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Abstract. Smart contracts, pivotal to blockchain technology, are rapidly proving 

their worth across the digital economy. Yet, as their application widens, issues 

concerning their security and scalability have emerged as major industry 

concerns. This paper provides a comprehensive analysis of these challenges, 

uncovering potential security vulnerabilities and scalability obstacles facing 

smart contracts. By delving into these critical areas, the study not only enhances 

understanding but also offers robust theoretical insights and practical 

recommendations to support the evolution and broader deployment of smart 

contracts. Furthermore, this research proposes innovative strategies and methods 

to address these pivotal issues, thereby facilitating the sustainable growth and 

widespread adoption of smart contracts in the digital economy. This work is 

expected to significantly influence the development trajectory of blockchain 

applications by providing new perspectives on improving smart contract 

frameworks in an increasingly digital world. 
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1 Introduction 

Blockchain technology integrates advanced methodologies such as cryptography, 

distributed storage, consensus mechanisms, and smart contracts to forge a new form of 

quantifiable trust and incentive system [1]. This integration not only enhances 

transaction transparency and reduces trust risks but also diminishes costs and boosts 

efficiency, fundamentally transforming the socioeconomic mechanisms of value 

delivery and trust. As such, blockchain is recognized as a transformative core 

technology in this technological renaissance. 

Central to the evolution of blockchain are smart contracts, which provide a reliable 

execution environment that revolutionizes traditional contractual processes. Unlike 

conventional agreements, smart contracts facilitate transparent, traceable, and 

irreversible transactions without the dependency on third parties [2]. This mechanism 

significantly enhances the security and transparency of contract execution, streamlines 

the process, and markedly reduces operational costs. The concept of smart contracts, 

first introduced by American computer scientist and cryptographer Nick Szabo in 1995, 

aimed to integrate these contracts into tangible entities, thus creating smart assets  
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characterized by flexibility and control [3]. Initially, the concept did not see widespread 

adoption due to the absence of a trusted execution environment. However, with the 

rapid advancement of blockchain technology, the definition and functionality of smart 

contracts have evolved. They are now seen as programmable, event-driven systems 

with state management capabilities, operating on a replicable and shared ledger that 

effectively manages ledger assets. 

As smart contracts become increasingly prevalent, their security and scalability 

issues have come to the fore. Given their role in managing encrypted digital assets on 

blockchain platforms, smart contracts are economically valuable and thus a lucrative 

target for attacks, which can result in significant economic damages [4]. Furthermore, 

the intrinsic aim of smart contracts to utilize blockchain’s trust-enhancing properties 

means that any vulnerabilities could transform a fair agreement into an "unequal 

contract," undermining the foundational principles of smart contracts. Moreover, 

scalability challenges restrict smart contracts' applications in high-volume transaction 

environments. As transaction volumes grow, the efficiency and processing capacity of 

smart contracts may degrade, leading to slower transaction speeds, increased costs, and 

potentially risking system collapse. 

This paper delves into the pressing issues of security and scalability within smart 

contracts, offering critical insights and potential solutions. Through rigorous analysis, 

it seeks to inspire improvements and promote the robust development and extensive 

adoption of smart contract technology, thereby supporting the ongoing advancement of 

the blockchain field. 

2 Basic analysis of smart contracts and blockchain 

2.1 Blockchain Technology 

The CAP theorem is an important theory in the field of distributed systems. It points 

out that a distributed system cannot satisfy the three characteristics of Consistency, 

Availability and Partition tolerance at the same time [5]. The current blockchain 

technology mainly uses the consensus mechanism based on Proof of Work (PoW) 

proposed by Satoshi Nakamoto and the decentralization feature to achieve a balance of 

these three features to a certain extent, ensuring the authenticity and authenticity of the 

data on the blockchain. Credibility provides a strong guarantee for the execution of 

smart contracts to maintain high performance and stability when processing large-scale, 

highly concurrent transactions. 

2.2 Security Principles 

Designing a complete smart contract involves multiple aspects such as privacy issues, 

legal issues, security issues, and mechanism design [6]. Therefore, it is not easy to 

design a smart contract that is free of security vulnerabilities, fair and trustworthy, 

compliant with regulations, and easy to follow the transaction process. The Fig. 1. 

below simulates the scenario where users deposit funds on the exchange. And the 
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security principles requiring attention in the smart contract based on this scenario will 

be listed. 

 

Fig. 1. Simulate User Recharging Flowchart . 

