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Abstract. Precise and efficient detection of water bodies in satellite pictures is 

essential for diverse applications, like environmental surveillance, urban devel-

opment, and disaster response. This study investigates the effectiveness of uti-

lizing the U-shaped network (U-Net) models with input shapes of 128x128 and 

256x256 to detect water bodies in satellite photos acquired from the Sentinel-2 

Satellite. This research aims to address the dual challenge of recognizing global 

features in images while also capturing detailed characteristics, such as the 

boundaries of water bodies. It observes that both models achieve a commenda-

ble accuracy of approximately 0.8, accompanied by a modest loss of about 0.3. 

Notably, the model with a smaller input shape demonstrates a faster conver-

gence during training but exhibits slightly diminished delineation of water body 

edges compared to its counterpart with a larger input shape. These findings con-

tribute valuable insights into the optimization of water body detection algo-

rithms, offering avenues for both broad-scale previews and fine-scale segmenta-

tion in satellite imagery analysis. 
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1 Introduction 

Water body segmentation is a general name for technologies that know the space 

distribution of water on the surface. Since humans have the ability to monitor the 

surface, acknowledging the distribution of surface water is an important topic. To 

achieve that, scientists developed many methods, like threshold segmentation, before 

importing machine learning [1]. However, because of the significant difference be-

tween the data from the dataset and the real world, the well-developed, successfully 

matched methods are incompatible with data from the real world [2]. So, there is still 

ample space for improvement in the accuracy and robustness of the method for water 

body detection. 

Recently, other researchers have tried different methods for the segmentation. For 

research that used normalized difference water index (NDWI) and normalized differ-

ence vegetation index (NDVI), both of which are threshold methods, to search the 

status of plant life and the stress caused by drought in an Indian district and confident-

ly find the significance of the impact from varying patterns of rainfall on the severity 

of meteorological drought [3]. Then, in the medical direction, researchers are re- 
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searching making the model with U-shaped network (U-Net) structure in segmenta-

tion better by changing the typical U-Net structure to two directions. In the first direc-

tion, researchers let the U-Net model work with other models in sequence or parallel 

to detect their specific targets [4, 5]. Their results found the potential for higher accu-

racy and lower loss while there are outstanding requirements for computation re-

sources. Then, in the second direction, researchers edit the typical U-Net model and 

slightly increase the model complexity [6, 7]. Their results show that their models 

have greatly improved accuracy and other points, with some cost of increasing com-

putation [6, 7]. Then, going back to the machine learning research for water body 

segmentation, researchers use the concept of convolutional neural network (CNN) to 

build a new model. Then, the new model is used to find the distribution of the water 

body in satellite photos, and their results prove the meaning of bringing machine 

learning to water body segmentation [8, 9]. 

Improving the precision and efficacy of water body detection by applying ad-

vanced image segmentation techniques to satellite imagery is the main objective of 

this study. Initially, the data undergoes preprocessing, wherein both the image and its 

corresponding mask are resized to a standardized format suitable for subsequent mod-

el training. Subsequently, the U-Net model is employed for training, leveraging its 

effectiveness in medical image segmentation to address the spatial complexities in-

herent in satellite imagery. Finally, the trained model is rigorously evaluated using 

cross-validation and confusion matrices. The experimental findings unequivocally 

demonstrate the approach's remarkable accuracy and high confidence levels. The 

practical importance of this research lies in its ability to bolster sustainable water 

management practices and enhance disaster preparedness through the provision of 

precise, real-time insights into water body dynamics across diverse geographic land-

scapes. 

2 Methodology 

2.1 Dataset Description and Preprocessing 

The dataset utilized consists of a compilation of images of water bodies captured by 

the Sentinel-2 Satellite on Kaggle [10]. The dataset includes 2841 pieces of images 

and the corresponding masks of water in binary. Masks are generated by NDWI, 

which is a method compatible with satellite images [1]. Here, as Fig. 1 shows below, 

for using U-Net, images and corresponding masks are stretched to square images. For 

comparing the model's performance with different input sizes, the shape of images 

and their masks are stretched to 128x128 or 256x256. Also, a train dataset and a vali-

dation dataset are obtained by splitting the dataset with a ratio of 8:2, which means 

the train dataset sources from 80% of the original dataset, and the validation dataset is 

generated by using 20% of the original. 
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Fig. 1. Examples of stretched images and corresponding masks. 

