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Abstract. In the context of current technological development, large language 

models (LLMs) have become a core component of artificial intelligence. This 

report provides an in-depth discussion of various advanced strategies and 

techniques to improve the processing and computational efficiency of LLMs. 

First, the report goes through a detailed analysis of automatic 4-bit Integer 

Quantization (INT4 quantization). It then discusses binarization with the Flexible 

Dual Binarization (FDB) fusion strategy in depth and elaborates on the principle 

of automatic INT4 quantization and its positive impact on computational 

efficiency. Furthermore, it explores the flexibility of the fusion strategy of 

binarization with FDB and its application. Lastly, it examines the application of 

Atom technology in low-bit quantization and its contribution to processing 

efficiency. Further, the report explores hybrid LLM inference strategies, focusing 

on the principles of hybrid LLM inference and the impact on efficiency. Finally, 

the report introduces soft prompt and decoding optimization techniques, 

including the principles and advantages of the MEDUSA framework and the 

SARATHI technique, as well as the application of the Transferable Prompt 

technique. By synthesizing these strategies and techniques, this report provides 

strong guidance and reference for the efficient deployment and application of 

LLM. 
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1  Introduction 

Large Language Models (LLMs) are becoming an increasingly important technology 

in the field of Artificial Intelligence. With the continuous development of models such 

as OpenAI's Generative Pre-trained Transformer (GPT) series and Google's 

Bidirectional Encoder Representations from Transformers (BERT), they demonstrate 

great potential for text understanding, generation, and translation [1]. With the 

continuous development of models such as OpenAI's GPT series and Google's BERT, 

they show great potential for text understanding, generation, and translation [1]. 

Automatic text generation, complex problem solving, and multilingual support are 

some of the key applications of AI in various industries, which proves its versatility 

and wide applicability [2]. However, the application of LLM faces several challenges. 

Increasing the model size requires significant computational resources, which can  
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increase operational costs and limit applications in resource-constrained environments 

[3]. Cloud computing platforms provide the necessary computational resources, but 

suffer from long response times, high bandwidth costs, and data privacy risks in real-

time applications [4]. In addition, as the amount of model training data increases, issues 

such as data privacy and copyright are becoming more and more prominent, posing 

significant technical challenges to current LLMs. 

Many research teams are currently exploring solutions to the challenges faced by 

LLM techniques. The development of new strategies such as model compression and 

advanced training techniques, as well as technological advances, can help alleviate 

these problems and further optimize and popularize LLM techniques. Nonetheless, to 

achieve widespread deployment of these techniques, interdisciplinary research and 

collaboration are necessary to ensure that technology development balances efficiency, 

cost, and privacy protection. 

This study systematically analyzes the research progress in the field of LLM 

processing and computational efficiency improvement utilizing a literature review. The 

study synthesizes research literature, technical reports, and case studies from various 

aspects, and provides an in-depth discussion of various techniques and strategies for 

efficiency improvement. Special attention is paid to the application and effectiveness 

of techniques such as automatic INT4 quantization, binarization and FDB fusion 

strategies, and Atom low-bit quantization. In addition, this study analyzes the potential 

value of advanced techniques such as hybrid LLM inference strategies in improving 

LLM efficiency. Through these analyses, it aims to provide theoretical support and 

strategy guidance for improving LLM efficiency. 

2  Fusion Strategies for Quantization, Binarization, and Atom 

The INT4 quantization strategy demonstrates its unique benefits in terms of storage 

optimization and computational speedup; binarization, a process that reduces model 

weights and activation values to their most basic binary form (i.e., 1 and 0 or -1 and 1), 

greatly reduces the model's storage requirements and can dramatically speed up 

computation. Atom improves the throughput of its services through the use of low-bit 

quantization and dramatically reduces memory consumption through low-bit 

quantization. This approach employs a novel mixed-precision quantization and fine-

grained group quantization to maintain high accuracy. Compared to previous methods 

that often lose accuracy when using low-bit representations, the Atom method performs 

better. 

2.1  Automatic INT4 Quantization 

Automatic INT4 Quantization Flow 
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Fig. 1. Automatic INT4 quantization flow. 

