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Abstract. The study solved the imbalanced Magnetic resonance imaging (MRI) 

dataset problem by choosing different loss functions to achieve a higher stroke 

lesion area segmentation accuracy. It is helpful for doctors to treat patients effi-

ciently by segmenting the stroke areas quickly with the machine learning model. 

The study compared focal loss and dice loss based on the same dataset, keeping 

the model structure and parameters the same, using different evaluation metrics 

to evaluate the performance of the two loss functions. Then, the study also 

demonstrated some sample segmentation images to specify the segmentation in 

detail, helping to understand the result. The study found that the model using 

focal loss had a better segmentation performance on the imbalanced dataset than 

the model using dice loss. It was noticed that the focal loss model had clearer 

boundaries and more precise segmented lesion areas than the dice loss model. 

That means the focal loss is more suitable for doing the segmentation with small 

pixels than the dice loss, which would be more useful in medical images, as most 

of the medical images contain small positive areas and large negative areas. The 

study could be supportive evidence for future research by providing a strong rea-

son for choosing focal loss as the loss function when training medical image 

models. 
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1 Introduction 

Stroke has a significant impact on human health. It is listed as a global primary health 

issue by the World Health Organization (WHO). Reducing the number of stroke-related 

deaths will increase the global health level [1]. In 2019, there were about 12.2 million 

new stroke cases and 6.55 million deaths from stroke only in 2019 [2]. It is essential to 

be diagnosed and receive treatment as soon as possible to reduce the chance of perma-

nent brain damage. Magnetic resonance imaging (MRI) is an effective and primary way 

to guide acute treatments due to its high resolution and sensitivity to the contrast of 

brain tissues [3]. However, traditional manual segmentation methods are time-consum-

ing and susceptible to operator experience [4]. Therefore, utilizing artificial intelligence 

(AI) to support analyzing MRI images helps doctors gain more time for treatment and  
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reduces the workload of doctors due to their excellent performance in many tasks [5-

10].  

In the last decade, numerous studies have demonstrated the effectiveness of machine 

learning methods [11-13]. For instance, Soleimani et al. [4] show that by using a 3D U-

Net to directly process 3D data input, the model performs with a distinguishing accu-

racy in segmentation. The F1 Score has reached 0.94226, and the IOU reached 0.88342, 

which shows the model’s accuracy and reliability in stroke lesion segmentation. This 

study has shown that using U-Net is an effective approach to delineating brain stroke 

lesions in MRI images. Another study conducted by Hui et al. [14] described that by 

using an enhanced U-Net model equipped with a dual-path attention compensation 

mechanism, the enhanced U-Net model has better performance and accuracy when le-

sions boundaries are unclear, or lesions are small. This result also indicates that using 

deep learning models such as U-Net is a useful approach to help in MRI stroke lesions 

segmentation medical practices. However, the dataset used by them, such as the dataset 

Sub-Acute Ischemic Stroke Lesion Segmentation (SISS), has a significant problem of 

imbalance. Specifically, most MRIs have way smaller stroke lesion areas than the 

whole images. When the lesion areas are labeled as 1 and other parts are labeled as 0, 

it is easy to make the datasets have way more 0s than 1s. 

More relevant studies described that their datasets are also imbalanced. The study 

by Kim et al. [15] used a training dataset consisting of 303 acute ischemic stroke (AIS) 

cases, which is imbalanced. Another project by An et al. [16] reanalyzed data from 

previous stroke studies involving 331 C57/BL6 J mice with detectable lesions on T2w 

images, which is imbalanced as well.  

The above studies clearly indicate that it is common to have imbalanced datasets to 

process while training automated stroke lesion segmentation models. However, few 

studies have focused on this problem, which may have significant impacts on the mod-

els’ performance. Therefore, this study aims to solve this problem by finding a suitable 

loss function to let the model pay more attention to the important data (label 1 area) on 

the dataset the project uses and improve the segmentation performance in the end. 

