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Abstract. In the field of image stitching, generating multiple panoramas from a 

large set of images is a challenging task. Traditional methods often require 

complex pairwise comparisons, leading to time-consuming operations that may 

affect accuracy and efficiency. To address this issue, this paper presents an 

innovative method aimed at improving computational efficiency for generating 

multiple panoramas in multi-class grouping. By introducing vision transformer 

models and cosine similarity metric, our approach enables rapid evaluation of 

relationships between image pairs in the initial phase, thus reducing dataset size 

and minimizing time-consuming feature matching operations. By initially 

utilizing vision transformer models to extract features from each image, we 

implement a cosine similarity metric to rapidly assess preliminary relationships 

between image pairs. This preliminary phase allows for the reduction of the 

dataset subjected to the more computationally intensive, Fast Library for 

Approximate Nearest Neighbors-based (FLANN) feature matching. 

Experimental results demonstrate that our method achieves a 93.34% reduction 

in computational time compared to traditional methods, with only an 8.12% 

decrease in clustering accuracy. This improvement is attributed to the effective 

utilization of preliminary relationship assessments to optimize the feature 

matching process and achieve a more efficient generation of multiple panoramas 

in multi-class grouping. 

Keywords: Panorama Generation, Vision Transformers, Feature Matching, 

Image Clustering 

1 Introduction 

In the realm of digital imaging, panorama generation and autostitching stand as critical 

components, particularly in applications spanning from virtual reality to geographical 

information systems. Traditional image stitching techniques aim to seamlessly merge 

multiple overlapping images into a single composite panorama without noticeable 

distortions or seams. Key to these methods has been the development of robust feature 

detection algorithms like Scale-Invariant Feature Points (SIFT), introduced by Lowe 

[1], which remain foundational in identifying and matching features across different 

images reliably. 
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Recent advancements in digital imaging have explored the incorporation of machine 

learning techniques, particularly convolutional neural networks (CNNs), which have 

been employed to automate and enhance the stitching process [2]. However, the 

introduction of Vision Transformers (ViTs) has revolutionized various domains of 

computer vision, including image classification. Transformers, initially designed for 

natural language processing tasks, were adapted for image recognition tasks by 

Dosovitskiy et al. [3], demonstrating remarkable capabilities in handling intricate visual 

data through self-attention mechanisms. This adaptation has opened new pathways for 

their application in image processing tasks beyond typical classification challenges. 

Building upon these advancements, my work integrates the deep learning 

capabilities of Vision Transformers with traditional computer vision techniques such 

as SIFT and Fast Library for Approximate Nearest Neighbors (FLANN) based 

matching, introduced by Muja and Lowe [4]. This integration aims to address the 

inherent challenges of feature mismatch and image misalignment in traditional stitching 

methods. By combining the contextual understanding capabilities of transformers with 

the precise local feature matching of SIFT, this approach enhances both the accuracy 

and efficiency of panorama generation. Studies like those by He et al. [2] and Bai et al. 

[5] illustrate ongoing efforts to refine image stitching and related tasks, underscoring 

the need for innovative methodologies that can handle diverse and complex imaging 

scenarios effectively [6]. 

Moreover, the potential of transformers in computer vision has been explored in 

various contexts, such as in the work by Ayana and Choe [7] for medical image 

classification and by Pucci et al. [8] for fine-grained image categorization. These 

studies highlight the versatility and robustness of transformer models in extracting and 

processing high-level features from images, supporting their suitability for tasks that 

require a nuanced understanding of visual content, such as panorama stitching. 

Thus, this research not only demonstrates the potential of transformers in computer 

vision tasks beyond their conventional uses but also proposes a methodological 

framework for their application in automating panorama generation with high 

precision. By leveraging the advanced capabilities of pre-trained transformer models 

alongside proven computer vision algorithms, this research aims to surpass the 

limitations of conventional methods, enhancing the quality and functionality of 

panoramic images. 

2 Method 

In the field of image processing, creating high-quality panoramas from multiple 

overlapping images remains a challenging task. Traditional methods often struggle with 

efficient and accurate feature extraction, particularly in complex environments or with 

large datasets. These limitations primarily arise from their reliance on hand-crafted 

features, which may not adequately capture the global context of images, leading to 

suboptimal stitching results. 

This paper seeks to address these shortcomings by integrating ViTs at the initial 

phase of our approach. ViTs are particularly adept at extracting rich, global feature 
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representations from images, making them suitable for identifying potential overlaps in 

panorama stitching (Figure 1). We hypothesize that adjacent image pairs with 

substantial overlaps will exhibit high similarity in their vector features, which can be 

effectively captured by ViTs. This capability allows us to overcome the limitations of 

traditional methods that often fail to recognize complex patterns without extensive 

preprocessing. 