Based on the above simulation scenario, designers need to verify the validity of the 

input parameters of the smart contract to prevent vulnerabilities and attacks caused by 

malicious input by attackers. When designing the permission control mechanism, 

restrict access and operations to the trading platform contract to ensure that only 

authorized users can perform specific operations. When designing blockchain 

verification, each state change in the contract should be completed after external calls 

to avoid the loss of funds caused by double-spending attacks [7]. Finally, the contract 

mechanism should be updated in a timely manner, and the upgrade and update 

mechanism of the contract should be considered to deal with the discovery of loopholes 

or the need for improvement, while ensuring that the contract update process is safe 

and reliable. 

2.3 Market Requirement 

The market demand for smart contracts is growing rapidly, especially in areas such as 

supply chain management, e-commerce, and healthcare. As requirements for supply 

chain transparency and security increase, blockchain technology is providing impetus 

to market growth by increasing automation, eliminating middlemen, and streamlining 

processes. In the context of the booming e-commerce industry, smart contracts have 

received increasing attention as a tool to improve transaction transparency and trust.  

Furthermore, the demand for drug tracking and control in the healthcare field has 

further promoted the application of smart contracts [8]. Although the Covid-19 

epidemic has previously caused some impact on the supply chain, the increasing 

demand for e-commerce, coupled with the promotion of AI and machine learning, has 

hastened the embrace of blockchain-based supply chain solutions [9].  
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With the continuous development of blockchain technology and the further 

improvement of smart contract functions, smart contracts are expected to play a role in 

a wider range of industries by improving transaction efficiency and reducing costs, 

thereby promoting wider market adoption of the technology [10]. Therefore, people are 

increasingly focus on smart contracts' security and scalability issues, which are crucial 

to maintaining the long-term stability and sustainable development of smart contracts. 

3 Smart Contract Security Research Analysis and Countermeasures 

Smart contract is the core components of the blockchain and is divided into the 

application layer (as shown in Fig. 2. below) [11]. Compared with ordinary programs, 

smart contracts have many unique characteristics. These characteristics make smart 

contracts vulnerable to unusual attack methods by attackers and trigger new security 

threats. 

 

Fig. 2. Blockchain five-layer structure. 

The primary security risks associated with smart contracts stem from various 

security vulnerabilities. These vulnerabilities primarily arise from three distinct levels: 

high-level language, virtual machine, and blockchain [12]. This section will delve into 

the main security weaknesses present at each of these levels and discuss the security 

incidents that have resulted from these vulnerabilities. 

Smart contracts are encoded in high-level languages, then compiled into bytecode, 

triggered by blockchain transactions, and executed on a virtual machine with 

blockchain as the storage basis. The entire process faces various security threats, 

alongside the discovery of security vulnerabilities. 

3.1 Security Analysis from High-level Languages Level 

A diverse range of high-level languages can be utilized for the development of smart 

contracts, with Solidity being one of the most popular choices. There are two main 

reasons why smart contracts pose security threats in this regard: One is the security 

         369Advancing Blockchain Ecosystems: Smart Contract Security and Scalability  



issues introduced by the flaws in the design of high-level languages. The other is 

security vulnerabilities caused by poor code quality when developers coding high-level 

languages. 

Variable Coverage. The variable coverage leak is a common security weakness 

stemming from design flaws in high-level languages. Certain contracts designed with 

specific versions of Solidity will be affected by this vulnerability [13]. 

When developing smart contracts using Solidity, variables within functions typically 

default to Memory type, effective only during function calls and recycled upon return. 

However, in specific versions of Solidity, array or struct variables declared by default 

may be erroneously treated as Storage type by the compiler. Manipulating these 

variables can lead to unauthorized access to the contract's Storage area. 

Given the high gas cost associated with accessing and manipulating Storage 

variables, they are typically reserved for storing crucial information like administrator 

addresses and balances. Any accidental overwrite of these variables can lead to contract 

malfunctions, posing data and economic security risks. 

Integer Overflow. Integer overflow is a universal characteristic of computer 

programming languages. Its occurrence primarily stems from the fact that programming 

languages have inherent limits on the storage space designated for integer types, 

resulting in restrictions on the range of integers that can be represented. Whenever the 

outcome of an integer operation surpasses this designated range, an integer overflow 

ensues. 

This issue primarily arises from users' failure to conduct secure overflow checks on 

operation results. Unexpected integer overflow can lead to operational errors in smart 

contract programs and potentially be exploited by attackers to bypass checks and 

tamper with crucial data, such as balances. 

