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Abstract. Ischemic stroke has a devastating impact on global health, causing 

both death and disability. Automatic, accurate segmentation of these stoke areas, 

or infarctions, from Magnetic Resonance Imaging (MRI), can aid clinicians in 

personalized therapeutic strategies. Recent advances in merging fully convolu-

tional networks with transfer learning show a promising outlook, but they rarely 

focus on multi-modalities analysis and leverage channel-wise anatomical infor-

mation to improve segmented performance. The research introduces an attention-

based SV-UNet model designed to identify infarctions in two MRI modalities: 

Diffusion-Weighted Imaging (DWI) and T1-Weighted (T1w) images. This 

model derives from the UNet architecture as the backbone, employing a pre-

trained VGG16 model as a shared encoder connecting to two decoders with iden-

tical architecture. In each up-convolution operation, a Squeeze-and-Excitation 

Network is integrated to enhance feature restoration by analyzing global infor-

mation. For comparison, a VGG16-Dual-UNet is established as the benchmark. 

This architecture is identical to the SV-UNet, except for the removal of the SENet 

module. The research evaluates the two networks using two datasets: Anatomical 

Tracings of Lesions After Stroke 2.0R and Ischemic Stroke Lesion Segmentation 

2022. The study demonstrates that SV-UNet outperforms the baseline model in 

detecting small stroke lesions (minority pixels) within DWI data. While perfor-

mance on T1w data remains comparable, the superior sensitivity in DWI data 

suggests promise for improved clinical applications. 
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1 Introduction 

Acute cerebral vascular disorders, known as strokes, can result in mortality and long-

term disability [1]. The World Stroke Organization (WSO) estimates a staggering 14 

million new strokes and 5.8 million stroke deaths annually [2]. Ischemic strokes are 

dominant, accounting for 60–80% of all stroke patients [1]. It results from blood artery 

obstruction that restricts blood supply to the brain. In neuroimaging technologies, Mag-

netic Resonance Imaging (MRI) is a typical method to diagnose brain infarction [3]. In 

practice, neurologists need to read every scan to delineate infarcted regions to aid cli-

nicians in deciding on treatment plans [4]. A potential problem indicates that artificial  
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tracing is effort-intensive and subjective, which may cause delayed or biased diagnosis. 

It raises patients' indirect risk of permanent brain injury, which could result in death or 

disability. Therefore, investigating a reliable, objective infarct segmentation strategy is 

crucial to reducing this danger. 

Most researchers believe that the Fully Convolutional Network (FCN) has the po-

tential for automatic segmenting infarctions. This network evolved from the classical 

convolutional neural network (CNN), retaining convolution and pooling layers but re-

placing fully connected layers with convolutional layers [5]. It can capture low-level 

local characteristics (e.g., edges or texture) and high-level global features (e.g., brain 

structures), by down-sampling and up-sampling inputs sequentially. The mechanism 

avoids the loss of voxel-based spatial information and increases estimated accuracy. 

Moreover, the FCN lies in end-to-end learning, which removes the subjective interme-

diate interventions [5]. It speeds up the training process and discovers more effective 

features from the raw medical data. Many studies proposed variants of FCN-based 

models to experiment on MRI datasets, achieving effective segmentation [4, 6, 7]. 

However, exploring these models encounters obstacles, due to the expensive computa-

tional demand. 

Transfer learning (TL) is identified as a viable solution for mitigating this demand 

and potentially attaining elevated segmentation accuracy [8]. This strategy enables pre-

trained FCN-based models to be fine-tuned for solving a task-specific problem with 

prior knowledge. It significantly saves time and computational resources during model 

training. However, accessing these pre-trained models in sensitive medical domains 

might pose challenges due to privacy concerns and data scarcity [9]. As an alternative, 

Kora et al. demonstrated that publicly available, non-medical TL models, including 

GoogleNet, AlexNet, ResNet and VGGNet, were suited for medical image analysis af-

ter customized refinements [10]. Aside from these networks, Mohapatra et al. extra 

introduced IR (Inception-ResNet) V2, V3 and V4 networks to localize early infarctions 

on non-contrast CT images, with VGG16 achieving superior results [11]. In a similar 

task, Pravitasari et al. proposed VGG16-UNet achieved a 95.69% correct classification 

ratio on an MRI-based dataset in brain tumor segmentation [12]. This model employed 

a pre-trained VGG16 as an encoder, mirroring the down-sampling blocks of this en-

coder to build a decoder to form a symmetrical network. Existing transfer learning 

(TL)-based algorithms, while valuable references for the infarct segmentation task, lack 

reusability across multiple MRI modalities. This limitation requires separate models for 

each modality when dealing with the same tasks, potentially leading to outcome varia-

bility and hindering treatment decisions. 

