
Design and Practice Exploration of Software Security

Experimental Teaching

Fangfang Xu*, Ziqi Zhu, Feng Gao, Xiao Xie, Yaojie Chen

School of Computer of Science and Technology, Wuhan University of Science and Technol-

ogy, Wuhan, Hubei, 430081, China

*Corresponding author: xuff@wust.edu.cn

Abstract.In order to cultivate students' comprehensive ability and innovative

thinking, meet the requirements of engineering practice ability under the new en-

gineering background, and solve the difficulties faced by software experiment

teaching at present, combining the advantages of traditional teaching, this paper

puts forward new ideas and new ideas for software safety experiment teaching

design and practice. The combination of independent experiment and compre-

hensive experiment, classification teaching, the introduction of competition

mechanism heuristic teaching, using online experimental teaching platform, fo-

cusing on process assessment and other aspects are implemented into the exper-

imental teaching process. Finally, the subsequent teaching improvement sugges-

tions are put forward.

Keywords：Software security; Experimental teaching; Information security

1 INTRODUCTION

Currently, society's dependence on information technology is becoming increasingly

significant. With the rapid growth of information volume, the complexity of software

development and integration is rising, leading to serious vulnerabilities in software

products. In the field of information security, software security is a core course, and its

experimental teaching component is especially important [1]. At present, many univer-

sities have offered this course, which plays a crucial role in helping students understand

and master security practices as well as secure programming techniques, enhancing

their innovation and practical skills [2,3].

In this context, how to effectively design and implement software security experi-

mental teaching to cultivate students' problem-solving abilities and innovative capabil-

ities has become an important issue faced by educators [4-5]. The purpose of this paper

is to explore the design and practice of software security experimental teaching.

In the "Guiding Professional Standards for Information Security," the research di-

rections of the information security discipline are divided into several areas, including

cryptography, network security, information system security, and information content

security. Software security, as an important component of information system security,

© The Author(s) 2024
M. S. H. Talpur et al. (eds.), Proceedings of the 2024 4th International Conference on Internet Technology and
Educational Informatization (ITEI 2024), Atlantis Highlights in Social Sciences, Education and Humanities 27,
https://doi.org/10.2991/978-94-6463-560-7_31

https://doi.org/10.2991/978-94-6463-560-7_31
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-560-7_31&domain=pdf

is one of the core courses in the information system security program. The main goal
of the software security course is to help students understand software security threats
and their root causes, as well as to master the basic concepts related to software security,
including the detection and protection technologies for malicious code. This course im-
poses high demands on students' foundational knowledge and practical skills, and due
to the rapid pace of technological advancements, the course content also needs to re-
main current and relevant [6].

However, there are still some shortcomings in the experimental teaching component
of this course：

(1) Students Lack the Initiative to Comprehensively Apply the Foundational
Knowledge They Have Learned.

In the preliminary foundational courses, only three security-related courses are in-
volved: "Introduction to Cyberspace Security," "Mathematical Foundations of Infor-
mation Security," and "Cryptography." These courses are less targeted toward software
security, leading some students to perceive that the foundational courses have little
practical value for software security. Students often adopt a passive attitude in software
security experimental teaching, typically receiving tasks assigned by instructors with-
out actively integrating and applying the foundational knowledge they have learned.
For example, during the software security experiment on "Buffer Overflow Vulnerabil-
ity Analysis and Exploitation," students frequently find it challenging to organically
combine foundational knowledge such as operating system principles and network pro-
tocols with the experimental content, resulting in insufficient understanding and prob-
lem-solving abilities during practical operations.Therefore, it is particularly important
to design basic software security experiments that help students organize their
knowledge of information security and guide them to proactively apply the founda-
tional knowledge they have learned to address software security issues.

(2) Students Lack the Enthusiasm to Leverage Foundational Knowledge to Re-
verse-engineer Underlying Mechanisms.

