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Abstract. In the context of globalization, the shipping industry plays a crucial 

role in international trade, and fluctuations in freight rates have significant im-

pacts on the global economy. This study integrates Automatic Identification Sys-

tem data with shipping schedule data to calculate the daily total capacity and av-

erage capacity of ships, which serve as key factors influencing freight rate pre-

dictions. By incorporating real-time AIS data, the model captures dynamic ship 

movements and provides more accurate capacity estimates. A Bidirectional Long 

Short-Term Memory model is employed and compared with Long Short-Term 

Memory and Recurrent Neural Network models. Additionally, hyperparameter 

optimization methods including Tree-structured Parzen Estimator, Bayesian Op-

timization, Random Search, and Grid Search are applied and compared. The re-

sults indicate that the Bilstm model with AIS data outperforms the other models 

in terms of Mean Absolute Error, Mean Absolute Percentage Error, and Coeffi-

cient of Determination. Among the optimization methods, the TPE method 

demonstrates superior performance, providing the most accurate and reliable 

freight rate predictions. This study highlights the importance of integrating real-

time AIS data and advanced optimization techniques in improving the accuracy 

of freight rate prediction models 

Keywords: component; Shipping; Freight Rate Prediction; AIS; Bilstm. 

1 Introduction 

In today's globalized world, the shipping industry serves as a critical component of 

international trade, with fluctuations in freight rates having significant implications for 

the global economy. Shipping freight rates not only impact the revenues of shipping 

companies and cargo owners but also play a crucial role in the stability of the global 

supply chain. Accurate prediction of freight rates can aid businesses in making more 

effective operations and decisions, thereby enhancing market competitiveness. 
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1.1 Current Time Series Forecasting Methods 

The volatility of shipping freight rates is influenced by numerous factors, including 

market supply and demand, fuel prices, weather conditions, and political factors. There-

fore, accurate prediction of freight rates is of great importance for shipping companies 

in formulating reasonable pricing strategies, optimizing capacity allocation, and reduc-

ing operational risks. For cargo owners, understanding future freight rate trends can 

help in better planning logistics costs, selecting the optimal transportation scheme, 

thereby saving costs and improving operational efficiency. Additionally, freight rate 

prediction assists cargo owners in risk management, avoiding uncertainties caused by 

rate fluctuations. Accurate freight rate predictions can also enable governments to take 

timely measures during market anomalies to prevent market imbalance and protect 

stakeholders' interests. Thus, predicting shipping freight rates is not only a core require-

ment for shipping companies and cargo owners but also an essential aspect of ensuring 

stable global trade and economic development. 

In recent years, machine learning and deep learning techniques have been widely 

applied in freight rate forecasting. Research by Hirata and Matsuda [1] demonstrated 

that the LSTM model outperforms the SARIMA model on most datasets. Saeed et al. 
[2] significantly improved the accuracy of predictions by incorporating perturbation 

events into the Prophet forecasting model, especially when considering market volatil-

ity factors. Munim and Schramm [3] compared the ARIMA and ARIMARCH models, 

finding that the latter performs better in short-term forecasting, particularly in handling 

freight rate fluctuations. 

Benth and Koekebakker [4] proposed a continuous-time process model to simulate 

the dynamics of Supramax freight rates, demonstrating its advantages in capturing mar-

ket volatility. Yang and Mehmed [5] showcased the application of two dynamic artificial 

neural network models, NARNET and NARXNET, in freight rate forecasting, proving 

their effectiveness in multi-step forecasting. 

Podlodowski and Kozłowski [6] enhanced the prediction accuracy of transshipment 

contract costs by combining XGBoost and deep neural networks. Syriopoulos et al. [7] 

applied Support Vector Machines (SVM) for vessel price forecasting, finding that its 

predictive performance surpasses that of traditional time series models. 

1.2 AIS Data and Freight Rate Data 

The Automatic Identification System (AIS) data plays a pivotal role in the shipping 

industry, primarily by providing real-time tracking of vessel positions, speeds, and 

course information. AIS data aids market participants in better understanding market 

dynamics and making informed decisions. By collecting and analyzing AIS data, ship-

ping companies can optimize vessel routes, enhance operational efficiency, and 

promptly respond to maritime emergencies. Additionally, port management authorities 

can utilize this data for berth allocation, port scheduling, and congestion management, 

thereby improving port operation efficiency. Governments and regulatory agencies can 

also monitor maritime traffic, enforce safety regulations, and implement environmental 

protection measures using AIS data. AIS data significantly contributes to enhancing the 
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overall efficiency of the shipping industry, ensuring navigational safety, and promoting 

sustainable development. 

