tion of advanced training techniques and model architectures could lead to substantial 

improvements in the algorithm's accuracy and robustness, especially in challenging sce-

narios. Third, the optimization of the algorithm for real-time processing on embedded 

systems could greatly enhance its versatility for on-field applications. However, it is 

the final opportunity that holds the most promise-conducting extensive field trials with 

diverse fruit types and plantation conditions. These trials provide invaluable insights 

into the system's real-world performance and robustness, and we believe they are a 

crucial step in the system's development. 
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