In the field of deep learning and machine learning, model parameters are typically 

represented and computed in floating-point format. The 32-bit floating-point number 

(FP32) format, shown on the left side of Fig. 1, represents a floating-point number with 

a 32-bit binary width, providing high computational accuracy and a large range of 

values. In the automatic INT4 quantization process, a model in FP32 format goes 

through the INT4 quantization step. As shown in the green "INT4 Quantization" box in 

Figure 1, the format is converted by applying a preset quantization recipe (including 

quantization scale and offset), and the quantized model is evaluated for accuracy in the 

"Evaluate INT4 Model" step. If the model quantized to INT4 format already meets the 

preset accuracy target, no further adjustment of the quantization recipe is required [5]. 

This process may involve "Auto Recipe Tuning" to fine-tune the quantization process. 

Quantization to INT4 means that each weight requires only 4 bits of representation, 

which is 1/8th of FP32, significantly reducing the model storage size. Once quantization 

is complete, the model can be further optimized for efficient execution on the target 

hardware using the "LLM Runtime (CPU Tensor Library)" and "Auto Kernel Selector" 

in Fig. 1. 

The Advantages of Automatic INT4 Quantization and its Impact on Processing 

Efficiency. Auto Recipe Tuning: The automatic INT4 quantization process enables the 

intelligent selection of quantization parameters through the Auto Recipe Tuning session 

[5]. This ensures that the quantization model retains the performance of the original 

model to the greatest extent possible while reducing manual intervention and 

optimization time. 

Accuracy assessment and optimization: after quantization, the accuracy of the model 

is verified by a dedicated assessment step to ensure that the quantization process has 

not negatively affected the model performance. If the quantized model does not meet 

the predefined accuracy target, an automatic recipe adjustment mechanism will be 

activated to further optimize the quantization parameters until the performance 

requirements are met [5]. 

After the quantization model is converted to INT4, the multiplication operation of 

weights and inputs is converted from floating point to integer operation. Integer 

operations are much less computationally intensive than floating-point operations, 

making them faster. At the same time, reducing the bit width of the weights means that 

more weights can be read from memory in the same amount of time, improving the 

efficiency of memory bandwidth utilization. Cache efficiency is also improved by the 
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reduced weight volume, which reduces memory access latency and speeds up the 

computation of the entire model inference process. 

2.2  Binarization with Flexible Dual Binarization (FDB) 

Principles of Binarization. The main steps of binarization include: 

Weight binarization: simplifying each weight value to -1 or 1. This is usually 

achieved by applying a sign function, where positive values map to +1 and negative 

values map to -1. 

Activation binarization: the output value of the activation function is also simplified 

to -1 or 1 so that most of the computation in the network can be done by simple bit 

operations instead of complex floating-point operations. 

Binarization improves processing and computational efficiency by reducing the size 

of the model and simplifying the computation, making the model more suitable for 

deployment on resource-constrained devices [6]. 

Flexible Dual Binarization (FDB). FDB achieves a more flexible representation by 

splitting the 2-bit wide quantization weights into two separate sets of binary weights 

while maintaining the computationally efficient advantage [6]. 

Dual binary weights: the 2-bit wide quantization weights are split into two sets of 

binary weights (each set of weights is either 1 or 0), which increases the model's 

representational power without sacrificing computational efficiency [6]. 

Tunable scaling factors: each set of binary weights has its corresponding scaling 

factor which is optimized during training to improve the accuracy of the model. 

High sparsity: as the weights are binarized, most of the weights in the model become 

0. This further increases the sparsity of the model, which helps to reduce storage 

requirements and accelerate model inference. 

Impact on Processing and Computational Efficiency. Dramatic reduction in storage 

space: binarization reduces model weights to -1 or 1, significantly reducing the storage 

size of model parameters. In particular, the FDB technique further improves the 

accuracy of the weight representation by optimizing the grouping and scaling factors 

of the binary weights, while maintaining the storage efficiency [6]. 

Significant improvement in computational speed: In binarized models, the 

computational process is more efficient than traditional floating-point operations 

because only bit operations are involved [6]. This means that the model can process 

more data in less time while performing inference tasks. 