By incorporating AIS data, the daily estimation of shipping capacity can be more 

accurately determined, thereby improving the accuracy of freight rate forecasts. Ko-

yuncu and Tavacıoğlu [8] used AIS data in conjunction with time series models to en-

hance the prediction accuracy of the Shanghai Containerized Freight Index (SCFI). 

Chen et al. [9] improved the prediction accuracy of dry bulk market freight rates by 

combining AIS data with market sentiment indicators. Lim and Kim [10] successfully 

forecasted freight rate fluctuations in the dry bulk and tanker markets by combining 

AIS data with wavelet decomposition and empirical mode decomposition techniques. 

Additionally, the study by Dong Liangcai et al. [11] showed that a fuzzy neural net-

work model incorporating AIS data could more accurately predict the Baltic Dry Index 

(BDI), enhancing the handling of complex nonlinear data. Li Wanyong et al. [12] signif-

icantly improved the prediction accuracy of the China Containerized Freight Index 

(CCFI) by integrating AIS data with an ANN-ARIMA combined model. Lan 

Xiangang’s [13] research demonstrated the efficiency of the SVR-Adam-LSTM model, 

combined with AIS data, in predicting the Baltic Dry Index. 

In summary, this study distinctively incorporates daily total capacity and average 

capacity of ships into freight rate prediction models using AIS data. This approach sig-

nificantly enhances the accuracy of the BiLSTM model, providing stakeholders with 

more reliable decision support. By addressing the inherent volatility and uncertainties 

of the shipping market, this method demonstrates substantial improvements in the pre-

cision and reliability of freight rate forecasts. 

2 Methodology 

2.1 Calculation of Shipping Route Capacity 

Using a combination of shipping schedule data and AIS data, the capacity supply on 

the Tianjin-Europe route was calculated by analyzing the number and capacity of ships 

on this route. AIS data plays a crucial role in the shipping industry, primarily used to 

track the real-time location, speed, and course of ships. To calculate the capacity supply 

on the Tianjin-Europe route, the shipping schedule data was combined with AIS data. 

The specific formula is as follows: 
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In these formulas, tp  represents the real-time position data of the ship at time t . 

The geographic range of the Tianjin-Europe route is denoted by R . The binary func-

tion ( )I t  indicates whether a ship is on the route at time t . The variable d  refers 

to a specific day, and dC  is the daily total capacity on that day. The number of ships 

on the route on day d  is represented by dN . The index of the ship is i , and iT  is 

the TEU of the i-th ship. The binary function ( )iI d  indicates whether the i-th ship is 

on the route on day d . Finally, avg,dC  is the average daily capacity on day d . 

2.2 Current Time Series Forecasting Methods 

In data preprocessing, several interpolation methods were used to handle missing val-

ues and compare their impact on model performance. Specifically, linear interpolation, 

quadratic interpolation, cubic interpolation, and Pchip interpolation methods were uti-

lized. The formulas for these interpolation methods are as follows: 

Linear Interpolation formula is as follows: 
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Quadratic Interpolation formula is as follows: 
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Cubic Interpolation formula is as follows: 
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Pchip Interpolation formula is as follows: 
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Using these basis functions, the Hermite interpolating polynomial can be expressed 

as: 
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In these formulas, y  represents the interpolated value, which is the estimated 

value at a given interpolation point x . The coordinates 0x , 1x , 2x  are the known 

points on the x-axis, while 0y , 1y , 2y are the corresponding known values on the y-

axis. The coefficients 0a , 1a , 2a and 3a are the polynomial coefficients used in quad-

ratic and cubic interpolation. The variable t is the normalized interpolation point. The 

Hermite basis functions 00 ( )h t , 10 ( )h t , 01( )h t  and 11( )h t  are used to construct the 

Hermite interpolating polynomial. In this polynomial, iy  and 1iy +  are the function 

values at the nodes, im and 1im +  are the derivative values at the nodes. 

2.3 Bilstm Model Structure 

The Long Short-Term Memory (LSTM) model is an improved Recurrent Neural Net-

work (RNN) particularly suited for handling and predicting time series data. Its key 

innovation lies in introducing memory cells that control the flow and retention of infor-

mation through three gate mechanisms: forget gate, input gate, and output gate, as il-

lustrated in Fig. 1. 