In software security experimental teaching, students often focus solely on superficial
security vulnerabilities and simple defense measures, lacking a deep understanding of
fundamental knowledge such as operating system principles, programming languages,
and network protocols. This limitation hinders their ability to effectively reverse-engi-
neer underlying mechanisms. For example, when conducting the "Buffer Overflow
Vulnerability Analysis and Exploitation" experiment, if students have not firmly
grasped foundational concepts like memory management, function call conventions,
and their implementation in compilers, they are unable to identify the root causes of
attacks and exploit vulnerabilities effectively. Furthermore, students tend to rely exces-
sively on existing security tools to find and identify vulnerabilities, lacking systematic
analytical skills. This restricts their ability to thoroughly analyze potential security
risks, resulting in their practical skills remaining at the level of tool usage .

(3) The Evaluation and Assessment Method does not Meet the Needs of the New
Engineering Disciplines.

The current evaluation and assessment methods tend to emphasize theoretical
knowledge while neglecting practical skills, making it difficult to comprehensively as-
sess students' abilities and performance in practical operations. In experimental

Design and Practice Exploration of Software Security Experimental Teaching 257

teaching, the evaluation often relies solely on a single report format, which fails to ad-
equately reflect students' overall performance and innovative capabilities during exper-
iments. Furthermore, assessments typically focus only on individual performance, not
effectively capturing students' teamwork and communication skills. In summary, the
existing evaluation and assessment system does not meet the needs for cultivating stu-
dents' comprehensive abilities and innovative thinking in the context of new engineer-
ing disciplines.

2 EXPERIMENTAL TEACHING CONTENT DESIGN

2.1 Basic Objectives of Experimental Teaching Content Design

Through years of software security teaching practice, considering students' actual situ-
ations as well as industry talent demands, our software security experimental teaching
primarily revolves around three objectives:

(1) Cultivating the Ability to Integrate Foundational Knowledge with Practice.
The content of the experimental teaching is closely linked to the theoretical courses,
designing foundational experimental projects that are relevant to the curriculum. Addi-
tionally, real software security cases are introduced to design comprehensive experi-
mental projects based on actual problems, thereby enhancing students' practical abili-
ties.

(2) Stimulating Students' Initiative and Creativity. By designing exploratory,
open-ended, and challenging experimental projects, we provide students with a certain
degree of choice and freedom, encouraging them to explore and innovate independently
during experiments. This approach aims to foster students’ creative and critical think-
ing, thereby improving their ability to solve complex problems.

(3) Developing Students' Teamwork and Communication Skills. By designing
group collaborative experimental tasks and introducing teamwork dynamics, we guide
students to enhance their communication and collaboration skills within a team, helping
them learn to work effectively with others.

2.2 Experimental Teaching Content

In alignment with the objectives of software security experimental teaching, the content
of software security experiments is categorized into six types: foundational experi-
ments, principle verification experiments, comprehensive exploration experiments, in-
novative experiments, competition experiments, and practical application experiments.

The specific teaching objectives and content for these experiments are presented in
Table 1.

Table 1. Experimental Teaching Content

Experiment Type Purpose Content

Foundational Ex-
periments

Understand the basic
knowledge of software

security.

Analysis of insecure code and writing secure code,
buffer overflow experiments, SQL injection experi-
ments, XSS experiments.

258 F. Xu et al.

Principle Verifi-
cation Experi-

ments

Understand the core
principles of software

security.

Encryption algorithm experiments, access control
mechanism experiments, intrusion detection system
(IDS) experiments, malware analysis experiments.

Comprehensive
Exploration Ex-

periments

Cultivate comprehen-
sive analytical and

problem-solving abili-
ties.

Double free vulnerability experiments, analysis of
vulnerabilities in complex applications, combined
dynamic and static analysis experiments, malware
family classification experiments.

Innovative Exper-
iments

Cultivate innovative
thinking and the ability
to develop new technol-

ogies.

Exploration of new technologies: Investigating the
application of cutting-edge technologies (e.g., block-
chain, machine learning) in software security, requir-
ing students to design experiments for validation.
Project Development: Collaborative group develop-
ment of a highly secure software application, requir-
ing assessment of potential security risks and corre-
sponding design measures.