In the Blockchain ecosystem, BEC and SMT were two equity crowdfunding 

contracts that complied with the ERC20 standard [14]. However, in April 2018, two 

contracts were attacked by integer overflow vulnerabilities. Attackers exploited these 

vulnerabilities and successfully created huge amounts of Tokens up to 2256  in 

magnitude, which were then dumped on exchanges. This behaviour led to a sharp 

decline in the market value of these two contracts, ultimately resulting in their values 

falling to zero. This incident highlighted the serious threat of integer overflow 

vulnerabilities to the security of smart contracts, reminding developers and users of the 

importance of conducting thorough security checks in smart contracts to avoid similar 

economic losses and security risks. 

Denial of Service. Denial of service in the context of smart contracts refers to the 

failure of the contract to fulfill its intended response function as designed. There are 

numerous reasons that may lead to denial of service in smart contracts. Common causes 

include triggering unexpected exceptions, reaching the block gas limit, unexpected self-

destruct, and hardcoding incorrect administrator addresses. These reasons are typically 

introduced due to unsafe coding practices employed during the development of contract 

code. 
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Denial of service vulnerabilities in smart contracts come in various forms. 

Depending on the impacted entity, denial of service that causes blockage of the 

blockchain network is typically classified as active denial of service, whereas denial of 

service resulting from errors introduced by contract developers that prevent the contract 

from operating normally is referred to as passive denial of service. 

KotET is a multiplayer game contract that allows victorious players to purchase the 

“Throne” with virtual currencies, thus taking over the position from the current "king" 

player. However, this contract contains a denial-of-service vulnerability. In January 

2019, attackers exploited this vulnerability and elevated their maliciously crafted 

contract account to the position of "king". This contract included a complex callback 

function, resulting in the failure of any contract calls attempting to transfer funds to it. 

This active denial-of-service attack prevented other KotET players from purchasing the 

throne, ultimately allowing the attackers to become the permanent "king". 

3.2 Security Analysis from Virtual Machine Level 

The virtual machine level is susceptible to two primary security threats. Firstly, there 

are some inherent flaws in the smart contract bytecode specification and operating 

mechanism outlined in the Ethereum Yellow Paper. The second aspect is the issue 

arising from different blockchain clients failing to strictly adhere to the manual 

specifications and thereby introducing external functionalities in a hasty manner during 

the implementation of virtual machines. In this part of the paper, typical attacks and 

cases are mainly analysed and discussed. 

Reentrancy vulnerability. The reentrancy vulnerability arises when a contract 

performs the operations of transferring funds and modifying storage variables in a non-

atomic order, with the transfer occurring before the storage update. Owing to the 

execution model of Ethereum's EVM (Ethereum Virtual Machine), when contract A 

transfers funds to contract B and contract B lacks a designated function to receive these 

funds, the fallback function of contract B is automatically invoked. If the fallback 

function is malicious, it can recursively call the function of contract A, leading to 

repeated receipt of transferred funds and subsequent financial losses. 

In April 2016, some blockchain developers utilized the Ethereum platform to 

establish a decentralized autonomous organization named the DAO. The organization 

functions as a decentralized venture capital fund that raises and utilizes funds for project 

investment through crowdfunding via smart contracts on Ethereum. All crowdfunding 

participants are allocated voting rights based on their respective investment shares to 

vote on investment projects. 

However, in June 2016, hackers discovered and exploited the reentrancy 

vulnerability in The DAO's smart contract, launching an attack (as illustrated in Fig. 3. 

below). This attack resulted in a loss of over $50 million for the organization. With the 

emergence of The DAO attack, smart contract security has gradually garnered 

increasing attention. 
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Fig. 3. The DAO attack simulation diagram. 

3.3 Security Analysis from Blockchain Level 

Smart contracts leverage blockchain technology to offer decentralization, immutability, 

and trust. The blockchain platform significantly influences the operation of these 

contracts. While blockchain is the backbone of smart contract security and trust, its 

inherent features can also be attacked by security vulnerabilities. 

Timestamp Dependency. Timestamp dependency is a common security risk in smart 

contracts. The block timestamp represents the time when a specific transaction is 

included in the blockchain. Although this timestamp appears to be randomly generated 

based on time, it can be manipulated by miners within a certain value range. If the 

design of a smart contract heavily relies on precise timestamps as decision-making 

parameters, it may face potential security threats. For attackers posing as miners, they 

can affect the execution of the contract by selectively delaying transaction 

confirmations or constructing blocks with specific timestamps. 

