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Abstract. Since 2010, with the rapid emergence of deep learning, 

Convolutional Neural Networks (CNNs) have made significant progress across 

various domains. In particular, advancements in CNNs have profoundly 

impacted the field of computer vision, resulting in substantial improvements in 

tasks such as image classification, object detection, and segmentation. 

However, as task complexity increases and dataset sizes expand, traditional 

CNN models face a series of challenges. In response to these obstacles, 

researchers have devised multiple enhancements and optimization strategies 

from different perspectives and directions, fostering ongoing developments in 

structural design and model performance. This paper offers a comprehensive 

investigation into the evolution of CNNs. The study begins by introducing the 

standard architecture of CNNs, followed by a delineation of the three 

significant developmental stages that CNNs have undergone: 1) Traditional 

Architecture Network, 2) Connectivity-Enhanced Network, and 3) Hybrid 

Optimization Network. Furthermore, this paper conducts an exhaustive 

comparison and evaluation of representative models from each stage. Finally, 

promising directions for CNNs are identified to guide future research 

endeavors. 
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1 Introduction 

Image processing and recognition play a vital role in the digital age. With the 

generation and widespread application of large volumes of image data, there is an 

increasing demand for accurate and efficient image analysis and understanding. In 

this context, Convolutional Neural Networks (CNNs), as powerful deep learning 

algorithms, have emerged as crucial tools and have achieved significant success. By 

progressively extracting and abstracting features from the input training data, CNNs 

can learn hierarchical feature representations. These representations capture local 

patterns and global context information, enabling high-performance image 

classification, target detection, and semantic segmentation. 

Initially, CNN originated from the simulation of visual perception mechanisms in 

living organisms. As early as 1962, Hubel discovered receptive field cells in the  
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visual cortex of the cat brain [1]. These cells are responsible for extracting local 

spatial correlations in images, enabling preliminary processing and analysis of visual 

information. This pivotal finding laid the foundation for the subsequent invention of 

computer neural networks. In 1980, Fukushima proposed a multi-layer artificial 

neural network model called neurocognition [2]. Inspired by neurocognition, LeCun 

utilized the backpropagation algorithm to design and train a classic CNN based on 

gradient learning, known as LeNet-5, which successfully achieved recognition of 

handwritten digits [3]. Following its emergence, subsequent research in the field 

focused on refining different aspects of LeNet-5. 

This research conducts a comprehensive review, comparison, and analysis of 

representative models in the development process of CNNs. By systematically 

summarizing and analyzing the pivotal research findings in model evolution, this 

article provides a concise and thorough perspective on the current state of CNN 

development, assisting readers in quickly grasping the breakthroughs in this domain. 

2 Standard Architecture for CNNs 

 

Fig. 1. A standard CNN architecture (based on LeNet-5) . 

LeNet-5, which LeCun first proposed in 1998, is the initial CNN model [3]. Although 

the architecture is relatively simple, the major modules used for feature extraction and 

learning are complete. Its architecture has also become the standard architecture 

referenced by many subsequent CNNs. As depicted in Fig. 1, a typical CNN consists 

of several key components, including the input layer, convolutional layer, pooling 

layer, fully connected layer, and output layer. 

Firstly, convolutional layers, along with multiple convolutional kernels, play a 

crucial role in generating feature maps from the input image. Through the sliding and 

operation of convolution kernels on the input image, effective extraction of image 

features can be achieved. Secondly, the pooling layer downsamples the feature map to 

reduce the data dimension and computational effort. Common downsampling 

methods, such as Max Pooling or Mean Pooling, are employed to extract the 

maximum or average value within a pooling window. Subsequently, the fully 

connected layer summarizes local information from the previous layer to form global 

information. It often employs the Rectified Linear Unit (ReLU) activation function to 

enhance network performance and incorporates dropout techniques to prevent 
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overfitting. Finally, the output layer utilizes diverse activation functions to process the 

output, thereby matching the requirements of different types of tasks. 