Competition Ex-
periments

Develop practical skills
and teamwork abilities.

Capture The Flag (CTF) competitions, penetration
testing competitions, defense strategy competitions,
attack-defense confrontation experiments, practical
drills and simulation competitions, enterprise collab-
oration competitions.

Practical Applica-
tion Experiments

Apply theoretical
knowledge to real-world
scenarios to deepen un-

derstanding.

Collaborating with enterprises to conduct experi-
ments related to actual projects, helping students un-
derstand the industry's real needs and solutions for
software security.

3 IMPLEMENTATION OF EXPERIMENTAL
TEACHING

The purpose of experimental teaching is not only to help students understand and mas-
ter theoretical knowledge but also to focus on cultivating their practical abilities and
innovative spirit. To enhance students' learning capabilities, analytical skills, and ability
to apply knowledge comprehensively, as well as to stimulate their interest in learning
and uncover their potential, a variety of teaching methods are employed during the in-
structional process, such as combining independent experiments with comprehensive
experiments. This approach aims to guide students to value the development of their
ability to apply knowledge and their capacity for independent innovation.

3.1 Combining Independent Experiments with Comprehensive
Experiments

Independent experiments focus on training specific knowledge, while comprehensive
experiments emphasize the integration of multiple knowledge points and the ability to
solve practical problems. However, these two should maintain a moderately loose cou-
pling; otherwise, failures in preliminary experiments can negatively impact subsequent
experiments, leading to a decline in students' interest and confidence. Therefore, both
types of experiments need to be designed holistically to achieve effective integration of
independent and comprehensive experiments.

For example, first, design an independent experiment focused on a single topic:
"Learning and Using Tools to Analyze the Panda Burning Incense Malware," providing

Design and Practice Exploration of Software Security Experimental Teaching 259

detailed steps and operational guidelines to ensure students can complete it inde-
pendently. Following that, a comprehensive experiment can be designed: "Thoroughly
Analyzing a Complex Malware Sample," which involves static analysis, dynamic anal-
ysis, and behavioral detection, and requires students to propose defense strategies.

Years of experimental teaching practice have demonstrated that this approach, mov-
ing from simple to complex and from individual to comprehensive, allows students not
only to solidify their understanding of foundational knowledge and skills but also to
apply these knowledge and skills to complex real-world problems, thereby expanding
their ability to apply knowledge and enhancing their problem-solving skills.

3.2 Categorized Teaching

While ensuring the fundamental teaching tasks are met, students are grouped based on
their varying levels and learning needs, with corresponding teaching content and meth-
ods designed and implemented. Students are divided into three groups according to
their levels: the Basic Group, Intermediate Group, and Advanced Group. Based on their
learning needs, they are further classified into: the Instructional Group and the Compe-
tition Group. Given the limited teaching resources and time, different levels of diffi-
culty and depth of experimental content and resources are provided according to the
grouping results.

Teaching is conducted separately based on the grouping results, offering varying
levels of difficulty and depth in the experimental content. Personalized guidance is pro-
vided for different student groups, with additional support for the Basic Group and en-
couragement for the Advanced Group and Competition Group to take on more chal-
lenging experimental tasks.

The specific categorized teaching strategies are shown in Table 2.