 

Fig. 1. LSTM Model. 
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The formula is as follows: 

 1( [ , ] )t f t t ff W h X b −=  +  (14) 

 1( [ , ] )t i t t ii W h X b −=  +  (15) 

 1t t t t tC f C i C−= +  (16) 

 1( [ , ] )t o t t oo W h X b −=  +  (17) 

 tanh( )t t th o C=  (18) 

In these formulas, tx represents the input vector at the current time step, 1th −  rep-

resents the hidden state at the previous time step, 1tC − represents the cell state at the 

previous time step, tC  represents the cell state at the current time step, and th  rep-

resents the hidden state at the current time step.  is the sigmoid activation function, 

fW , iW , and oW  are the weight matrices for the forget, input, and output gates, re-

spectively, 
fb , ib , and ob  are the bias vectors for the corresponding gates, de-

notes element-wise multiplication, and tC is the candidate cell state obtained through 

certain transformations. 

The Bidirectional Long Short-Term Memory (Bilstm) model captures contextual in-

formation of time series data more effectively by combining forward and backward 

LSTM layers (as shown in Fig. 2). This structure allows the network to consider both 

past and future information, thereby improving prediction accuracy. 

 

Fig. 2. Bilstm Network Architecture Diagram. 
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In the Bilstm model, the input vector tX  represents the input data at the current 

time step, th  denotes the forward hidden state, and tH  denotes the backward hid-

den state. The output vector tY  represents the output at the current time step. The 

weight parameters tw  (t=1,2,3...6) are used to connect the relationships between the 

inputs, hidden states, and outputs. Through these weights, the Bilstm model can effec-

tively capture the contextual information of time series data, thereby improving predic-

tion accuracy. 

2.4 TPE Optimization Algorithm 

The Tree-structured Parzen Estimator (TPE) algorithm is a Bayesian optimization 

method used for hyperparameter tuning. TPE constructs probabilistic models and iter-

atively selects new hyperparameter combinations based on Bayesian updating rules, 

effectively searching for optimal solutions in high-dimensional spaces. 

The formula is as follows: 

 ( ) ( )l x p x y =    (19) 

 ( ) ( )g x p x y =    (20) 

 ( ) ( ) ( )EI x y l y x dy



−

= −   (21) 

In these formulas, y represents the objective function value, and x represents the hy-

perparameter combination. The symbol  is the threshold value that is dynamically 

updated during the optimization process. The functions ( )l x and ( )g x represent the 

probability density distributions of the hyperparameter x when the objective function 

value y  is less than or equal to   and greater than  , respectively. The term 

( )EI x  represents the Expected Improvement, which is used as the sampling criterion 

to select new sampling points in the optimization process. 

Combining Bilstm and TPE optimization can effectively enhance the accuracy of 

freight rate forecasts. 

2.5 Bilstm-TPE Model Structure 

The AIS-Bilstm-TPE model combines the bidirectional information capturing capabil-

ity of Bilstm with the efficient hyperparameter optimization method of TPE, continu-

ously optimizing model parameters to improve the accuracy of freight rate predictions. 

This model integrates shipping freight rate data, AIS data, and shipping schedule data, 

aligning them in time to form daily ship data. The daily ship data undergoes interpola-

tion to handle missing values, and the resulting data is split into freight rate, total TEU, 
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and average TEU. These features are then fed into a Bidirectional LSTM network, op-

timized by the TPE optimizer, to produce the final forecast results. (as shown in Fig. 

3). 

 

Fig. 3. AIS-Bilstm-TPE Model. 

With this architecture, the model can effectively capture market supply-demand dy-

namics and freight rate trends, providing more accurate prediction results. 

3 Experiment Design 

3.1 Experimental Data 

The experimental data used in this study comes from the shipping schedules provided 

by China Shipping Gazette and AIS data provided by the Shipping & Port Big Data 

Laboratory (SPBD-Lab). The selected features include price, total TEU, and average 

TEU. To verify the effectiveness of the AIS-Bilstm-TPE model, this study uses the 

freight rates for the Tianjin-Europe route for the entire year of 2022 as the dataset, and 

the capacity data of the Tianjin-Europe route as an influencing factor to optimize the 

shipping freight rate prediction. 

3.2 Evaluation Metrics 

This study uses the following metrics to evaluate the model's performance: 

Mean Absolute Error: 
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In these formulas, n represents the number of samples, iy is the actual value of the 

i-th sample, ˆ
iy is the predicted value of the i-th sample, and y is the mean value of 

the samples. 