Researchers have recently introduced the feature attention mechanism into FCN-

based models for segmenting infarcted regions from MRI data [13]. This mechanism 

effectively suppresses background interference (0 pixels) and directs models to focus 

on infarct-specific characteristics, such as hyperintensity on diffusion-weighted imag-

ing (DWI) scans. However, feature attention is computationally expensive due to the 

requirement to calculate all spatial relationships across all slices. Channel-wise atten-

tion, which possesses similar properties to feature attention in infarct detection, ex-

plores channel-level contributions by amplifying important information within chan-

nels to improve accuracy [14]. This mechanism offers a computationally more efficient 

alternative to feature attention by focusing on feature importance within each channel 

rather than calculating complex inter-slice relationships. 
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While integrating channel-wise attention mechanisms with transfer learning in FCNs 

presents a promising avenue to solve reusability issues and achieve exact infarct seg-

mentation, this area remains largely unexplored. Addressing this gap, this paper intro-

duces SV-UNet, a novel attention-based model with dual MRI modality branches, to 

identify infarctions in DWI and T1w images. Built on the UNet architecture, SV-UNet 

leverages a pre-trained VGG16 as a shared encoder, feeding two identical decoders. To 

enhance feature restoration, SENet modules are integrated after each up-convolution. 

The model performance is evaluated on Anatomical Tracings of Lesions After Stroke 

(ATLAS) 2.0R and The Ischemic Stroke LEsion Segmentation (ISLES) 2022 datasets. 

This paper is structured as follows: Section 2 details the methodology employed to 

achieve the research goal. Section 3 presents the experimental results and discussions, 

while Section 4 concludes the work by outlining its key findings, limitations, and po-

tential future directions. 

2 Method 

The experiment aims to validate a) the feasibility of using a pre-trained VGG16 to build 

an FCN-based network capable of analyzing T1w and DWI data for delineating regions 

of infarct; b) the impact of incorporating SENet into the proposed network. To achieve 

these objectives, two models were developed: VGG16-Dual-UNet, a baseline model 

with separate decoders for each modality, and SV-UNet, an improved version incorpo-

rating Squeeze-and-Excitation Networks (SENets) for feature map recalibration after 

up-convolutions. The following section elaborates on the experimental process, includ-

ing dataset preparation, model construction, and implementation details. 

2.1 Dataset Preparation 

The ATLAS 2.0 dataset, provided by [15], was utilized for the infarct segmentation 

task. The original dataset consists of 955 T1-weighted (T1w) MRI images from multi-

ple centers, 655 training images with manually segmented lesion marks and 300 as the 

testing set without marks. Since none of the marks are available in the testing set, the 

experiment selected sequentially 70 patients of T1w scans from the training images 

with corresponding lesion marks. Each patient has 189 slices with an individual shape 

of 197 x 233. In total, 13,230 slices were selected for the experiment. The ISLES 2022 

contains 250 patients of skull-stripping Apparent Diffusion Coefficient (ADC), Diffu-

sion-Weighted Imaging (DWI), FLuid Attenuated Inversion Recovery (FLAIR) and 

ground-truth scans [16]. The experiment chose 15,684 DWI and ground-truth slices 

from all patients. Fig. 1 depicted two gray-based, resized slices from T1w and DWI 

respectively. 
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Fig. 1. a) and b) illustrate two T1-weighted slices resized to a shape of 256x256. c) and d) depict 

two skull-stripping diffusion-weighted images (DWI) with the same dimensions. 

The ATLAS 2.0 dataset, provided by [15], was utilized for the infarct segmentation 

task. The original dataset consists of 955 T1-weighted (T1w) MRI images from multi-

ple centers, 655 training images with manually segmented lesion marks and 300 as the 

testing set without marks. Since none of the marks are available in the testing set, the 

experiment selected sequentially 70 patients of T1w scans from the training images 

with corresponding lesion marks. Each patient has 189 slices with an individual shape 

of 197 x 233. In total, 13,230 slices were selected for the experiment. The ISLES 2022 

contains 250 patients of skull-stripping Apparent Diffusion Coefficient (ADC), Diffu-

sion-Weighted Imaging (DWI), FLuid Attenuated Inversion Recovery (FLAIR) and 

ground-truth scans [16]. The experiment chose 15,684 DWI and ground-truth slices 

from all patients. Fig. 1 depicted two gray-based, resized slices from T1w and DWI 

respectively. 