Table 2. Categorized Teaching Strategies

Group Teaching Con-
tent Guidance Self-

Study Required Optional Experiment
Difficulty

Basic
Group

Foundational Ex-
periments √ √ Easy

Principle Verifi-
cation Experi-

ments
√ √ Easy

Comprehensive
Exploration Ex-

periments
√ √ Moderate

Innovative Ex-
periments √ √ Moderate

Competition Ex-
periments √ √ Challenging

Practical Appli-
cation Experi-

ments
√ √ Challenging

Interme-
diate

Foundational Ex-
periments √ √ Easy

260 F. Xu et al.

Group Principle Verifi-
cation Experi-

ments
√ √ Moderate

Comprehensive
Exploration Ex-

periments
√ √ Moderate

Innovative Ex-
periments √ √ Challenging

Competition Ex-
periments √ √ Challenging

Practical Appli-
cation Experi-

ments
√ √ Very Chal-

lenging

Ad-
vanced
Group

Foundational Ex-
periments √ √ Easy

Principle Verifi-
cation Experi-

ments
√ √ Moderate

Comprehensive
Exploration Ex-

periments
√ √ Challenging

Innovative Ex-
periments √ √ Challenging

Competition Ex-
periments √ √ Very Chal-

lenging
Practical Appli-
cation Experi-

ments
√ √ Very Chal-

lenging

Instruc-
tional
Group

Foundational Ex-
periments √ √ Easy

Principle Verifi-
cation Experi-

ments
√ √ Easy

Comprehensive
Exploration Ex-

periments
√ √ Moderate

Innovative Ex-
periments √ √ Challenging

Competition Ex-
periments √ √ Very Chal-

lenging
Practical Appli-
cation Experi-

ments
√ √ Very Chal-

lenging

Competi-
tion

Group

Foundational Ex-
periments √ √ Easy

Principle Verifi-
cation Experi-

ments
√ √ Moderate

Comprehensive
Exploration Ex-

periments
√ √ Challenging

Innovative Ex-
periments √ √ Very Chal-

lenging
Competition Ex-

periments √ √ Very Chal-
lenging

Practical Appli-
cation Experi-

ments
√ √ Very Chal-

lenging

Design and Practice Exploration of Software Security Experimental Teaching 261

Teaching practice has demonstrated that the categorized teaching model can provide
personalized learning experiences tailored to students' varying levels and needs, thereby
enhancing teaching effectiveness. This approach more effectively stimulates students'
interest in learning and initiative, while avoiding the frustration caused by disparities
in learning abilities.

3.3 Guided Teaching with the Introduction of a Competitive
Mechanism

The knowledge system and technological advancements in software security are rapidly
evolving, making it difficult for educational institutions to provide comprehensive in-
struction. Therefore, by introducing a competitive mechanism into heuristic teaching,
the aim is to cultivate students' interest in exploring new technologies and tools, in-
crease the diversity of problem-solving approaches, and enhance students' initiative. In
practice, two main teaching methods are employed:First, instructors set different topics
based on the experimental content and current hot issues in software security both do-
mestically and internationally, providing relevant reference materials. Students are
guided to work in groups to discuss and research these topics. Each group is required
to present and submit a research report. A judging panel is established to score the
presentations based on their logical coherence and clarity, with the scores contributing
to the overall assessment.Second, students are encouraged to actively explore and ana-
lyze real-world issues related to software security challenges encountered in their learn-
ing and daily environments, such as smart wearable devices and mobile terminals. Stu-
dents analyze application software to extract vulnerability information, and instructors
provide corresponding scores based on the vulnerability analysis reports submitted by
the students. Scores can be accumulated, and instructors will regularly update and pub-
licly display the total scores of the students in the class, which will also be factored into
the final assessment.

Multiple practices in experimental teaching have shown that introducing a competi-
tive mechanism into heuristic teaching effectively stimulates students' enthusiasm for
learning, increases their participation, and enhances their practical skills and innovative
thinking. Additionally, this approach fosters teamwork and communication skills
among students. Furthermore, in a competitive environment, students also develop their
ability to handle pressure and adapt to changing circumstances.

3.4 Online Experimental Teaching Platform

The online experimental teaching platform, Istudy, has been established to provide a
virtual laboratory for remote experiments. It also allows for online resource sharing,
submission and assessment of experiment reports, and online Q&A sessions.

