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Abstract. Image stitching is a popular research area in the fields of computer 

vision and computer graphics. The feature points of images provide crucial 

information for this process. The accurate extraction of these features is essential 

to minimize misalignment and defects in the final stitched image. This paper 

extensively discusses the application of deep neural network-based feature 

detection algorithms in image stitching. Initially, it introduces several commonly 

used feature detection algorithms such as scale invariant feature transform 

(SIFT), speed up robust feature (SURF), before delving into deep learning-based 

methods, specifically focusing on convolutional neural network-based feature 

detectors. The paper elaborates on the operational mechanisms of these 

algorithms in image stitching, emphasizing the efficient extraction of key feature 

points from images and the subsequent matching of these points for seamless 

stitching. Moreover, a comparative analysis of the advantages and limitations of 

these modern methods relative to conventional approaches is provided. The paper 

concludes with a concise overview of the current challenges encountered in the 

realm of image stitching, including issues related to feature extraction and 

matching in complex scenes, as well as performance and efficiency constraints 

when dealing with large-scale image datasets. In summary, the paper offers 

insights into the advancements in image stitching techniques and highlights 

potential areas for future research and development. 
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1 Introduction 

Image stitching is a crucial and demanding task in the field of computer vision. It has 

seen rapid advancements over the past few decades, enabling the creation of panoramic 

images with a wider field of view by combining images captured from different viewing 

positions. This technique finds applications in various fields such as biology, medicine, 

surveillance video, autonomous driving, and virtual reality [1]. Image stitching is a 

process that combines multiple images to create a seamless, high-resolution panorama 

or photograph. When there is overlap between two images, they are merged to form a 

single frame [1]. The alignment of images in a set is crucial for successful stitching, as 

lens distortion and parallax errors can impact the final result. Using advanced alignment 

methods, such as those found in large camera systems, helps to overcome these  
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obstacles and produce accurate panoramic images. Panoramic image mosaic involves 

stitching together numerous images to create a composite image with a wider field of 

view than a standard camera can capture [1]. These image sets may consist of multiple 

digital images taken at different times, from various sensors, and at different angles of 

the same scene. Attention to detail and precise alignment are essential to ensure the 

seamless merging of images and the creation of a flawless panoramic image [1]. 

The process of image stitching involves the use of image alignment algorithms and 

image blending techniques. These algorithms are essential for creating mosaics, 

summaries, and stabilized videos by establishing correspondence between images with 

varying degrees of overlap [1]. Panorama creation algorithms ensure seamless 

alignment by employing registration algorithms to blend images smoothly and address 

potential issues like parallax, scene movement, and exposure changes that can result in 

blurriness or ghosting. Image alignment algorithms are typically used to generate 

seamless panoramic images from handheld cameras. The alignment process begins by 

determining a mathematical model that correlates the pixel coordinates of two images 

[2]. Translation angles are easily estimated, with the most straightforward method 

involving exhaustive testing of all possible alignments [2]. Image blending involves 

adjusting calculations during calibration, such as image remapping, color correction, 

and merging images to create large, seamless images that minimize visible seams. This 

process aims to reduce intensity differences between overlapping pixels in two images 

[3]. Two commonly used image blending methods are Alpha Feathering and Gaussian 

Pyramid. Alpha blending is effective when images have well-aligned pixels with only 

intensity variations, while the Gaussian Pyramid involves merging images from 

different frequency bands and filtering them together [3]. 

This paper focuses on the description of feature detection algorithms and feature 

extraction based on deep neural methods in image stitching. Finally, the paper also has 

a simple description of existing challenges in image stitching. The framework of image 

stitching methods is shown in figure 1, which includes feature detection methods and 

deep network methods. 

 

Fig. 1 The framework of image stitching methods  
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2 Feature Detection Methods 

2.1 Corner Detection Algorithm 

Corner detection algorithms mainly focus on finding points of significant changes in 

the image, which are called corner points [2]. The corner detection algorithm uses the 

local gradient information of the image and the contrast of pixels to detect corner points 

[2]. The corner points are usually important feature points in the image, which are 

suitable for target tracking and image matching [3].  