In general, the training objective of CNNs is to optimize the network weights with 

the backpropagation algorithm, aiming to minimize the loss function while mitigating 

the risk of overfitting. Therefore, the selection of an appropriate loss function holds 

paramount importance in achieving optimal results. Among the commonly employed 

loss functions, cross-entropy loss is typically favored for classification tasks, while 

mean squared error and mean absolute error find utility in regression tasks. 

Additionally, image segmentation tasks often benefit from the adoption of the Dice 

loss, whereas smooth L1 loss can be advantageous for object detection tasks. By 

leveraging the progressive operations of convolution, pooling, and fully connected 

layers, CNNs can effectively extract and integrate features, thereby supporting 

efficient image recognition and processing. 

3 The Evolution of CNNs 

3.1 Traditional Architecture Network (CNNs based on Standard Architecture) 

AlexNet. AlexNet, proposed by Krizhevsky in 2012 as an extension of the LeNet-5 

architecture, stands as a milestone in the development of CNNs [4]. Compared to 

LeNet-5, AlexNet proposed a series of major innovative measures. Notably, it 

employs ReLU as the activation function. In contrast to the Sigmoid function used by 

LeNet-5, ReLU offers advantages such as simplified computations, faster 

convergence, and improved mitigation of the vanishing gradient problem. 

Additionally, AlexNet incorporated the Dropout technique, randomly discarding 

neurons in the fully connected layer to effectively prevent overfitting. Furthermore, 

by employing overlapping MaxPooling and data augmentation techniques, AlexNet 

enriched feature extraction and bolstered the model's generalization capabilities. 

These optimization methods led to a significant refinement in the performance of 

CNNs. Consequently, AlexNet achieved a Top-5 error rate of 15.3% on the ILSVRC 

2012 dataset, surpassing the second-place model by a large margin of 26.2% [4]. 

VGGNet. Following the groundbreaking success of AlexNet, subsequent 

advancements were made in the field of CNNs. One notable contribution came from 

Simonyan with the introduction of VGGNet [5]. VGGNet presented novel approaches 

by replacing large convolution kernels with a series of smaller ones and increasing the 

depth of the network. This architectural modification allowed VGGNet to learn more 

intricate and detailed features while addressing the parameter explosion issue 

associated with larger kernels. 

GoogLeNet. Furthermore, the following innovation in convolutional approaches 

should not be overlooked. In 2015, Szegedy introduced GoogLeNet, which featured 

the Inception Module as its core structure [6]. The distinctive characteristic of the 
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Inception Module is the integration of multiple parallel branches into a single layer. 

Each branch employs convolution kernels of varying sizes, such as 1x1, 3x3, and 5x5 

convolutions, to capture information at different scales. Moreover, additional 1x1 

convolutions are employed to reduce the dimensionality of feature maps. By 

employing this branch convolution followed by merging approach, GoogLeNet 

further enhances the network's width and its ability to perceive features at different 

scales. 

Overall, the innovative contributions of the above three classic CNNs, including 

the selection of activation functions, the choice of convolutional kernel sizes, and 

advancements in convolutional methods, have propelled enhancements in the 

performance and computational efficiency of traditional architecture networks. 

3.2 Connectivity-Enhanced Network (CNNs based on Cross-Layer Connection) 

ResNet. As the traditional architecture networks have evolved, it has been observed 

that a deep network formed by directly stacking multiple shallow layers often fails to 

leverage the theoretically powerful feature extraction capabilities of deep networks, 

while leading to an anomalous decline in model performance. However, the issue is 

not attributed to overfitting, as the performance of deeper networks deteriorates even 

on the training set.  

In 2016, another groundbreaking model in the evolution of CNNs named ResNet 

was introduced by He, effectively tackling the issue of network degradation that arises 

with the increasing depth in traditional architecture networks [7]. 

 

Fig. 2. Residual block. 