The pre-processing steps included transforming 3D slices into 2D formats, resizing, 

normalizing, and filtering the slices. After pre-processing, T1w scans were reshaped 

from 70x197x233x189 (slices) to 3203x256x256x1 (the grey channel), with pixel val-

ues normalized into 0 and 1 by max-normalization. The infarct labels in the selected 

slices ranged from 110 to 6667. DWI slices were not uniform in shape, but the selected 

ones were resized to match the T1w dimensions, resulting in 3203x256x256x1. Their 

values were scaled between 0 and 1 using min-max normalization. The infarct pixels in 

filtered slices ranged from 100 to 9074. Finally, the T1w and DWI datasets were sub-

sampled and split into training, validation, and testing sets with a 6:2:2 ratio. 

2.2 Model Construction 

Two FCN-based models with transfer learning were built for the experiment, named 

VGG16-Dual-UNet and SV-UNet. The proposed models were based on the U-Net ar-

chitecture, a modification of classical convolutional neural networks (CNNs) [5]. Un-

like standard CNNs, the symmetric U-Net architecture forgoes fully connected layers 

at the output and instead relies solely on convolutional and pooling layers. Its architec-

ture constitutes a contracting path followed by an expanding path. A contracting path-

way compresses pixel-based inputs into lower-dimensional features via downsampling, 

whereas an expanding pathway reconstructs these low-level features (e.g., texture or 

lines) through upsampling to restore spatial resolution lost during downsampling oper-

ations. 

To mitigate the vanishing or exploding gradient problem, in the bi-decoders, the hid-

den convolutional layers with ReLU activation functions were initialized using Xavier 
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initialization [17]. This helped maintain a healthy distribution of gradients during train-

ing. For the final output convolutional layer with sigmoid activation, He initialization 

[17] was employed, which was suited for activated outputs with a non-zero lower 

bound. Furthermore, a masking decoder technique was employed during model train-

ing. It involved freezing the weights of one decoder while training the other. This pre-

vented the decoders from interfering with each other's learning process. 

VGG16-Dual-UNet. The baseline model was reliant on the UNet backbone, employ-

ing a shared VGG16 [18] encoder in the connection of two separate decoders, allowing 

the simultaneous analysis of T1w and DWI slices. VGG16 was pre-trained on the 

ImageNet dataset, capable of capturing general patterns from images. It was originally 

designed for RGB-channel images with an input shape of 224x224x3. To accommodate 

the T1w and DWI slices, its input layer was modified to 256x256, and the same input 

was triplicated to create a pseudo-RGB depth. 

Fig. 2. VGG16-Dual-UNet architecture. 

The encoder comprised five VGG16 convolutional blocks (shown in Fig 2) for the 

feature extraction of input T1w or DWI slices. The initial two blocks each had two 

convolutional layers followed by max-pooling, which reduced spatial dimensions while 

increasing feature channels. The generated feature maps were shaped as 256x256x64 

and 128x128x128. The following two blocks had three convolutional layers and one 

max-pooling, extracting more complex features, and yielded output shapes of 

64x64x256 and 32x32x512. The fifth block acted as a bottleneck, using three 
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convolutional layers to compress spatial information into features with the shape of 

16x16x512. These five blocks constituted the contracting path, which remained frozen 

during the training process. The layer hyperparameter settings of these blocks were 

consistent with the pre-trained VGG16. 

The expanding path consisted of two separate decoders with identical architecture 

for processing the corresponding T1-weighted and DWI modalities. Each decoder com-

prised four up-convolutional blocks to reconstruct the compressed features. Each block 

followed a specific sequence: a 2x2 transposed convolution layer with 'same' padding 

and a stride of 2, followed by two sets of convolutional layers (3x3 filters and 'same' 

padding), batch normalization, and ReLU activation layers. Finally, a skip connection 

operation combines the relevant trimmed feature map from the contracting path, which 

is crucial for restoring missing pixels during the previous down-convolution process. 

The decoder architecture mirrored the encoder's structure but with fewer parameters. 

It employed progressively smaller convolutional filters (32, 16, 8, and 4) during the up-

convolution process. This resulted in feature maps with progressively increasing spatial 

dimensions (32x32x32, 64x64x16, 128x128x8, and 256x256x4). Finally, a 1x1 convo-

lution layer convolved a feature map (256x256x1) into a binary class prediction using 

a sigmoid activation function. 