The corner detection algorithm is an important class of methods in the field of image 

processing, which aims to identify corner points in images [3]. Corner points in images 

have significant changes in local areas, which are usually represented as key feature 

points in the image. The corner detection algorithm is widely used in image matching 

and target tracking [3]. Classic corner detection algorithms have Good Features to 

Track (GFTT), Features from Accelerated Segment Test (FAST), and Solenoidal 

Tracker at 

Rhic Detector [3]. Firstly, the GFTT algorithm is a corner detection method based 

on local gradient changes, which uses a feature response function to evaluate the 

gradient change in the area of the pixel to determine the corner point. The advantage of 

the GFTT algorithm is simplicity and robustness, and it stably detects corner points in 

different scenarios [4]. Secondly, the FAST algorithm is a fast corner detection method, 

which quickly detects the circular area around the pixel to determine whether a corner 

point exists. The FAST algorithm detects corners by comparing the brightness values 

of pixels, thereby achieving high-speed corner detection. Although the FAST algorithm 

performs well on speed, it has challenges in dealing with noise and different scales [4]. 

In addition, the Solenoidal Tracker at Relativistic Heavy Ion Collider is a large-scale, 

high-energy nuclear physics international collaboration established based on the 

Solenoidal Tracker At RHIC (STAR), which relies on the Relativistic Heavy Ion 

Collider (RHIC) in the United States. STAR detector is known as the Center Surround 

Extrema feature detector (CenSurE), which is a corner detection method that combines 

scale invariance and stability. STAR detector uses a special feature detection strategy 

that combines brightness differences between pixels and gradient information around 

pixels to determine corner points. STAR detector provides stability and adapts to image 

scale changes, which performs well in a variety of applications [4]. GFTT, FAST, and 

STAR detector have respective characteristics. GFTT focuses on simplicity and 

stability, FAST emphasizes speed and efficiency, and STAR detector takes into account 

both scale invariance and stability. In practical applications, an appropriate corner 

detection algorithm can be selected based on task requirements and scene 

characteristics [4]. In this paper, the principles and characteristics of other types of 

image feature extraction algorithms are analyzed in detail.  

2.2 Scale and Rotation Invariant Features Transformation Algorithm 

Scale-invariant feature algorithms are a class of algorithms dedicated to extracting 

features from images under varying scales and rotation conditions. Their key goal is to 

extract image feature points that remain stable under these conditions, to cope with 
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changes in images under different conditions. The algorithms utilize local features and 

scale space information to describe features in images [5]. 

Scale Invariant Feature Transform (SIFT) is one of the classical algorithms. It detects 

key points in images and calculates their local feature descriptors to achieve scale and 

rotation invariance. It finds wide application in tasks like object recognition and image 

registration. Speed up robust feature (SURF), based on SIFT, is an accelerated version 

of feature extraction algorithms. It utilizes fast box filters for acceleration while 

maintaining good scale and rotation invariance, making it advantageous in real-time 

systems. Additionally, Binary Robust Invariant Scalable (BRISK) combines binary 

descriptors with rotation invariance, showing high computational efficiency and 

robustness in real-time image processing [5]. Oriented FAST and Rotated BRIEF 

(ORB) combines FAST key point detection with Binary Robust Independent 

Elementary Features (BRIEF) descriptors, demonstrating efficiency and good scale 

invariance, suitable for image processing tasks on real-time systems and mobile devices 

[5]. 

In recent years, improvements in scale-invariant feature algorithms have shown 

diversity and innovation, aiming to enhance algorithm performance and applicability. 

One significant improvement targets the issue of mismatching during feature point 

matching. In practical applications, factors like image noise, occlusion, or viewpoint 

changes may lead to mismatching of feature points, affecting the accuracy of the 

algorithm. Therefore, some researchers propose improved matching strategies, such as 

geometric constraint-based matching algorithms or machine learning-based matching 

methods [5]. These methods identify correct matching points and mismatching points 

by introducing geometric constraints or utilizing machine learning algorithms, thus 

improving matching accuracy and robustness [5]. 