Optimization of memory bandwidth and cache utilization: since the quantized model 

parameters take up less space, it makes the memory bandwidth more efficiently utilized 

and the CPU cache efficiency is also improved. This not only reduces the latency of 

memory accesses but also improves the running speed of the whole model [6]. 

Dynamic Adaptation and Performance Maintenance: with the dynamic adjustment 

capability introduced by FDB, the model can be better adapted to the data and task 
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requirements during the training process, which improves the accuracy and efficiency 

of the model in various application scenarios. 

2.3  Atom Low-Bit Quantization 

Principles of Atom. Low-bit quantization: the Atom method significantly reduces the 

memory footprint and data transfer requirements of the model by quantizing the weights 

and activation values of the model to a lower bit width. This low-bit representation 

allows for more efficient integer arithmetic to be used on modern hardware, thus 

increasing computational speed [7]. 

Mixed-precision quantization: Atom employs a mixed-precision quantization 

strategy, meaning that different parameters and data in the model can be quantized to 

different levels of precision depending on their impact on model performance and 

demand on computational resources. This allows the maintenance of high precision in 

parts that are critical to the accuracy of the model while quantizing other parts to low 

precision to optimize efficiency [7]. 

The Advantages of Atom and its Impact on Processing and Computational 

Efficiency. The dynamic quantization strategy employed by Atom allows Atom to 

adjust the quantization parameters, such as the quantization scale factor and zero point, 

in real time according to the actual distribution of the input data [7]. This flexibility 

allows the quantization process to adapt more accurately to different data 

characteristics, thereby reducing the information loss and quantization errors associated 

with fixed quantization parameters. 

By reducing the required memory bandwidth and storage requirements, as well as 

utilizing the low-bit integer arithmetic capabilities on the hardware, Atom can 

significantly improve the inference throughput of the model [7]. Since low-bit 

arithmetic is typically faster than full-precision floating-point arithmetic, especially on 

hardware that supports integer arithmetic acceleration. Therefore, the Atom approach 

can reduce the latency of model inference [7]. 

3  Hybrid LLM Inference 

3.1  Principles of Hybrid LLM Inference 

The core idea of the hybrid LLM inference is to assign queries to large or small 

language models through an intelligent router to reduce the reasoning cost while 

maintaining the quality of the response [8]. 

The intelligent router utilizes machine learning algorithms to predict the processing 

performance and output quality of different LLMs for a given query through a series of 

carefully designed steps. It first extracts key features from the query, such as length, 

lexical complexity, and syntactic structure, to assess the difficulty of the query [8]. 

Then, historical data is used to label the performance of each query under different 
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models to provide a training base for machine learning models. With this training data, 

the smart router trains models such as decision trees or neural networks to learn to 

predict response quality and then ensures the accuracy of the predictions through 

performance evaluation. Once deployed, the router evaluates each received query in 

real-time and decides to route it to the most appropriate model - simple queries are 

handled by small models to save resources, while complex queries are handled by large 

models to ensure quality [8]. 

3.2  Impact on Processing and Computational Efficiency 

Optimal allocation of computational resources: By dynamically choosing between 

small and large models, the system can optimize the use of computational resources 

based on the complexity of the task and the need for accuracy. 

Improve response speed: Dynamic reasoning with hybrid LLM inference allows the 

system to use faster models for simple queries, thus improving response speed without 

sacrificing much accuracy. 

Reduce Unnecessary Computational Overhead: By avoiding the use of overly 

complex models for simple tasks, dynamic inference methods help to reduce 

unnecessary computational overhead, thereby improving computational efficiency at 

the system-wide level. 

4  Soft Prompt and Decoding Optimization 

MEDUSA significantly reduces the number of steps required for decoding by adding 

additional decoding heads and utilizing a tree attention mechanism to process and 

validate multiple candidate sequences in parallel. SARATHI improves Graphics 

Processing Unit (GPU) utilization and reduces inference latency by using Chunked-

prefills and Decode-Maximal Batching, enabling efficient use of computational 

resources even at smaller batch sizes. Transferable Prompt improves the performance 

and enhances the adaptability of compression models by introducing learnable 

embedding vectors as part of the model input. 