This study uses the imbalanced Anatomical Tracings of Lesions After Stroke 

(ATLAS) 2.0 dataset, processes the data from the dataset to fit the input size of a U-

Net built, compares different loss functions and uses different evaluation functions to 

evaluate them. This paper aims to find a loss function with the best segmentation per-

formance among the loss functions tested to train the model based on the imbalanced 

dataset ATLAS 2.0. 

2 Method 

2.1 Dataset Preparation 

The study used the dataset called ATLAS R2.0 from the University of Southern Cali-

fornia, Stevens Neuroimaging and Informatics Institute [17]. The dataset has 955 T1 

weighted (T1w) MRI images from different centers. The dataset contains 655 training 

images with labeled lesion masks and 300 test images without masks. It involves anno-

tations of ischemic and chronic stroke lesions. The size of the images is 197x233x189. 
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Fig. 1. Sample MRI slice and labeled ground truth from the dataset ATLAS R2.0. 

Fig. 1 shows an MRI image with stroke lesions. The stroke lesion areas usually ap-

pear to be darker gray areas in the MRI images. It can be observed in the image that the 

labeled lesion areas are relatively smaller than the normal areas. This commonly hap-

pens on all the images in this dataset, which makes the dataset imbalanced. 

The study also preprocesses the data from the dataset. It uses data normalization, 

data augmentation and data resizing to make sure the data inputted into the model can 

make the model learn efficiently. In terms of data normalization, the study scales the 

voxel values to the range of 0 to 1 to improve convergence in learning. Data augmen-

tation, specifically in this study, filters out slices that contain at least 100 pixels of stroke 

lesions to help address data imbalance issues, making the model able to learn more 

useful information. The study uses data resizing to map 3D MRI images into 2D space. 

The dimensions are resized to 256×256. 

2.2 U-Net Model 

Due to the cost and time of acquiring and labeling medical images, medical datasets 

commonly have only a limited amount of labeled data. In order to achieve optimal per-

formance, a CNN model often requires a substantial volume of training data. The U-

Net is a CNN model created by Ronneberger et al. that demonstrates strong perfor-

mance in segmenting biological images, even when trained with a small dataset [18]. It 

can accurately segment lesion areas with relatively less data. 

The reason why this model is called U-Net is that the architecture of the model is a 

U shape. The U-Net has a symmetric structure, with contracting (encoder), latent spaces 

and expanding (decoder) paths. The encoder captures contextual information by 

downsampling, and the decoder enables precise localization with transposed convolu-

tions by upsampling. Between the contracting and expanding paths, there is a latent 

space. The latent space is in the deepest part of the U-Net model, which allows it to 

capture the high-level, global, and abstract representation of the input image. This 

model is suitable for learning through a limited number of images while performing 

well in capturing contextual and detailed information. 
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The model in this study uses a series of downsampling blocks and upsamling blocks. 

Each downsampling block receives the input and processes it through the convolutional 

layers. The main part of the block is the 2D convolutional layers. Each 2D convolution 

layer has 32 kernels, each with a size of 3x3. Then, it is followed by a batch normali-

zation to help avoid overfitting, improve gradient flow, and speed up training. In the 

end, there is a Rectified Linear Unit (ReLU) to introduce non-linearity, making the 

model able to learn complex patterns, address the vanishing gradient problem and in-

crease computational efficiency. Each downsampling block contains two rounds of the 

processes above. After that, the block uses a 2x2 max pooling with a stride of 2 to 

reduce the dimension and suppress the noise at the end of the block. Each upsampling 

block adds an upsampling layer with an upsampling size of 2 to recover the spatial 

resolution that was reduced during the max pooling and a concatenation layer to con-

catenate with skip connection from corresponding encoder feature maps. The concate-

nation layer plays an important role in helping preserve spatial hierarchies and fine-

grained details for accurate pixel-wise prediction, which is necessary for having a pre-

cise boundary when doing segmentation. 

 

Fig. 2. The U-Net Architecture. 