The core of ResNets is the small unit called residual block. The residual block 

introduces an innovative structure that incorporates skip connections into the standard 

architecture, connecting across one or more layers. Additionally, it incorporates two 

different types of mappings: Residual Mapping and Identity Mapping. As shown in 

Fig. 2, the residual mapping refers to the intermediate ℱ(𝓍) , while the identity 

mapping corresponds to the curve on the right representing 𝓍. Therefore, a typical 

underlying mapping of the residual block can be expressed as: 

ℋ(𝓍) = ℱ(𝓍, {𝑊𝑖}) + 𝓍 (1) 
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Where 𝓍 is the input to the residual block (also the output from the previous layer 

or residual block), ℱ(𝓍, {𝑊𝑖}) stands for the residual function (typically composed of 

several convolutional layers and non-linear activation functions), and 𝑊𝑖  represents 

the weights of the layers. By adding the output 𝓍 from a previous layer to the residual 

function ℱ(𝓍) , this unique residual connection enables direct information transfer 

within the residual block. 

Theoretically, if the network has reached an optimal state, further increasing the 

network depth might cause the residual function of the new residual blocks to 

approach zero, i.e., ℱ(𝓍, {𝑊𝑖}) ≈ 0 . At this point, the output of the residual block 

would essentially be the input itself, i.e., ℋ(𝓍) ≈ 𝓍. This implies that the newly added 

layers would not significantly affect the output. Therefore, the performance of 

networks would not degrade significantly with increased depth. By introducing the 

residual block structure with skip connections, ResNet effectively addresses the 

network degradation problem that plagues traditional architecture networks, 

propelling the performance and development of CNNs to a new level. 

DenseNet. Residual networks and other stochastic depth training methods share a 

common characteristic, which is the creation of cross-layer information flow within 

the network. Subsequently, to guarantee optimal information flow between layers, 

Huang proposed DenseNet [8]. Generally, a DenseNet is composed of multiple dense 

blocks, where all layers are directly connected. In a densely connected architecture, 

each layer receives input from all preceding layers and passes its feature map as input 

to every subsequent layer, facilitating comprehensive information flow throughout the 

network. 

In comparison with residual connections, the primary innovation of dense 

connections resides in the approach employed for feature map combination. Instead of 

using summation in the residual block, the dense block directly merges the feature 

maps through channel concatenation. By employing dense connections, DenseNet can 

adequately transfer and reuse feature information from previous layers throughout the 

network. For this reason, it alleviates the gradient vanishing problem and promotes 

feature propagation, enabling the model to learn more diverse and intricate feature 

representations. Moreover, due to direct access to feature maps from all previous 

layers, the overall parameter quantity of the model is also reduced. 

3.3 Hybrid Optimization Network (CNNs Integrated with Transformers) 

Since 2017, Transformer-based models proposed by Vaswani have experienced rapid 

development in the field of computer vision [9]. Considering this, Liu introduced a 

hybrid optimization model called ConvNeXt by integrating some structural and 

parameter characteristics of the Swin Transformer into a pure ConvNet (ResNet-50) 

[10]. By adopting ResNet-50 as a baseline and training it with techniques similar to 

those utilized to train visual Transformers, Liu discovered that many architectural 

choices from Transformers can be incorporated into CNNs, leading to improved 

performance. 
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Liu explored various adjustments to the CNN architecture in light of Transformers, 

such as modifying the convolutional kernel size, minimizing the number of activation 

and normalization layers, introducing a separate downsampling layer, and substituting 

batch normalization (BN) with layer normalization (LN), among other modifications. 

Through a series of structural and parameter experiments, ConvNeXt ultimately 

achieved an accuracy rate of 82.0% on ImageNet-1K, surpassing the performance of 

Swin Transformer (81.3%). Furthermore, these experiments implicitly demonstrated 

that excessive non-linear mappings may introduce an excessive level of complexity, 

hampering the effective learning and representation of crucial features by the 

network. 

4 Summary Analysis of Classic CNNs 

Table 1. Comparative analysis of pros & cons and innovations of different CNNs. 