4.1  MEDUSA Framework 

Principles of MEDUSA. MEDUSA enhances the efficiency of LLM inference by 

introducing multiple decoding heads capable of predicting multiple sequent tokens in 

parallel. This approach differs from speculative decoding strategies that rely on a 

separate, smaller draft model to generate candidate sequels [9]. Instead, MEDUSA adds 

these decoding heads directly on top of the final hidden state of an existing model, 

allowing for simultaneous prediction of multiple tokens without the need for an 

additional model [9]. 
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Tree Attention. In the MEDUSA framework, the Tree Attention mechanism is an 

innovative application. The core of the Tree Attention mechanism lies in its ability to 

assign attentional weights hierarchically, allowing the model to not only focus on a 

single element but also to gain insight into the relationships between the parts of the 

sequence represented by the different levels of the tree [9]. 

By constructing a hierarchical tree structure, MEDUSA can deal with elements in a 

sequence, such as words or characters, in a highly organized manner. This hierarchical 

representation not only enhances the model's understanding of sequence information, 

but also optimizes the information processing flow, allowing each node to represent a 

specific part of the sequence or a different level of information abstraction. 

MEDUSA achieves parallel decoding by adding additional decoding heads at the top 

level of the model that is capable of processing and verifying multiple candidate 

continuation paths simultaneously. This parallel processing capability stems from the 

Tree Attention mechanism, which allows the model to generate and examine multiple 

continuation branches at each decoding step, greatly improving the efficiency of 

decoding [9]. 

MEDUSA's Advantages. Through this efficient parallel decoding and information 

aggregation mechanism, the application of tree attention in MEDUSA not only 

significantly reduces the number of decoding steps required to generate a complete 

sequence, but also maintains the high quality of text generation. This shows that despite 

the significant improvement in inference speed, the generated text remains coherent 

and highly relevant, demonstrating the great potential of the MEDUSA framework to 

improve the efficiency of LLM inference while still ensuring the quality of the output. 

4.2  SARATHI 

Principles of SARATHI. SARATHI works to address two major bottlenecks in LLM 

reasoning: underutilization of GPU computational resources in the pre-filling phase and 

inefficiency in the decoding phase. Traditionally, the pre-filling phase can fully utilize 

the GPU when processing all input tokens, but the decoding phase generates only one 

token at a time, resulting in decreased GPU utilization. SARATHI balances the 

computational loads of the pre-filling and decoding phases by intelligently reorganizing 

the inference computation flow, thus significantly improving the inference efficiency 

and GPU resource utilization while maintaining the inference quality [10]. 

Chunked-Prefills. Chunked-prefills is a key strategy in SARATHI designed to 

optimize the computational efficiency of the pre-population phase. This strategy splits 

large pre-filling requests into multiple small chunks, each containing a portion of the 

input sequence that can be processed independently and in parallel [10]. The advantages 

of this approach include: 
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Improved GPU utilization: after dividing large input sequences into small chunks, 

more data can be processed in parallel, which allows efficient GPU utilization even in 

small batches [10]. 

Reduces inference latency: chunking allows the model to start processing input data 

faster, without waiting for the entire large input sequence to be processed, especially 

important for applications that require fast responses. 

Optimize memory usage: Chunked-prefills when processing long sequences reduce 

memory pressure because only a portion of the sequence is processed at a time. 

Decode-Maximal Batching. Another innovative strategy of SARATHI is Decode-

Maximal Batching, which predicts the next marker for all sequences in the whole batch 

simultaneously at each decoding step by combining multiple sequences to be decoded 

or different parts from the same sequence into one large batch [10]. It has the following 

advantages: 

Parallel processing: this approach makes full use of parallel computing resources, 

such as GPUs, and can predict the next token for multiple sequences at the same time, 

which significantly improves the decoding speed and efficiency. 

Batch optimization: by intelligently constructing batches containing multiple 

decoded sequences, the utilization of computational resources is maximized, which is 

especially effective in multi-GPU environments. 