The U-Net model shown in Fig. 2 is built with 4 downsampling blocks, 2 latent space 

bridges, 4 upsampling blocks and 3 output blocks. The 3 output blocks contain 2 pre-

output blocks and an output block. The pre-output blocks are used to further extract 

features, and the output block is to combine multiple feature channels into a single out-

put channel. The model also makes the filter number able to be customized by providing 

a parameter called kernel base, which allows the model to change the width easily based 

on the need. 

 

2.3 Implementation Details 

The study uses the U-Net model above with Adam optimizer for updating model pa-

rameters, with a default learning rate set to 0.001, built with TensorFlow python library. 

The Adam optimizer is an adaptive optimization algorithm for learning rates that 
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assigns distinct rates to individual parameter dimensions, hence enhancing the speed of 

convergence. 

The study also chooses a batch size of 128. This batch size balances the hardware 

limitation and the efficiency of the model training. The size of 128 could not only im-

prove memory utilization and training speed but also ensure the ability to generalize. 

The training dataset is set to be 75% for training and 25% for validation. This could 

help prevent the model from overfitting. The training epochs are set to be 60 with early 

stopping. The study sets the early stopping to have a patience of 3, monitoring the val-

idation loss. If the validation loss has no improvement in 3 epochs, the model will stop 

training and restore the best weight. The reason to set the epochs to 60 is that with early 

stopping, the model usually stops training before its 40th epoch. There is no need to 

have more epochs as the training processes seldom reach there. 

The study aims to find out how the same U-Net model performs on the same dataset 

with two different loss functions: Dice Loss and Focal Loss. Both of these loss func-

tions are developed to deal with imbalance datasets and optimized for segmentation, so 

they are suitable for this study. Dice Loss is defined as: 

                                                    Dice Loss = 1 −
2|𝐴𝐵|

|𝐴| + |𝐵|
                                   (1) 

A represents the expected pixels, while B represents the ground truth pixels. |A∩B| 

represents the count of pixels that are common to both the predicted image and the 

ground truth image. |A| and |B| denote the aggregate number of pixels in the anticipated 

region and the actual region, respectively. 

Focal Loss is defined as: 

                   Binary Focal Loss(𝑝, 𝑔) =

{
 
 

 
 
∑α(1 − 𝑝)γ

𝑁𝑓

𝑖=1

,if 𝑔 = 1

∑(1 − α)𝑝γ

𝑁𝑏

𝑖=1

,if 𝑔 = 0

                      (2) 

 

Where g ∈ 0, 1 is the ground truth, p ∈ [0, 1] is the model's prediction probability, 

N_f and N_b are the number of pixels for class 0 and class 1, and α∈[0,1] and γ are 

modulation factors that can be adjusted. 

The study uses a series of evaluation metrics to evaluate the performance of the 

models. The Coefficient of Dice Similarity (DSC) is the primary one. The intersection 

of the expected and actual segmentation is a statistic used to assess a model's anticipated 

performance, and it is referred to as the F1 score. By definition, the DSC is: 

                                                               DSC =
2|𝐴𝐵|

|𝐴| + |𝐵|
                               (3) 

The A and B definitions are the same as the dice loss definition. 

The study also uses recall, precision, Area Under Curve (AUC) and Intersection 

Over Union (IOU). These evaluation metrics are used to assist in adjusting the model 

parameters. 
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3 Results and Discussion 

The study trained two models with the same training parameters to ensure the compar-

ison of the results was reasonable. 

 
Fig. 3. The Segmentation Result based on different configurations. 

 

Fig. 3 shows the segmentation result of the two models using different loss functions. 

The right two columns show images with overlapping model segmentation results and 

the ground truth. The brighter part is the ground truth, and the darker part is the model 

segmentation result. This result demonstrated that the U-Net model using the focal loss 

clearly has a better performance in segmenting the lesion areas with clearer boundaries, 

while the U-Net model using dice loss usually segments larger areas. Sometimes, the 

model with dice loss even segments separated areas with no lesion. 

To understand the detailed segmentation accuracy, the study used the following met-

rics to evaluate the model segmentation performance. 

Table 1. The Evaluation Metrics of Dice Loss and Focal Loss. 