 

Fig. 1. Processing logic diagram  

To complement the global perspective provided by ViTs, SIFT and FLANN are 

employed in subsequent stages for precise local feature detection and matching. This 

combination ensures that the initial assessments made by the ViTs are verified and 

refined, leading to accurate alignment of images in the final panorama. 

Furthermore, to validate the effectiveness of our approach, we utilize the adjusted 

Rand score. This robust statistical tool serves as a measure of the quality of our image 

groupings, offering a normalized assessment that accounts for the possibility of random 

chance in the formation of these groups. By adopting this comprehensive approach, our 
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research aims to significantly improve the accuracy and efficiency of panorama 

stitching, providing a meaningful advancement over existing methods. 

2.1 Tools 

Vision Transformers ViTs apply the principles of self-attention, originally used in 

natural language processing, to image analysis tasks. A ViT divides an image into 

patches, which are then flattened and processed through a series of transformer blocks. 

Each block consists of multi-head self-attention and feed-forward neural networks. The 

mathematical formulation of the self-attention mechanism can be represented as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)V                   (1) 

where Q, K, V are the queries, keys, and values derived from the input patches, and 

dk is the scaling factor based on the dimension of the keys. This approach allows ViTs 

to capture global dependencies within an image. 

SIFT SIFT identifies and describes local features in images. The process involves four 

major steps: scale-space extrema detection, keypoint localization, orientation 

assignment, and keypoint descriptor. The keypoint descriptor provides a unique and 

invariant fingerprint of the feature that is robust to changes in scale, orientation, and 

illumination. 

FLANN FLANN is used for efficient search of nearest neighbors in large datasets. It 

works by building randomized kd-trees or hierarchical k-means trees to partition the 

data space and then traversing these trees to find the best matches. This method is 

particularly useful in reducing the computational cost of matching features in large-

scale image datasets [4]. 

Adjusted Rand Score The adjusted Rand score, available through sklearn.metrics, is 

a measure of the similarity between two data clusterings, adjusted for chance. It is 

defined as: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅𝑎𝑛𝑑 𝑆𝑐𝑜𝑟𝑒 =  
𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥 𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥
                (2) 

where the index is the Rand index, and the expected index is the expected value of 

the Rand index given random cluster assignments [9,10]. 

2.2 Implementation 

Feature Extraction and Preliminary Assessment 
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⚫ ViT Model: The pre-trained google/vit-base-patch16-224 Vision Transformer 

model is utilized for the initial extraction of global features from each image. 

These features are expected to reflect the extent of overlap between adjacent 

images, based on the hypothesis that pairs with sufficient overlap should share 

similar vector features. 

⚫ Similarity Measurement: Using the features extracted by the ViT model, we 

compute cosine similarity for each image pair. This step serves as a preliminary 

filter to determine potential candidates for further processing, based on set 

similarity thresholds (-1, 0.35, 0.4, 0.45, 0.5). The threshold of 0.35 aligns with 

the hypothesis that adjacent images should overlap by more than one-third of their 

size for effective stitching. 

Detailed Feature Matching and Verification 

⚫ SIFT: If the similarity score between an image pair meets or exceeds the threshold, 

we proceed to extract detailed local features using SIFT. This method identifies 

stable features across varying scales and conditions, crucial for precise alignment. 

⚫ FLANN-Based Matching: After SIFT feature extraction, the FLANN SIFT: If the 

similarity score between an image pair meets or exceeds the threshold, we proceed 

to extract detailed local features using SIFT. This method identifies stable features 

across varying scales and conditions, crucial for precise alignment.matcher is 

employed to find and validate matches between the descriptors of the image pairs 

that passed the initial similarity filter. This stage uses Lowe's ratio test with a 

distance threshold of 0.6, ensuring that only significant matches are considered 

for stitching. This selective approach aims to reduce computational overhead by 

limiting FLANN matching to only the most promising image pairs. 

Graph Construction and Panorama Formation 

⚫ Graphical Representation: A graph is constructed where nodes represent 

individual images, and edges—established based on the initial similarity 

assessment and validated by FLANN matches—connect images that are 

determined to be sufficiently similar. This graph aids in visualizing the sequence 

and relationships among images, facilitating effective clustering. 

⚫ Panorama Stitching: For each cluster identified in the graph, panorama stitching 

is performed using RANSAC to compute homography matrices, ensuring robust 

alignment of images. This stage focuses on achieving precise image alignment, 

stitching images together based on the computed transformations without 

incorporating advanced blending techniques. 
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3 Analysis and Results 

3.1 Data and Results 

The dataset consists of 140 photographs taken by the author, depicting diverse urban 

and natural environments such as street views, buildings, and plants. These images form 

the basis for testing the enhanced panorama generation model (Table 1). 