3.3 Data Preprocessing 

Data loading and preprocessing include using MinMaxScaler to normalize the data, 

scaling it between 0 and 1. The normalization formula is as follows: 

 
min

max min

new

x x
x

x x

−
=

−
 (26) 

Where newX  is the normalized data, x is the original data value, maxX  is the 

maximum value in the dataset, and minX is the minimum value in the dataset. 

This study uses the first 70% of the data as the training set and the remaining 30% 

as the test set. The TPE algorithm is used for hyperparameter optimization, including 

optimizing the hidden layer size, number of layers, learning rate and dropout rate. The 

Mean Squared Error loss function is used as the optimization objective function. The 

models were trained and the loss on the validation set was calculated. Subsequently, 
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the models were retrained using the best parameters, with the Early Stopping strategy 

adopted to prevent overfitting. 

3.4 Interpolation Methods Analysis 

By comparing the results of different interpolation methods (Table 1), we found that 

the Pchip interpolation method performed best in terms of MAE and RMSE (For-

mula22,23). 

Table 1. Comparison of interpolation methods. 

 MAE RMSE 

Linear Interpolation 50.54 100.94 

Quadratic Interpolation 53.08 104.58 

Cubic Interpolation 53.96 105.03 

Pchip Interpolation 49.25 100.49 

3.5 Predictive Model Comparative Analysis 

During the model training process, this study conducted a comparative analysis of 

Bilstm, LSTM, and RNN models. To ensure a fair comparison, the TPE algorithm was 

employed for hyperparameter optimization for each model, with the number of optimi-

zation iterations set to 30. 

The fixed values include setting the weight decay to 0.01, the batch size to 32, the 

total number of training epochs to 200, and the patience for early stopping to 50. The 

hyperparameters optimized using the TPE algorithm include hidden size, with a range 

set between 10 and 100; num layers, set within the range of 1 to 4 layers; learning rate, 

specified as a float between 0.001 and 0.01, distributed on a logarithmic scale; and 

dropout probability, set between 0.2 and 0.5. The specific values for these hyperparam-

eters were determined using the Optuna framework. 

For the performance evaluation of each model, metrics such as Mean Squared Error, 

Mean Absolute Error, and Coefficient of Determination were used for comparison (For-

mula22,24,25).  These metrics provide a comprehensive assessment of each model's 

performance in time series prediction, particularly in handling complex dependencies 

and long-term data. 

The comparison chart of the prediction results and actual values shows that the pre-

diction curve of the Bilstm model with AIS data is the closest to the actual values, 

indicating the highest prediction accuracy. In contrast, the prediction curves of Bilstm, 

LSTM, and RNN show larger deviations from the actual values. (as shown in Figure 

4). 
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Fig. 4. Comparison of prediction model results. 

Especially in the long-term interval, the Bilstm model with AIS data can better fol-

low the trend of actual values, while the other models exhibit larger deviations. This 

further validates the advantage of the Bilstm model with AIS data in handling long-

term data. 

Table 2. Comparison of Predictive Model. 

 MAE MAPE R2 

Bilstm with AIS Data 79.41 0.044 0.9816 

Bilstm 195.80 0.094 0.9179 

LSTM 288.57 0.21 0.8393 

Rnn 244.53 0.18 0.8796 

The results show that the Bilstm model combined with AIS data outperforms all 

other models across all evaluation metrics. (as shown in Table 2).Its MAE is 79.4129, 

MAPE is 0.0438, and R² is 0.9816. Although LSTM and RNN models are able to cap-

ture patterns in time series to a certain extent, their predictive performance is rela-tively 

poor. This indicates that the Bilstm model with AIS data can better capture bidirectional 

dependencies in time series data, significantly improving prediction accuracy. 

In summary, the Bilstm model with AIS data demonstrates outstanding performance 

in time series prediction, significantly improving prediction accuracy and stability, 

making it an effective prediction method. 

3.6 Optimization Model Comparative Analysis 

In the Bilstm model with AIS data, this study compared the impact of different optimi-

zation methods on model performance. The specific optimization methods used include 

TPE, Bayesian Optimization, Random Search, and Grid Search. Each method was op-

timized 30 times, with the loss values recorded during the optimization process. (as 

shown in Fig. 5) 
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Fig. 5. Optimization process. 