On the other hand, research efforts have also been devoted to improving the 

robustness and generalization ability of algorithms in specific scenarios. For instance, 

in the problem of image feature extraction under low-light conditions, some scholars 

propose adaptive feature extraction methods with strong adaptability. These methods 

can extract stable feature points even under significant changes in lighting conditions 

by appropriately enhancing images or adjusting parameters of feature extraction 

algorithms, thereby enhancing the robustness of the algorithm. Moreover, studies are 

focusing on improving feature descriptors, such as RootSIFT and Fast Retina Key- 

point (FREAK). These feature descriptors, while maintaining scale invariance, further 

improve the accuracy and robustness of feature matching, providing stronger support 

for the performance of the algorithm in practical applications [5]. 

These specific improvement methods and technologies have brought significant 

performance improvements and broader application possibilities for scale-invariant 

feature algorithms. 

2.3 Regional Stability Detection Algorithm 

The main objective of region stability detection algorithms is to detect stable regions or 

region boundaries in images to extract representative region features. These algorithms 

typically utilize the intrinsic properties of image regions or differences between pixels 
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to detect these stable regions [5]. For example, a classic region stability detection 

algorithm is Maximally Stable Extremal Regions (MSER) which extracts regions with 

maximal stability from images. The MSER algorithm extracts features by finding stable 

extremal regions in images that remain stable across different scales. Similarly, there is 

the Maximally Stable Diverticulum (MSD) algorithm, another stability detection 

algorithm based on extremal regions, which effectively extracts stable image regions 

[5]. 

The characteristics of these region stability detection algorithms lie in their ability 

to extract stable image regions, which are crucial for tasks such as image segmentation 

and object detection. However, when faced with complex backgrounds or noise 

interference, these algorithms may be affected to some extent, resulting in less accurate 

detection results. Therefore, improving the robustness and stability of these algorithms 

is one of the important research directions [5]. 

To address this issue, recent research has proposed new methods and techniques. For 

example, some scholars have proposed improved region stability detection algorithms. 

The DeepMSER algorithm utilizes deep learning techniques for feature extraction and 

classification of stable regions, thereby enhancing the accuracy and robustness of stable 

region detection. Additionally, AdaptiveMSD combines adaptive feature extraction and 

machine learning techniques to effectively address challenges in complex scenes. At 

the same time, there are also studies focusing on optimizing the performance of 

algorithms by accelerating the algorithm's execution speed through parallelization and 

optimization techniques, thereby enhancing the ability to process large-scale data. 

These improvements and optimizations provide important support for the further 

development of region stability detection algorithms, enabling them to better address 

challenges and demands in complex scenes [5]. 

3 Deep Network Methods 

This section delves into various aspects of image stitching algorithms based on deep 

learning, including feature extraction network design, feature matching and geometric 

correction, deep fusion, and transitional region handling. 

3.1  Feature Extraction Network Design 

Based on Convolutional Neural Network (CNN) Architecture. In the task of image 

stitching, selecting a suitable CNN architecture is crucial for feature extraction. For 

instance, some researchers opt for ResNet-50 as the feature extraction network. By fine-

tuning ResNet-50 and leveraging its pre-training on large-scale image datasets, 

researchers can adapt it to the stitching task by lowering the learning rate. The deep-

level feature maps of ResNet-50 provide rich semantic information, thereby enhancing 

the accuracy and stability of stitching. Additionally, EfficientNet-B3 is another 

common choice [6,7]. The EfficientNet series models excel in lightweight and 

efficiency, thus achieving good performance with lower computational costs in image 
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stitching tasks. Moreover, some researchers explore novel architectures like Adaptive 

CNNs. These adaptive CNNs adjust the size and structure of convolutional kernels 

adaptively based on input images, thus achieving better feature extraction performance 

across different stitching scenarios [8]. 