This ability allows attackers to circumvent the limitations designed in the contract 

based on timestamps, which may lead to the destruction of the contract's logic and even 

result in a loss of funds. 

Race Condition. The race condition vulnerability in smart contracts arises from their 

reliance on transaction order as the sole decision-making criterion. Smart contracts are 

invoked through transactions, but the timing of transaction initiation and its 

confirmation, which marks the effectiveness of the contract invocation, are not directly 

linked. 

Illustratively, a contract may offer a reward to the first account submitting the correct 

answer. However, the first submitter may not always receive the reward. Because after 

initiating the transaction, it can be observed by network nodes, but there's a delay before 

it's packaged. Since miners prioritize transactions with higher fees, attackers can rapidly 

initiate similar transactions and secure priority by increasing fees. The source of this 

vulnerability lies in the transaction packaging and fee mechanism of the blockchain, 

which decouples the transaction confirmation sequence from the initiation sequence. 
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The Approve function in the well-known ERC20 contract standard used to have this 

vulnerability. 

3.4 Security defence measures 

Security defence is a crucial aspect of smart contract security research and a vital step 

in countering the attacks described above. Smart contracts are immutable once 

deployed, making it impractical to directly patch vulnerable programs, rendering their 

security defence efforts significantly more challenging compared to other programs. 

Security defence solutions for smart contracts are mainly divided into three directions: 

secure programming practices for smart contracts, hot upgrades for smart contracts. 

Secure Programming. In current research efforts, the primary approach to enhancing 

the security of Ethereum smart contract programming involves equipping the Solidity 

programming language with secure and convenient third-party libraries. OpenZeppelin 

provides many standardized Solidity code libraries that have undergone strict security 

audits. These libraries encompass a wide range of functionalities, including ERC 

standard tokens, administrator permission access control, encryption and decryption, 

secure arithmetic operations, and more [15]. Their primary objective is to assist 

developers in swiftly constructing secure and dependable smart contract applications. 

During contract development, developers can simply inherit or import these code 

libraries to use the corresponding library functions for smart contract development. 

Hot Upgrades. Whether it is providing safer contract libraries or using more secure 

high-level languages, secure programming solutions for smart contracts require 

eliminating all vulnerabilities in the contracts before their release to ensure the safety 

of the deployed contracts. However, new vulnerabilities in smart contracts continue to 

emerge. Despite efforts to eliminate all known vulnerabilities prior to deployment, it is 

still helpless for new vulnerabilities discovered after deployment. Researchers have 

proposed the concept of a "proxy contract" to achieve indirect hot upgrading of 

contracts and fix contract vulnerabilities. 

The two most important parts of a smart contract are its storage and code logic. Based 

on this situation, the OpenZeppelin organization utilizes the proxy contract mechanism 

to divide contract deployment into two steps [16]. It uses a relatively secure and concise 

proxy contract as the entry point for the smart contract. The proxy contract manages 

the storage of the contract and calls the contract code in the logic contract through 

delegated calls. Once a vulnerability is discovered in the code implementing the main 

logic of the contract, developers can fix the vulnerability and redeploy a new logic 

contract. They can then point the logic contract address in the proxy contract to this 

new contract, thus achieving hot upgrading of the contract. 

This hot upgrading solution can effectively mitigate the response capabilities of 

contracts to newly discovered vulnerabilities after deployment. However, as it alters 

the immutable nature of smart contracts once deployed, malicious developers may 

change contract rules or introduce unequal contract terms during the upgrade process, 

          373Advancing Blockchain Ecosystems: Smart Contract Security and Scalability  



compromising the tamper-resistance and reducing the trustworthiness of the contract. 

Therefore, this direction still deserves further research. 

4 Smart Contract Scalability Challenges and Solutions 

Cryptocurrencies and blockchain are booming, attracting a surge in users and 

transactions. Despite blockchain's revolutionary potential, scaling up systems to meet 

this demand while maintaining decentralization and security remains challenging. 

Highly decentralized and secure blockchain networks often struggle with high 

throughput, known as the blockchain trilemma. It's difficult for a decentralized system 

to balance those characteristics. To tackle this, various scaling solutions are being 

explored. Some aim to modify the main blockchain's architecture, and others focus on 

building Layer 2 protocols on the top of underlying network. 

This part will analyze and discuss the current mainstream Ethereum expansion 

solutions from two aspects: On-Chain Scaling (Layer-1) and Off-Chain Scaling (Layer-

2). 