The comparison of loss values during the optimization process shows significant 

differences in the performance of different optimization methods over 30 iterations(Fig. 

5). The TPE method quickly reduces the loss value in the early stages and stabilizes 

after a few iterations, demonstrating its efficiency and stability in finding the optimal 

parameter combination. The Random Search method also shows a rapid decrease in 

loss value initially, but its final loss value is slightly higher than that of TPE. (as shown 

in Figure 6) The Bayesian Optimization method and Grid Search method exhibit slower 

loss value reduction and higher final loss values, indicating that their optimization ef-

fectiveness is inferior to that of TPE and Random Search. 

 

Fig. 6. Comparison of optimization model results. 

The comparison chart of the prediction results and actual values shows that the pre-

diction curve of the Bilstm model optimized with TPE is the closest to the actual values, 

indicating the highest prediction accuracy. In contrast, the prediction curves of Bayes-

ian Optimization, Random Search, and Grid Search show larger deviations from the 

actual values. 
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Table 3. Comparison of Optimization Model. 

 MAE MAPE R2 

Bayesian Optimization 549.69 0.40 0.4695 

Grid Search 741.81 0.53 0.08708 

Random Search 258.16 0.16 0.8967 

TPE 95.92 0.059 0.9785 

The table data indicates that the Bilstm model optimized with TPE outperforms all 

other optimization methods across all evaluation metrics. (as shown in Table 3). Spe-

cifically, the TPE-optimized Bilstm model has an MAE of 95.92, MAPE of 0.059, and 

R² of 0.9785. This demonstrates that the TPE method has a significant advantage in 

hyperparameter optimization, significantly improving the model's prediction accuracy 

and stability. Although Bayesian Optimization and Random Search can improve model 

performance to some extent, their optimization effects are still inferior to the TPE 

method. 

4 Conclusion 

This study developed a freight rate prediction model for the China-Europe route using 

the BiLSTM model combined with AIS data and compared its performance with other 

models, including LSTM and RNN. The integration of AIS data allowed for more ac-

curate estimation of ship capacities, which significantly improved the predictive per-

formance of the models. The experimental results indicate that the BiLSTM model with 

AIS data significantly outperforms the LSTM and RNN models in terms of Mean Ab-

solute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of De-

termination (R²). 

4.1 The Role of AIS Data 

The integration of AIS data played a crucial role in enhancing the predictive accuracy 

of the BiLSTM model. By combining AIS data with shipping schedule data, we were 

able to calculate the daily total capacity and average capacity of ships on the China-

Europe route. These capacity metrics provided valuable insights into the supply side of 

the freight market, which significantly impacted the accuracy of freight rate predictions. 

The use of real-time AIS data enabled the model to capture the dynamic nature of ship-

ping operations, leading to more precise and reliable forecasts. 

4.2 Model Selection and Hyperparameter Optimization 

The comparative analysis of different models demonstrated that the BiLSTM model, 

especially when combined with AIS data, outperformed LSTM and RNN models. The 

BiLSTM model's ability to capture bidirectional dependencies in time series data led to 

significantly improved prediction accuracy. This highlights the importance of model 

selection in achieving high-performance freight rate predictions. 
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In terms of hyperparameter optimization, the TPE method proved to be highly effec-

tive. The BiLSTM model optimized with TPE showed the best performance, with the 

lowest MAE, MAPE, and highest R² values among all optimization methods tested. 

The TPE method quickly reduced the loss value in the early stages and stabilized, indi-

cating its efficiency and stability in finding the optimal parameter combination. In con-

trast, Bayesian Optimization, Random Search, and Grid Search were less effective. 

4.3 Implications for Future Research and Practice 

The findings of this study suggest that the BiLSTM model combined with AIS data and 

optimized using the TPE method provides a robust and accurate approach for predicting 

freight rates on the China-Europe route. This model can help shipping companies and 

cargo owners make more informed decisions, optimize operations, and manage risks 

more effectively. The successful integration of AIS data highlights the importance of 

real-time data in improving the accuracy and reliability of predictive models. Future 

research could further explore the application of other real-time data sources and ad-

vanced optimization techniques to continue improving the performance of freight rate 

prediction models. 

In summary, the integration of AIS data, the application of the BiLSTM model, and 

the use of the TPE optimization method collectively enhance the prediction accuracy 

and reliability of freight rate forecasts. This contributes to better decision-making and 

operational efficiency in the shipping industry, ultimately supporting more stable and 

sustainable global trade. 
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