2.2 Proposed Approach 

When applying the U-Net model, to search whether the model is suitable for recog-

nizing the location of the water body in the graph, the same train dataset and valida-

tion dataset generated in a preprocessing dataset, whose shape is uniformed to 

128x128 or 256x256, were used previously, and the train dataset is 80% of the origi-

nal dataset. Then, as Fig. 2 shows on the next page, the train dataset, which includes a 

graph matrix in shape 2272x128x128x3 and mask matrix in shape 2272x256x256x1, 

is inputted to U-Net model, which is built with input shape 128x128x3 and output 

shape 128x128x1, and get the history of the accuracy and loss of 100 training times. 

Then, the validation dataset, which includes a graph matrix in shape 569x128x128x3 

and a mask matrix in shape 569x128x128x1, is inputted into the model and gets the 

history of the accuracy and loss of the test after the training. Similarly, the train da-

taset, which includes a graph matrix in shape 2272x256x256x3 and mask matrix in 

shape 2272x256x256x1, and the validation dataset, which includes a graph matrix in 

shape 569x256x256x3 and mask matrix in shape 569x256x256x1, are inputted into 

the model and get the history of the accuracy and loss of 100 training times. Here, the 

input shape of the model is 256x256x3 and an output shape of the model is 

256x256x1. 

 

 

Fig. 2. The pipeline of the model. 

U-Net. The U-Net model can be seen as a specific CNN mainly used for completing 

image segmentation tasks. Then, the model can capture both local and global context 

and tolerate the shortage of sample images by down-sampling and up-sampling the 

input. So, that is the reason the model is needed to identify the water body in the satel-

lite images here. As Fig. 3 shows below, there are generally multiple layers in differ-

Enhancing Water Body Detection in Satellite Imagery Using U-Net Models             875



ent shapes in a U-Net model. The model first keeps two convolutional layers with 

input shape, then copies the matrix from the last convolutional layer for future use and 

uses a 2×2 max pool to reduce the original matrix to half the size in width and height, 

which can make the model capture some more global features. Then, the previous 

behavior is done similarly again, and the shape of the matrix is one-fourth of the orig-

inal input shape. By this, the model can capture the most global features. Then, after 

the matrix passes a convolutional layer and has multiple feature layers, as the bottom 

of the model in Fig. 3, it passes a convolutional layer and has one feature. Then, the 

matrix is up-sampled by 2×2 up-sampling to put global features back to a more de-

tailed matrix, and the matrix is combined with the matrix with half the width and 

height of the input shape, which got from previous convolutional layers. Then, the up-

sampling and passing convolutional layers are done similarly again, as shown on the 

right side of each model image in Fig. 3. Here, the same as the right matrix at the 

bottom of the model, the matrix with the original input shape and multiple feature 

layers passes a convolutional layer and gets a matrix with the original input shape and 

one feature layer, which is the output layer of the model. The model generates a ma-

trix with the width and height of the input shape and one layer to represent the proba-

bility that a pixel is a part of the water body. 

 

Fig. 3. Shape of U-Net models with different input shapes. 

Loss Function. For the model is used for highlighting the water bodies from the satel-

lite images, the model actually is classifying whether a pixel in the image is a part of 

the water body. So, a loss function that is suitable for binary classification applica-

tions is needed, and the cross-entropy loss function, whose function is shown below, 

is found to be the most suitable loss function here. 

 𝐻(𝑚, 𝑛) = −∑ 𝑚(𝑥) 𝑙𝑜𝑔( 𝑛(𝑥))𝑥∈𝑋  (1) 

In the function, “m” and “n” are two types, and the function searches the match 

level between the two types. So, for the model here, the actual equation, which is 
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shown below, is searching the match level between the “y,” which means whether the 

water body includes the pixel, and the “q,” which is the predicted probability of 

whether the water body includes the pixel, for a pixel in pixels. So, the loss function 

can penalize incorrect identification with a logarithmic function, and small deviations 

from the true answer are not punished as harshly as large deviations. By this feature, 

the function can be directly used as a gradient descent method for optimizing the 

model and leads to training the model effectively and aligning the predicted result 

with the correct result closely. 