4.1 On-Chain Scaling 

On-Chain Scaling or called Layer-1 scaling. Typically, on-chain scaling refers to 

solutions that occur directly on the blockchain by changing the block size or data 

structure to improve throughput. 

One on-chain scaling technique aims to minimize the block size while maintaining 

the transaction count per block, thereby boosting overall throughput. A prime example 

is Segregated Witness (Segwit). By excluding signatures from transaction data and 

incorporating them into metadata with a separate script, Segwit frees up valuable block 

space since signatures account for about 65% of transaction data. This extra space 

enables increased transactions within each block [17]. Consequently, this approach can 

increase the transaction volume within a block by approximately fourfold, subsequently 

boosting throughput. Additionally, Segwit also enlarges block size to 4 MB, resolves 

the secondary hashing issue, and expedites payment channels (e.g. the Lightning 

Network). Nevertheless, despite Segwit's capability to facilitate soft scaling for Bitcoin, 

its effectiveness remains constrained, limiting the throughput improvement to a range 

of 17 to 23 transactions per second (TPS). 

The second approach to on-chain scaling involves directly enlarging the block size. 

This method is employed by two schemes: Bitcoin-cash and Bitcoin-unlimited [18]. 

Nevertheless, this solution gives rise to increased propagation delays, potentially 

resulting in fork issues and DoS attacks, thereby posing significant security challenges. 

Given the constraints of Segwit, some miners have opted for Bitcoin-Cashing as an 

alternative. Bitcoin-Cashing initially escalated the Bitcoin block size to 8 MB and 

subsequently to 32 MB. However, it's worth noting that the block size does not have a 

direct linear correlation with throughput, hence the method's limited effectiveness in 

significantly enhancing throughput. 

Another approach to on-chain scaling is known as sharding, primarily employed in 

distributed processing systems. In this method, data is partitioned and stored as 
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individual shards for processing. Each shard concurrently handles transactions and data 

storage, thereby enhancing overall throughput. Additionally, sharding technology 

mitigates communication overhead within the BFT consensus network. However, shard 

allocation, security concerns surrounding small shards, and cross-shard communication 

overhead pose significant challenges to the effectiveness of sharding technology. 

Inadequacies in these areas can potentially lead to severe security vulnerabilities. 

4.2 Off-Chain Scaling 

Off-Chain Scaling refers to any innovative way to provide external execution for 

underlying chains such as Ethereum. These innovations are called Layer-2 scaling 

solutions, which involve executing transactions on a second-layer network outside of 

Ethereum, thereby enhancing the performance of Ethereum's Layer-1. 

State Channel. The state channel is an off-chain scaling solution grounded in multi-

signature smart contracts, significantly broadening the functionality of payment 

channels. Except basic payment capabilities, state channels facilitate state updates on 

the blockchain, effectively altering the internal state of smart contracts. In a state 

channel network, crypto-assets like ETH can be locked within these contracts, enabling 

the creation of two-side payment channels among users.  

Users of state channels are not confined to payment transactions but can execute 

smart contracts off-chain as well. The operation model of the state channel is shown in 

Fig. 4. Take users Alice and Bob establishing a state channel as an example; they gain 

access to a "simulated contract ledger" where they can execute contract operations 

without the need for registration on the main blockchain. As long as both parties 

maintain consensus, the solution can be implemented seamlessly. The security of state 

channels stems from the ability for both parties to "confirm" the current off-chain state 

of the channel on the main blockchain at any given time, ensuring fair execution of 

contract terms by the channel contract. State channels find diverse applications, 

encompassing digital content distribution, online gaming, and decentralized token 

exchanges [19]. 

 

Fig. 4. State channel operating model. 
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Plasma. Plasma is a framework designed to facilitate the construction of scalable 

applications on the Ethereum platform. Its primary objective is to enhance the 

throughput and scalability of the Ethereum network by introducing Ethereum-based 

sidechains [20]. Plasma addresses the limitations posed by state channels by enabling 

the establishment of additional sub-chains on the Ethereum main chain, which in turn 

can give birth to their own subordinate chains. At the subchain level, numerous intricate 

operations can be executed, facilitating the running of entire applications catering to 

thousands of users, while minimizing interaction with the main Ethereum chain. These 

child chains offer faster operations and reduced transaction fees, as there's no 

requirement to maintain a replica of the entire Ethereum blockchain. A key distinction 

between Plasma and state channels is that Plasma facilitates the execution of smart 

contracts. If state channels represent the scaling of transaction throughput, then Plasma 

signifies the scaling of computing capabilities. Plasma relocates both computational 

tasks and data storage to Layer-2, with Layer-2 executors periodically submitting state 

commitments in the form of Merkle roots to the main chain. 