Loss Evaluation Precision Recall DSC AUC IOU 

Focal Loss 0.6154 0.8875 0.7268 0.9393 0.5709 

Dice Loss 0.2656 0.9686 0.4196 0.9628 0.2633 
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From Table 1, the evaluation metrics show the performance of the models from dif-

ferent aspects. The study mainly uses DSC to evaluate the segmentation performance. 

The focal loss model has a DSC of 0.7268, while the dice loss model only has a DSC 

of 0.4196. This suggests that the focal loss model exhibits a notable benefit in terms of 

the resemblance between the model's segmentation and the ground truth. Furthermore, 

the accuracy of the focal loss model demonstrates its significant advantage in avoiding 

the missegmentation of areas, hence eliminating the need for costly human correction. 

 

 

Fig. 4. Training and Validation Accuracy and Loss for the Focal Loss Model. 

Fig. 4 displays the training and validation accuracy diagram on the left, while the 

right diagram represents the training and validation loss of the focal loss model. The 

accuracy diagram illustrates that the initial training accuracy and validation accuracy 

were very low, but both steadily improved until reaching a value close to 1. Although 

the validation accuracy had some oscillations while training, the accuracy between 

training and validation was still close, which means the generalization ability was good 

on this model, and there was no evidence showing the model was overfitting. The loss 

diagram shows that the training loss and validation loss both gradually decreased to less 

than 1. The diagram shows that the model was learning and had a similar performance 

on the training dataset and the validation dataset. 
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Fig. 5. Training and Validation Accuracy and Loss for the Dice Loss Model. 

The dice loss model displayed the training and validation accuracy diagram on the 

left side of Fig. 5, while the right diagram depicted the training and validation loss of 

the model. The accuracy plot exhibits significant oscillations, suggesting that there is 

heterogeneity in the learning process throughout the epochs. However, the diagram 

shows that both the training accuracy and validation accuracy were gradually increas-

ing. Although there were oscillations, the training accuracy was always higher than 

90%, reaching the top of 98%. Moreover, the training and validation accuracy had sig-

nificant overlaps, which means the model also performed well in generalizing unseen 

data. The oscillations in the validation accuracy might indicate the model’s sensitivity 

to certain batch variations or learning rate adjustments. The loss diagram displays sim-

ilar information to the loss information of the focal loss model. This diagram also shows 

that the model soon became convergent, which means the model was learning fast. 

A study by G Dollár et al. [19] shows that focal loss can naturally handle class im-

balance in one-stage detectors, promoting efficient training without selective sampling, 

which can be learned from images with small lesion areas. While dice loss is not that 

sensitive for images with large areas of background information, it is easier to ignore 

the minority but important class. This is the reason why the focal loss model of this 

study performed better than the dice loss model. 

The limitation this study faces is that some segmentation results of the focal loss 

model are still larger than the ground truth. This is probably because of the lack of 

training data and the number of epochs limited by the computational recourses the 

model had run on. In the future, it is possible to improve the performance of this model 

by using a training dataset with more images that contain at least 100 pixels of lesion 

areas and training more epochs on a better hardware environment. 

4 Conclusion 

This study uses the same U-Net models with different loss functions to segment stroke 

lesion areas with the same imbalanced MRI dataset. The study used the same 
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parameters except for the loss functions to train the model in order to acquire a con-

vincing result. The segmentation result is primarily evaluated by the DSC. This demon-

strates how similar the overlapping part of the model’s segmentation areas and the 

ground truth. As a result, the focal loss model had a DSC of 0.7628, which is signifi-

cantly higher than the dice loss model. It shows that by using focal loss in this imbal-

anced MRI dataset, the model would be able to learn more details than using dice loss 

as the loss function. Nevertheless, the main constraint of the work is its exclusive reli-

ance on a single dataset for MRI segmentation. It is hard to come to a conclusion as to 

whether the focal loss will have the same kind of effect on other imbalanced datasets. 

In the future, it is possible to find a better loss function to be used on different imbal-

anced datasets. 
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