Combination with Chunked-prefills: Decode-Maximal Batching in combination 

with Chunked-prefills strategy can further optimize the computational efficiency by 

including both the pre-populated context information and the part of the sequence to be 

generated when constructing decoding batches [10]. 

4.3 Transferable Prompt 

Principles of Transferable Prompt. The core principle of the Transferable Prompt is 

to enhance the performance of a model in a compressed state by adding learnable soft 

prompts to the input of LLMs [11]. These soft prompts consist of a series of trainable 

embedding vectors that, along with the actual input data, form the input to the model 

[11]. The key to this method lies in the optimization of these embedding vectors during 

the model's training or fine-tuning stages, aiming to reduce the model size and inference 

time as much as possible without sacrificing output quality. 

Soft Prompts. Soft prompts are a series of learnable embedding vectors that serve as 

part of the model's input, provided to the model along with the actual input data. These 

vectors are optimized during the training process to enhance the predictive performance 

of the compressed model. 

The learning objective of soft prompts is to maximize the probability of correctly 

predicting the next token in a sequence given the preceding tokens. This allows the 

learned prompts to be aware of the compressed weights, and during the optimization 

process, gradients pass through these compressed weights, enabling the model to 
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consider the effects of compression while generating responses, potentially leading to 

improved performance [11]. 

Transferable Prompt's Advantages. Firstly, soft prompts enable the model to form a 

more accurate understanding of specific tasks or content at the initial stage [11]. This 

efficiency enhancement reduces the computational burden on the model when 

processing input data. 

Secondly, the transferability of soft prompts further extends this efficiency gain. A 

set of prompts optimized for specific tasks can be reused across different datasets and 

tasks, meaning that the model can quickly adapt to new tasks without needing to learn 

from scratch, thus saving substantial computational resources and time [11]. 

Additionally, this transferability reduces the dependency on large volumes of training 

data, as pretrained prompts can help maintain high-performance levels even with fewer 

data. 

Finally, when combined with model compression techniques, the Transferable 

Prompt method also ensures that the performance of the compressed model does not 

suffer significantly [11]. By reducing unnecessary computational overhead, enhancing 

the model's adaptability, and mitigating the impacts of model compression, it offers an 

effective way to improve the processing and computational efficiency of LLMs. 

5. Conclusion 

This report reviews advanced technologies and strategies to enhance the processing and 

computational efficiency of LLMs, focusing on automatic INT4 quantization, 

binarization combined with FDB, and Atom low-bit quantization. Automatic INT4 

quantization optimizes the quantization process, boosting computational efficiency; the 

integration of binarization with FDB, featuring flexible dual-binary weights and 

adjustable scale factors, improves model expressive power while maintaining 

efficiency. Atom's low-bit quantization reduces model size significantly without 

compromising performance. 

In subsequent sections of the report, particular emphasis is placed on the significance 

of hybrid inference methods in improving the adaptability and efficiency of LLMs. By 

dynamically allocating computational resources based on the complexity of tasks and 

real-time demands, and selecting the most suitable model or model components for 

inference, it optimizes resource consumption while ensuring performance. 

Moreover, the report focuses on the segments concerning soft prompts and decoding 

optimization techniques. The MEDUSA framework, by introducing the Tree Attention 

mechanism, optimizes the model's attention structure, enhancing processing efficiency 

and accuracy. The SARATHI strategy, through Chunked-prefills and Decode-Maximal 

Batching techniques, significantly improves the efficiency of the model's decoding 

stage, reducing latency and enhancing response speed. Transferable Prompt 

technology, by introducing transferable soft prompts, enhances the model’s adaptability 

and flexibility across different tasks and domains, allowing for more efficient 
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processing of various types of inputs and further boosting overall computational 

efficiency. 

In conclusion, the development and application of these technologies and strategies 

not only enhance the performance of LLMs in specific scenarios but also greatly 

increase their adaptability and flexibility in the face of varying demands. This provides 

new directions and inspiration for future research and development efforts, heralding 

the vast potential of LLM technologies for widespread application across various 

industries. 
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