 𝐻(𝑦, 𝑞) = −∑
[𝑦(𝑝𝑖𝑥𝑒𝑙) ⋅ 𝑙𝑜𝑔( 𝑞(𝑝𝑖𝑥𝑒𝑙)) +

(1 − 𝑦(𝑝𝑖𝑥𝑒𝑙)) ⋅ 𝑙𝑜𝑔( 1 − 𝑦(𝑝𝑖𝑥𝑒𝑙))]𝑝𝑖𝑥𝑒𝑙∈𝑝𝑖𝑥𝑒𝑙𝑠  (2) 

2.3 Implementation Details 

For repeating the research, information about the system and some arguments is im-

portant. First, the pipelined models, which have different input and output shapes, are 

running over Python 3.9 and TensorFlow 2.6 in Windows 11 on a machine with 

NVIDIA RTX 3090. Second, the argument, batch size, of models is set as 16, which 

means the model is trained with 16 data at one time. Third, the argument, epoch, of 

models are set as 100, which means models are trained 100 times. Fourth, models use 

the Adam optimizer as their optimizer for its high computational efficiency, low 

memory requirements, less sensitivity over most hyperparameters, and faster conver-

gence. Overall, the Adam optimizer is suitable for this research. 

3 Results and Discussion 

As Fig. 4 shows on the next page, when the U-Net model is built with input shape 

128x128x3, the accuracy of recognizing the water body in the train dataset and vali-

dation dataset is increased quickly at first few pieces of training, then slowly in-

creased after the accuracy for both datasets is over 0.8. Then, after training 50 times, 

the accuracy for the train dataset is increased a little more aggressively, while the 

accuracy for the validation dataset falls slightly and keeps between 0.8 and 0.825. 

Generally, the overfit can be observed after 40 times of training over the U-Net model 

when its input shape is 128x128x3. 
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Fig. 4. The accuracy of the model, which sets 128x128x3 as its input shape and 128x128x1 as 

its output shape. 

Then, as Fig. 5 shows on the next page, when the U-Net model is built with input 

shape of 128x128x3, the loss of the model over the train dataset and validation dataset 

decreased fast in the first few trainings. Then, the loss over two datasets is decreased 

simultaneously slowly to between 0.25 and 0.30 until about 30 times of training. After 

that training times, the loss over the train dataset keeps decreasing toward 0 and even 

faster after 50 times. At the same time, the loss over the validation dataset increased 

slightly, approaching 0.35. For the loss value of the model, the overfit can be ob-

served after about 30 times of training. 

 

Fig. 5. The loss of the model which sets 128x128x3 as its input shape and 128x128x1 as its 

output shape. 
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For the accuracy of the U-Net model, when its input shape is 256x256x3, as Fig. 6 

shows below, the accuracy over both the test dataset and validation dataset is in-

creased quickly at the first few training times and slowly increases together then. 

After training about 70 times, the U-Net model overfits the train dataset, for the accu-

racy over the train dataset keeps increasing while the accuracy over the validation 

dataset keeps around 0.8. 

 

Fig. 6. The accuracy of the model when it sets 256x256x3 as its input shape and 256x256x1 as 

its output shape. 

For the loss of the U-Net model with input shape 256x256x3, as Fig. 7 shows be-

low, the loss over both the train dataset and validation dataset decreased quickly in the 

first few trainings, then slowed down at the same time until around 60 training times. 

After around 70 training times, the overfit can be observed, for the loss over the train 

dataset keeps decreasing steadily while the loss over the validation dataset is in-

creased at a tiny rate. Also, before the overfit is observed, the accuracy over datasets 

is around 0.8. 

 

Fig. 7. The loss of the model when it sets 256x256x3 as its input shape and 256x256x1 as its 

output shape. 
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Overall, the overfit can be observed in shorter training times in both accuracy and 

loss when the U-Net model is built with an input shape of 128x128x3, compared to 

the model with an input shape of 256x256x3. Then, before the overfit is observed, the 

accuracy and loss of the model with different input shapes are similar. 

4 Conclusion 

In this study, the author investigates the efficacy of the U-Net model in locating water 

bodies in satellite imagery. The graphs and associated masks were resized to dimen-

sions of 128x128 or 256x256, facilitating preprocessing for subsequent training. The 

preprocessed data were then utilized for training the U-Net model with input shapes 

128x128x3 or 256x256x3. The findings indicate that the accuracy of the trained mod-

els across different input and output shapes consistently approached 0.8 prior to over-

fitting, while the loss remained around 0.3. Interestingly, the U-Net model with an 

input shape of 128x128x3 required less training to reach the overfitting threshold 

compared to its counterpart with an input shape of 256x256x3. This suggests that 

future improvements in model architecture or preprocessing methodologies could 

enhance water body detection in satellite imagery. Specifically, enhancing the model 

structure by incorporating additional max-pooling and up-sampling layers may afford 

a more comprehensive view of the data, thus further refining the model's perfor-

mance. 
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