Model Year Innovations Advantages Limitations 

LeNet-5 
[3] 

1998 1. Introducing the 

backpropagation 
algorithm 

2. Inventing standard 

CNN architecture 

Simple network 

architecture makes it easy 
to understand and 

implement 

Shallow network 

depth makes it 
impossible to fully 

capture high-level 

semantic features 

AlexNet 
[4] 

2012 1. Activation function 

changed from Sigmoid 

to ReLU 
2. Dropout technique is 

used in fully connected 

layer to prevent 
overfitting 

3. Using overlapping 

max pooling and data 
augmentation technique 

1. Deep architecture and 

overlap pooling make 

AlexNet have powerful 
feature extraction 

capability 

2. ReLU activation 
function significantly 

accelerates the training 

speed and lessens the 
gradient vanishing 

problem 

The high 

complexity of the 

model and the 
large number of 

parameters (more 

than 600,000 
parameters in total) 

make it costly to 

compute and store 

VGGNet 
[5] 

2014 1. Replacing larger 

convolutional kernels 
with consecutive 3×3 

convolutional kernels 

2. Introducing very 
deep networks such as 

VGG-16 and VGG-19 

The combination of deep 

network architecture and 
small convolutional 

kernels makes it powerful 

for feature extraction and 
representation 

1. Deeper 

networks lead to 
higher 

computation and 

storage costs 
2. Network 

degradation 

problem that 
occurs with the 

increase of 
network depth 

GoogLeNet 
[6] 

2015 1. Using the Inception 

module to extract 

features with multiple 
scales from the same 

layer 

2. Reducing the 
dimensionality with 1x1 

convolution 

3. Employing global 
average pooling to 

replace the fully-

1. The computational 

efficiency is significantly 

improved by the design of 
1x1 convolution and 

Inception module 

2. Multi-scale feature 
extraction enables 

GoogLeNet to excel in 

complex image 
recognition tasks 

The complex 

design of the 

Inception module 
increases the 

difficulty of model 

implementation 
and debugging 
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connected layer 

ResNet 
[7] 

2016 1. Inventing the residual 
block structure and 

adding skip connections 

to the network 
2. Introducing identity 

mapping and residual 

mapping 

Skip connections 
significantly mitigated the 

network degradation 

problem, allowing 
gradients to propagate 

efficiently and permitting 

the training of ultra-deep 
networks 

Although skip 
connections 

alleviate gradient 

vanishing, for 
ultra-deep 

networks, they 

may still face 
overfitting 

problems and 

require effective 
regularization 

DenseNet 
[8] 

2017 1. Inventing the dense 

block structure 
2. Dense connections 

allow features to be 

maximally reused 
throughout the network 

1. Enhanced feature 

propagation 
2. Mitigated the vanishing 

gradients problem 

3. Reduced the number of 
parameters 

High memory 

consumption and 
computational cost 

due to densely 

connected layers 

ConvNeXt 
[10] 

2022 1. Integrating the 

advantages of CNNs 

and Transformer 
2. Reducing 

normalization layers 

and activation functions 

The model performance 

has further improved by 

drawing on and 
integrating the 

architectural design and 

hyperparameter selection 
of Swin Transformer 

The performance 

of ConvNeXt can 

be sensitive to 
hyperparameters, 

requiring more 

discreet fine-
tuning 

In summary, the development of CNNs has undergone three predominant stages: 

Traditional Architecture Networks, as exemplified by LeNet-5; Connectivity-

Enhanced Networks, represented by ResNet; and the current Hybrid Optimization 

Networks, exemplified by ConvNeXt. Table 1 provides a summary of the innovations 

introduced by these classic CNN models compared to their predecessors, along with 

their respective advantages and limitations. It concisely depicts the continuous 

innovation and evolution of CNNs with respect to model design and performance 

optimization. 

5 Conclusion 

This paper conducts comprehensive research on the canonical architecture and 

evolutionary history of CNNs. It summarizes the three major stages in the 

development of CNNs and provides detailed descriptions of representative models 

from each stage. Currently, CNNs continue to demonstrate untapped potential for 

further advancement. Future studies can concentrate on the following key areas.  

First, model architecture innovation: exploring new network structures, such as 

hybrid convolutions and integrating Transformers with self-attention mechanisms, to 

boost the model's expressive power and efficiency. Second, optimization algorithms: 

introducing more advanced optimization algorithms and training strategies, such as 

adaptive learning rate adjustment and mixed precision training, to accelerate the 

training process and improve model performance. Third, multi-modal fusion: 
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combining multiple data modalities, such as images, text, and videos, to advance the 

model's understanding ability and expand its application scope. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
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        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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