SV-UNet. The SV-UNet emerged as an improved model, adopting a similar architec-

ture to VGG16-Dual-UNet. However, it incorporated a SENet [14] embedded within 

each decoder after the up-convolution operations, shown in Fig. 3. This network ex-

celled at capturing latent dependencies and relationships between feature maps (chan-

nels) generated by convolutional layers. The inclusion of SENet helped to recalibrate 

these feature maps by leveraging global information, ultimately enhancing the recon-

struction process. The network comprised three modules: Squeeze, Excitation and 

Scale. 

 
Fig. 3. Schematic flow for SENet embedded between two up-sampling blocks. 

The Squeeze module leverages Global Average Pooling (GAP) to embed feature 

maps (I) into a global feature for reducing spatial complexity. These feature maps are 

generated by specific convolutional blocks, with dimensions of Height (H) x Width 

(W) x Channel (C). The GAP formula is defined as below: 

𝑉𝑐 = 𝜃 (𝐼𝑐)  =
1

𝐻 ×𝑊
∑ ∑ 𝐼𝑐(𝑛,𝑚) 

𝑊

𝑚=1

𝐻

𝑛=1

 (1) 

The formula (θ) represents two mathematical computations. The first computation 

sums the value across all spatial locations (n, m) in H and W for a single channel (c). 
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The second computation divides this value by H x W for normalization. After repeating 

this process for the iteration of all channels in Ic, the feature maps are condensed into a 

squeezed vector of length c (1x1xC), denoted as Vc. In this vector, each value symbol-

izes compressed information of the corresponding channel, or feature map. 

Excitation operates on the channel descriptor (Vc) with two fully connected (FC) 

layers to capture channel-wise dependencies. In the FC1, the dimensionality is reduced 

to C/r, where r is a reduction ratio that controls the capacity and computational cost. 

After ReLU activation, the FC2 restores the dimensionality back to C, followed by a 

sigmoid activation. In the experiment, this hyperparameter (r) is empirically set to 2. 

The mathematical equation for this process can be defined as: 

𝑔 = 𝛿(𝑊2𝜎(𝑊1𝑉𝑐)) (2) 

Where W1 and W2 are the learnable weights in the first and second fully connected 

layers (FC1 and FC2), respectively, σ and δ describe the ReLU and Sigmoid activa-

tions, and g denotes the excitation output. This output has the same dimensions (1 x 1 

x C) as the squeezed output and contains the learned importance weights for each chan-

nel. 

The scale operation performs element-wise multiplication between the original fea-

ture maps (I) and the excitation output (g). This multiplication selectively amplifies 

informative features and removes irrelevant ones, thereby recalibrating feature repre-

sentation. 

2.3 Implementation Details 

In the experiment, the Adam optimizer (initial learning rate 0.0001) and focal loss (Gamma 

0.5 and Alpha 0.75) [19] were applied to update the decoder’s weights of VGG16-Dual-

UNet and SV-UNet in the backpropagation process. Focal loss builds upon the standard 

binary cross-entropy loss function, with an introduced modulating factor (1 - Pt)
γ. The for-

mula is defined as: 

𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠(𝑝 𝑡)  =   − 𝑎𝑡(1 − 𝑝 𝑡)
𝛾 log(𝑝 𝑡) (3) 

Pt ∈ (0, 1) is the estimated probabilities for a pixel t, calculated by a sigmoid func-

tion. The α (alpha) ∈ (0, 1) is a factor that harmonizes the contribution of well-classi-

fied and misclassified pixels. The former refers to how a model correctly predicts back-

ground and foreground pixels (0 and 1), while the latter indicates how a model assigns 

an incorrect pixel label. Gamma (γ) allocates higher loss weights to hard-to-class pixels, 
enabling a model to shift more attention to the minority infarct pixels. 

The observation of validation curves depicted the model training process aimed to 

tweak hyperparameters. Early Termination monitored the validation loss with a pa-

tience of 30, returning the best weights during these patience periods. VGG16-Dual-

UNet and SV-UNet models underwent training for 180 epochs, using a batch size of 

32. The Area Under the Curve (AUC) was applied to examine model’s capability to 

identify positive or negative labels. Recall and Precision were applied to evaluate how 

model correctly detects and predicts positive pixels (infarcts). The Dice Similarity Co-

efficient (DSC) harmonized Precision and Recall metrics, determining model 
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performance in infarct segmentation. The experiment was performed on V100 GPU in 

Google Colab. 