With the online teaching platform, students can access it at any time, learn at their
own pace, and repeat experiments as needed. The online platform provides students
with an isolated virtual experiment environment, mitigating the risk of virus transmis-
sion and ensuring the safety and control of experiments. Additionally, the platform rec-
ords the students' experimental processes and results, offering detailed analytical data

262 F. Xu et al.

for teachers to assess student performance in real time. This online platform creates an
interactive, open, and efficient learning environment for students, significantly enhanc-
ing the effectiveness of the teaching process.

3.5 Reform of Assessment Processes

Compared to traditional assessment methods, our evaluation emphasizes process as-
sessment and places greater importance on students' overall abilities. The final grade
consists of three components: attendance, performance during the experiment, and the
experimental report:

(1) Attendance accounts for 10% of the final grade and includes students' attendance
records to ensure they participate in experimental teaching sessions on time.

(2) Performance during the experiment constitutes 70% of the final grade and en-
compasses students' analytical abilities in problem-solving during the experiment,
group defense scores, and accumulated points for submitted vulnerability information.

(3) The experimental report represents 30% of the final grade and includes the ex-
periment steps, results and analysis, and reflective questions related to the experiment.

Teaching practices have shown that this assessment method not only provides a com-
prehensive evaluation of students' abilities and encourages continuous learning but also
supports students' individualized development.

4 SUBSEQUENT DEVELOPMENT IDEAS

In the subsequent development of the experimental courses, we will first incorporate
past competition problems into the planning of experimental projects based on the pro-
gress of the theoretical courses, analyzing the problem-solving approaches from these
competitions to enhance students' abilities and interest in participating in competitions.
At the same time, we will actively apply for and host information security competitions
to provide students with opportunities for face-to-face interactions with top talents from
across the country.

Beside, we will promote the latest events and security technologies in the field of
software security through the online experimental teaching platform. By actively col-
laborating with companies such as Qihoo 360, Tencent, and Xiaomi Technology, we
will introduce industry professionals as instructors and establish corporate partnership
projects, thus building a communication bridge between students and the industry.

5 CONCLUSION

Software security experimental teaching plays a crucial role in helping students grasp
the fundamental concepts and principles of software security. This paper starts with the
existing issues in software security experimental teaching, providing a detailed intro-
duction to the teaching objectives and content design of the course, while also discuss-
ing the methods of implementation. After more than five years of practice, we have

Design and Practice Exploration of Software Security Experimental Teaching 263

achieved significant results, notably an improvement in students' ability to engage in
autonomous learning.

ACKNOWLEDGMENT

This work is supported by the Natural Science Foundation of Hubei Province Educa-
tional Committee (ID: B2019009), and Innovative Talent Cultivation Special Project
of Wuhan University of Science and Technology (2023X067&2023X027)".

REFERENCES

1. PENG GJ, ZHANG HY, DAI JM, et al. Research on the practice of attack and defense of
software security quality course[J], computer education, 2020, (08): 79-83.
DOI:10.16512/j.cnki.jsjjy.2020.08.019.

2. LIU YS, HONG S, LIU JW, et al. Teaching Reform and Practice of combining "Software
security" with engineering problems [J]. Industrial and Information Education, 2023,
(12):49-53.

3. PENG BT, WANG CJ, LUO HJ. Research on software vulnerability analysis experiment
teaching[J]. Journal of Hubei Open Vocational College,2021,34(20):160-162.

4. J. O. B. Smith, A. Johnson, and R. Brown, "Teaching Software Security Through Attack-
Defense Scenarios: An Educational Framework," Journal of Information Security Educa-
tion, vol. 15, no. 3, pp. 200–215, 2022.

5. SU T, JIANG L, FANG M. Network and information security course series of integrated
teaching exploration and practice[J]. Computer education, 2023, (06): 76-80.
DOI:10.16512/j.cnki.jsjjy.2023.06.017.

6. S. R. Patel, "Developing Security Awareness in Software Engineering Students: A Dual Ap-
proach," Journal of Systems and Software, vol. 165, p. 110553, 2020.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

264 F. Xu et al.

http://creativecommons.org/licenses/by-nc/4.0/

	Design and Practice Exploration of Software Security Experimental Teaching