Based on Feature Pyramid Network (FPN) Design. FPN plays a crucial role in 

addressing the feature extraction needs at different scales. For example, some 

researchers apply FPN to construct feature pyramids. By extracting features at different 

scales from various layers, FPN enhances the algorithm's adaptability to scale changes 

in image stitching. This network structure enables simultaneous attention to both local 

image details and global semantic information, thereby improving the quality and 

stability of stitching. Additionally, Path Aggregation Network (PANet) is another 

common choice. PANet with its top-down and bottom-up pathways can extract rich 

multi-scale features across multiple levels, achieving good performance in image 

stitching. Furthermore, some researchers explore feature pyramid network designs 

combined with self-attention mechanisms. This network can adaptively adjust the 

weights of different scale features to enhance the representational power and stitching 

performance of the feature pyramid [8]. 

3.2 Feature Matching and Geometric Correction 

Matching Network Design. Accurate feature matching requires the design of 

dedicated matching networks. For instance, some researchers adopt Siamese network-

based feature matching methods. The Siamese network structure learns the similarity 

between image features, thus achieving accurate feature matching. Its shared parameter 

structure enables the network to fully utilize training data for learning, thereby 

improving matching accuracy and robustness [8]. Additionally, some researchers 

explore methods based on optical flow estimation and dense feature matching. Optical 

flow estimation captures pixel displacement information in images, aiding feature 

matching in dynamic scenes. Dense feature matching strategies achieve more precise 

and stable matching results by uniformly sampling feature points on images [8]. 

Geometric Correction Module Design. Geometric correction modules are responsible 

for geometric transformations of images to achieve alignment and stitching. For 

example, some researchers adopt geometric correction methods based on the Random 

sample consensus (RANSAC) algorithm [8]. The RANSAC algorithm effectively 

estimates geometric transformation relationships between images, thus achieving 

precise image alignment and stitching. Additionally, some researchers propose 

learning-based geometric correction methods [8]. This method learns geometric 

transformation relationships between images through an end-to-end learning 

framework and optimizes correction parameters by minimizing reprojection errors, thus 

achieving accurate image stitching [8]. Moreover, geometric correction methods based 

on image segmentation are also common choices. By segmenting images into different 
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regions and performing individual geometric correction for each region, this method 

improves corrections accuracy and stability [8]. 

3.3 Deep Fusion and Transitional Region Handling 

Deep Fusion Network Construction. Deep fusion networks smooth transitional 

regions between stitched images and ensure depth consistency [9]. For example, some 

researchers employ generative adversarial network (GAN) based deep fusion networks. 

The networks combine the mechanisms of generative adversarial networks to learn 

transitional relationships between images and generate realistic stitching results [9]. 

Additionally, some researchers utilize structures like CycleGAN for deep fusion. 

CycleGAN learns mapping relationships between images and applies them to stitching 

tasks, achieving natural and continuous deep fusion effects. Furthermore, deep fusion 

network designs based on self-attention mechanisms are also receiving attention. This 

network adaptively adjusts the weights of different regions to enhance the quality and 

effectiveness of deep fusion. Overall, deep fusion networks play a crucial role in image 

stitching, effectively improving the visual quality and continuity of stitched images[9]. 

Transitional Region Generation Methods. In the process of image stitching, 

transitional region handling is a critical step that requires appropriate methods to 

seamlessly integrate transitional regions with stitched images [9]. For example, some 

researchers adopt transitional region generation methods based on image editing. They 

use image to edit techniques to post-process stitched images, generating smooth and 

natural transitional regions, further enhancing the visual quality of stitched images [9]. 

Additionally, some researchers explore methods utilizing GANs to generate transitional 

regions [9]. By training GANs to learn the distribution of real images, realistic 

transitional regions can be generated, thus improving the continuity and realism of 

stitched images [8]. Transitional region generation methods play a crucial role in 

achieving natural and continuous image stitching effects and are indispensable in image 

stitching algorithms [8,9]. 

4 Existing Problems of Image Stitching Algorithms 

⚫ Feature matching problem.  