3 Results and Discussion 

The accuracy metric was not included in the experiment because it cannot truly reflect 

the model predictions due to the scarcity of positive pixels. The precision metric was 

chosen as an alternative due to its sensitivity to positive pixels. In the comparison of 

AUC, recall, precision, and DSC, the results reveal that SV-UNet outperforms VGG16-

Dual-UNet on the DWI dataset, while demonstrating a similar performance to VGG16-

Dual-UNet on the T1w dataset. 

 

 
Fig. 4. Validation curves of Precisions and Losses for VGG16-Dual-UNet and SV-UNet training 

on T1w and DWI. 

Fig. 4 demonstrates the concept of overfitting. In graph a), both models achieve high 

fitting to the training data but generalize poorly to the validation data. This is further 

evidenced by the high oscillation in the validation predictions. though the focal loss 

curves show a steady decrease with increasing epochs, shown as in the graph b). In 

contrast, graphs c) and d) highlight the effective learning behavior of the proposed mod-

els on the T1w dataset. This is evident in both training and validation predictions, ac-

companied by a smooth decrease in loss values. Notably, graphs (b) and (d) reveal an 
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advantage of the SENet module in the SV-NEet model. It improves sensitivity on mi-

nority pixels (infarcts) from the initial training epoch compared to VGG16-Dual-UNet, 

which requires 25 epochs for similar progress. Beyond this epoch, however, the two 

models exhibit a similar learning performance. 

 
Table 1. Evaluative results of AUC, Recall, and Precision for VGG16-Dual-UNet and SV-

UNet for specific datasets, accompanied with trainable and non-trainable weights; TP stands for 

Trainable Parameters, while NTP refers to Non-Trainable Parameters. 

Model Da-

taset 

AUC Re-

call 

Precision DSC TP NTP 

VGG16-

Dual-UNet 

 

T1w 0.95 0.91 0.91 0.91 

577,938 14,715,168 
Dwi 0.86 0.72 0.76 0.74 

SV-UNet 

 

T1w 0.95 0.90 0.92 0.91 
580,838 14,715,168 

Dwi 0.86 0.73 0.76 0.75 

Table 1 presents the evaluative metrics of two custom-designed models for infarct 

segmentation after 180 training epochs. For the T1w dataset, these metrics (AUC, Re-

call, and DSC) reveal close competition between the models. While VGG16-Dual-

UNet achieves a slight edge in Recall (0.91), SV-UNet gains a marginal advantage in 

precision (0.92). Both models perform similarly in identifying infarcted pixels, but SV-

UNet comes at the cost of requiring 2,900 more trainable parameters. 

For the DWI dataset, AUC, Recall, and DSC again indicate tight competition, with 

SV-UNet exhibiting a slight advantage over VGG16-Dual-UNet in Recall. Precision 

remains comparable. Including the SENet module in SV-UNet benefits its Recall capa-

bility in predicting testing samples. This suggests that the SENet module prioritizes 

channels containing crucial infarct information while suppressing irrelevant features, 

ultimately enhancing SV-UNet's ability to detect positive pixels. In conclusion, SV-

UNet outperforms VGG16-Dual-UNet on the DWI dataset. 

Both models share a VGG16 architecture, contributing 14.7 million non-trainable 

parameters, with each reaching approximately 580,000 trainable weights. While both 

achieve a high DSC of 0.91 on the T1w dataset, performance drops to around 0.75 for 

the DWI dataset. This highlights the need for further research to improve DWI infarct 

segmentation. 
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Fig. 5. Delineation of infarcted regions by VGG16-Dual-UNet and SV-UNet after 180 epochs 

training. 

 

The experiment randomly selects two slices from T1w and DWI respectively for 

further examining segmentation performance, shown as Fig. 5. Infarctions appear as a 

dark area on T1w slices and as a bright in DWI, easily distinguishable from surrounding 

brain tissues, shown as in column a). From column b), the Ground Truth illustrates the 

location and shape of infarcts. The segmented results are present in the graphs of c) and 

d). The highlighted areas indicate the intersection between the predicted regions and 

the ground truth. 

The estimations of the two models on the T1w dataset are notably accurate, with 

only minor discrepancies observed. VGG16-Dual-UNet displays non-overlapping re-

gions in its predictions for the DWI slice (row three), whereas SV-UNet predictions 

closely match the Ground Truth. These findings align with the evaluation metrics, in-

dicating that post-training, both models demonstrate the ability to analyze multimodal 

data effectively and identify infarct areas within the experimental dataset. 