Fig. 5. presents a simplified diagram of Plasma's operation: if an executor submits 

an invalid state, the user can provide a fraud proof to the smart contract on the main 

chain. Once it is confirmed that the executor has committed fraud, the smart contract 

will forfeit their deposit. Although fraud proofs can punish executors who make invalid 

commitments on the main chain, if Plasma executors refuse to disclose data on the main 

chain, users will be unable to obtain incorrect data and therefore cannot provide fraud 

proofs. Consequently, the current major challenge facing Plasma lies in the availability 

of transaction data. To address this issue, Plasma has proposed several solutions, such 

as extending the time frame for assets to withdraw from Layer-2. This allows a 

significant amount of assets to be withdrawn from the Plasma chain in the event of 

malicious behaviour. 

 

Fig. 5. Plasma chains’ operating model. 
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4.3 Comparison of Scaling solutions 

Table 1. Scaling solutions. 

Layer-type Approach Throughput Cost Capacity 

On-Chain 

Scaling 

    

 Segwit ↑ ↓ ↑ 

enlarge block 

size 

↑ ↓ ↑ 

sharding ↑ --- ↓ 

Off-Chain 

Scaling 

    

 State Channel ↑ ↓ ↓ 

Plasma ↑ --- ↓ 

It can be obviously seen from Table 1, different scaling technologies have their own 

advantages, disadvantages, and usage scenarios. For on-chain scaling solutions, Segwit 

improves throughput by separating signatures, but it increases code complexity and has 

low portability; directly increasing the block size reduces costs, but it also increases the 

possibility of orphan blocks; Sharding can process many transactions in parallel, but 

the possibility of being attacked also increases accordingly. 

In terms of Layer-2 scaling solutions, state channels occupy an irreplaceable position 

in the scaling field due to their unique nature. Compared with state channels, Plasma 

has the advantage of being able to run smart contracts. 

4.4 Future Developments in Scalability 

There are currently many scaling solutions that have achieved certain results in 

weighing the issues of blockchain in scalability, decentralization, and security. 

However, blockchain’s scalability challenges still haven’t been fully solved, meaning 

blockchain still hasn’t reached its full potential. Currently, blockchain scalability has 

the following challenges: 

Sharding, a popular scalability enhancement method, boasts impressive throughput, 

scalable storage, minimal latency, and robust Byzantine fault tolerance. The 

communication cost of individual transactions lies at the heart of blockchain scalability 

concerns. It is only when the complexity of sorting transactions is reduced to O(n) that 

the blockchain can be deemed scalable. In the future, in order to obtain more bandwidth 

for data availability, research can be conducted from aspects such as load balancing and 

cost-benefit expenditure balancing. 

Maintaining atomicity in cross-shard transactions poses another scalability 

challenge. When multiple shards operate simultaneously, a timeline is necessary to 

authenticate the order of these operations. In scenarios where shards need to handle a 

significant volume of legitimate or illegitimate cross-shard transactions, a load 

balancing mechanism can be employed to address issues such as miner node exhaustion 

and DoS attacks. 

Blocks are prone to form multiple branches, which are called forks and will also 

affect scalability. Currently the longest chain rule is utilized to address forks. Without 
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a mechanism to prevent forks, resources remain wasted. To solve this problem, a fork 

monitoring committee composed of incentive nodes can be established, which is 

separated from the mining nodes, and allocates mining work according to the 

capabilities of the mining nodes, and monitors in real time and avoids forks in time. 

5 Conclusion 

In summary, the focal areas of contemporary research on blockchain technology pertain 

to the security, scalability, and associated risks of smart contracts. This paper provides 

a comprehensive analysis of the security threats to smart contracts, incorporating 

detailed case studies and a review of the advancements in security defense mechanisms. 

In addition, this study examines dual-layer scalability solutions, enhancing the 

understanding of current methodologies and technologies. The paper aggregates and 

synthesizes current research findings on smart contracts, offering a forward-looking 

perspective on potential developments in this domain. It articulates strategic directions 

for bolstering the security framework of mainstream smart contracts and enhancing 

their scalability. By systematically addressing these critical areas, the paper contributes 

significantly to the discourse on smart contracts, proposing robust solutions that could 

lead to more secure, scalable, and efficient blockchain implementations. This approach 

not only aims to mitigate the inherent risks but also strives to unlock the full potential 

of smart contracts within the broader digital economy.  
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