The keys of image stitching find similar feature points between different images. 

However, factors such as lighting, viewing angle, and deformation in the images may 

cause feature points to be inaccurate or unmatched. For example, lens distortion causes 

the shape and scale of the image to be inconsistent in the taking images, which can 

affect the accuracy of stitching [10]. 

⚫ Processing of overlapping areas. 

Image stitching usually involves overlapping areas between multiple images. 

Overlapping areas that achieve smooth transitions is a challenge, overlapping areas 
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cause ambiguity in data interpretation. For example, the overlapping of two objects 

might challenge how accurately to ensure the boundaries of each object [10]. 

⚫ Movement and deformation. 

Movement of objects and deformation of the scene exist during the image stitching 

process, discontinuous and distorted stitching results may occur. The situation is caused 

by handheld shooting, vibration, and unstable camera settings. Wide-angle lenses often 

cause distortion in the stitching images, such as barrel distortion and pincushion 

distortion, which cause misalignment. Objects of a scene and the camera exist at 

different distances, and the related position of images is changed, which causes 

ghosting or discontinuities in the image stitching [10]. 

⚫ Error propagation.  

Each image has errors that may accumulate and expand during the stitching 

process, which decreases the quality of the final stitched result [10]. Errors in feature 

detection and extraction make images incorrectly align, which produces misalignment 

artifacts in the output of image stitching. Feature detection and extraction are 

inaccurate, subsequent stages of the image-stitching process are affected by the error. 

Estimation errors of the homography matrix that represents the geometric 

transformation of images can lead to deformations of the final image 

stitching. Inaccurate estimation of homography may propagate errors to subsequent 

stages, which affects the overall quality of the image stitching [10]. 

⚫ Occlusion problem.  

Objects occluding in the image, such as trees, buildings, etc., cause missing and 

discontinuous in the procession stitching [10]. Objects movement of frames and 

capturing scenes with complex foreground elements, which are difficult to accurately 

align and stitch images. 

The relative position of image objects changes because of the movement of the 

viewpoint, which causes parallax. The parallax makes misalignments and 

inconsistencies in image stitching, especially along the edges of the object. Depth 

differences in a scene make obvious seams in image stitching, especially objects of 

foreground hide elements of the background. The depth discontinuities are important to 

create a visually pleasing image composition. 

5 Conclusion 

This paper extensively delves into various feature detection algorithms used in image 

stitching and discusses the current challenges in this field. Aside from examining 

common algorithms like SIFT, SURF, and ORB, it also focuses on deep learning-based 

methods, particularly those utilizing convolutional neural networks for feature 

detection. By elucidating how these algorithms play a crucial role in extracting and 

matching key feature points for image stitching, the potential of deep learning in image 

processing becomes evident. While acknowledging the significant contribution of these 

algorithms, it is crucial to underscore the challenges that still persist. Feature matching 

issues, handling overlapping areas, and addressing object movement and scene 
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deformation are key obstacles that need to be overcome. Improving matching accuracy 

to identify more feature points is essential to enhance stitching quality. Moreover, 

developing sophisticated algorithms for seamless transitions and natural stitching 

effects in overlapping areas is imperative. Efforts are also required to accurately capture 

and rectify object movement and scene distortion to prevent discontinuities and 

distortions in the final stitched images. 

To tackle these challenges, future research can focus on several key areas. This 

includes optimizing feature matching algorithms for increased accuracy and efficiency, 

exploring novel techniques for handling overlapping regions for better stitching results, 

and studying recognition and processing methods for object movement and scene 

deformation to enhance stability and accuracy in stitching. Furthermore, integrating the 

strengths of deep learning with traditional approaches could further elevate the quality 

and efficiency of image stitching processes. 

In conclusion, while advancements in image stitching algorithms driven by deep 

learning have been remarkable, significant challenges remain. Through continuous 

research and innovation, it is anticipated that image stitching technology will continue 

to progress, offering more precise, efficient, and natural solutions for practical 

applications. 
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