Based on the evaluative results, three key findings are summarized in this section. 

The first finding concerns the quality of DWI data. Fig. 4(a) suggests that the proposed 
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models struggle to predict positive pixels (infarct pixels) in the validation set during 

training. Significant discrepancies in the DWI data patterns could hinder the models' 

ability to generalize to unseen validation data. In such an imbalanced dataset, a few 

incorrect predictions on positive pixels can lead to sharp variations in precision. This 

hypothesis is supported by the observation that both models exhibit stable learning and 

generalization on the T1w dataset, which contains a similar number of slices as the 

DWI dataset. 

To further investigate how DWI data quality influences the models, future studies 

will involve visualizing the intensity distribution to explore signal intensity range and 

spread within the DWI data. Additionally, Signal-to-Noise Ratio (SNR) and Contrast-

to-Noise Ratio (CNR) will be calculated for every slice to analyze signal and contrast 

intensities on a slice-by-slice basis [20]. By setting thresholds based on the intensity 

distribution analysis, high-quality slices will be selected from the pool of 3203 slices 

for model training. SNR serves as a metric for evaluating the signal's strength relative 

to background noise, with a higher value indicating well-delineated tissue signals. 

CNR, on the other hand, reveals the level of signal intensity differences between brain 

tissues. A higher CNR value signifies more pronounced and discernible contrasts 

within these tissues. 

The second finding concerns overfitting in the DWI dataset. Despite having the same 

number of slices as the T1w data, both models exhibited overfitting. This suggests the 

models struggled to learn infarct features due to the dominance of negative pixels 

(healthy tissue) in each DWI slice compared to T1w data. While standard regularization 

techniques (e.g., Lasso, Ridge, or Dropout) were ineffective, future studies will explore 

Tomek Links [21]. This technique focuses on removing redundant healthy pixels from 

the DWI data, aiming to balance the dataset and improve model learning without losing 

valuable information. 

The third finding reveals a complexity-interpretability trade-off with SENet. While 

SENet improves infarct segmentation accuracy for DWI data in the SV-UNet model, 

the inherent black-box nature of FCN-based models hinders interpretability. The cur-

rent study lacks explanations for SENet's impact on T1w modality predictions and how 

it works for fine-grained DWI predictions. To address this, two techniques will be ex-

plored: Layer-wise Relevance Propagation (LRP) [22] and Local Interpretable Model-

agnostic Explanations (LIME) [23]. LRP assigns importance scores to pixels during 

backpropagation, revealing key features for model decisions. LIME allows local anal-

ysis of the SV-UNet model, providing granular insights into its reasoning process for 

specific predictions. 

4 Conclusion 

This research introduces SV-UNet, a novel deep-learning architecture equipped with 

SENet attention for infarct segmentation in both T1w and DWI modalities. The SENet 

module refines feature maps after each up-convolution operation in the dual decoders 

of the network. While SV-UNet achieves comparative performance to the baseline 

VGG16-Dual-UNet on the T1w dataset, it demonstrates superior performance on DWI 

data.   
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This architecture is valuable considering the issues of data scarcity and class imbal-

ance commonly faced in infarct segmentation. By combining SENet with a pre-trained 

VGG16 network, this approach allows the FCN-based model to achieve good perfor-

mance even with limited medical data. This methodology offers a valuable reference 

for researchers and practitioners facing similar challenges.  

The model encounters aleatoric and epistemic uncertainties. The former stems from 

the intrinsic variability in tissue properties within the DWI dataset. This variability can 

lead to unpredictable effects on model generalizability. The latter suggests that the cur-

rent complex model produces unexplained predictions, hindering decisions for im-

provements. Additionally, SV-UNet exhibited overfitting on the DWI dataset even 

when the number of slices was identical to the T1w dataset. This suggests that the model 

may have difficulty capturing the latent patterns in the DWI data. 

Future research will adopt a multi-pronged approach to solve these problems. First, 

a combined analysis of intensity distribution, SNR, and CNR identifies and filters high-

quality slices from the DWI data for training. This will help mitigate the impact of noise 

and improve feature learning. Additionally, LRP and LIME will be employed to under-

stand which image features are most critical for accurate class prediction, particularly 

in terms of spatial localization. This enhanced understanding will guide further model 

development. Finally, Tomek Links will be utilized to address the class imbalance by 

removing redundant pixels for the DWI dataset, mitigating overfitting issues. 
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