Table 1. Impaction to images grouping of different similarity thresholds on different datasets 

Dataset Size 
Similarity 

Threshold 

Adjusted Rand 

Score 

Elapsed Time 

(seconds) 

FLANN Compare 

Counts 

34 Pictures -1 91.13% 45.58 561 

 0.35 91.13% 23.71 206 

 0.4 91.13% 21.29 174 

 0.45 91.13% 17.98 133 

 0.5 83.17% 15.41 103 

46 Pictures -1 91.51% 123.14 1035 

 0.35 94.49% 42.26 267 

 0.4 94.49% 38.29 229 

 0.45 94.49% 34.46 186 

 0.5 89.66% 31.95 154 

56 Pictures -1 95.71% 179.79 1540 

 0.35 95.71% 56.48 350 

 0.4 95.71% 49.29 291 

 0.45 95.71% 42.91 221 

 0.5 91.98% 38.08 192 

63 Pictures -1 96.16% 211.67 1953 

 0.35 96.16% 64.12 474 

 0.4 96.16% 56.62 392 

 0.45 96.16% 47.05 306 

 0.5 92.83% 42.50 246 

130 Pictures -1 97.50% 1081.29 8385 

 0.35 92.19% 180.16 1123 

 0.4 92.19% 131.60 806 

 0.45 90.74% 105.30 568 

 0.5 82.18% 86.64 419 

140 Pictures -1 87.34% 1184.15 9730 

 0.35 81.69% 188.27 1248 

 0.4 81.69% 152.35 907 

 0.45 80.25% 109.08 648 

 0.5 71.48% 89.12 480 
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3.2 Analysis 

The analysis of different similarity thresholds demonstrates a trade-off between 

computational efficiency and grouping accuracy, evaluated using the adjusted Rand 

score. The study investigates how varying the similarity threshold impacts the time cost 

and number of FLANN feature comparisons required across different dataset sizes 

(Table 1). 

The results indicate that increasing the similarity threshold generally decreases the 

time cost and the number of comparisons, confirming our hypothesis that higher 

thresholds can reduce the computational burden. However, this comes at the expense 

of decreased grouping accuracy, especially at higher thresholds (Figure 2, figure 3, 

figure 4, and figure 5 ). 

For smaller datasets (34 and 63 pictures), increasing the similarity threshold 

generally maintains a high Adjusted Rand Score, implying good clustering quality. 

For larger datasets (130 and 140 pictures), a noticeable decline in clustering quality 

(Adjusted Rand Score) is observed as the threshold increases. This may indicate that a 

higher threshold could be too restrictive, leading to missed valid overlaps in larger 

datasets. 

Notably, for the 140-picture dataset, setting the threshold at -1 results in a significant 

increase in both time cost and FLANN comparisons (1184.15 seconds and 9730 counts) 

compared to a threshold of 0.5 (89.12 seconds and 480 counts). This is indicative of the 

substantial computational savings achieved by applying a higher similarity threshold. 

Higher thresholds generally result in quicker computations but at the potential cost 

of accuracy in clustering, as seen by a drop in the Adjusted Rand Score, especially 

noticeable in the 140-picture dataset. 

Choosing 0.45 as the similarity threshold, our method achieves a 93.34% reduction 

in computational time compared to traditional methods, with only an 8.12% decrease 

in clustering accuracy. 

 

Fig. 2. Example of generated panorama 
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Fig. 3. Example of generated panorama  

 

Fig. 4. Example of generated panorama 
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Fig. 5. Example of generated panorama  

4 Discussion 

4.1  Implications of Findings 

The results of this study illustrate a clear trade-off between computational efficiency 

and the accuracy of image groupings in panorama stitching. Increasing the similarity 

threshold significantly reduces both the computational time and the number of 

comparisons required, which aligns with the initial hypothesis that higher thresholds 

can streamline the feature matching process. This finding is particularly relevant in 

contexts where processing time and resource utilization are critical factors, such as in 

real-time panorama stitching applications or when processing large datasets on limited 

hardware. 

However, the study also highlights the potential drawbacks of setting the threshold 

too high. While a threshold of 0.45 generally maintains an acceptable balance between 

efficiency and accuracy in smaller datasets, it leads to a noticeable degradation in 

performance as the dataset size increases, as seen with the 140 pictures dataset. This 

degradation is manifested in more granulated groups, which may not be desirable in 

applications requiring high fidelity in image stitching. 

4.2 Considerations for Practical Application 

For practical applications, the choice of threshold should consider the specific 

requirements of the task at hand. For instance, applications that prioritize speed over 

precision, such as quick previews in photo stitching software or applications in dynamic 

environments (e.g., drone imaging), might opt for higher thresholds. Conversely, 

applications where precision is paramount, such as in detailed geographic mappings or 

cultural heritage preservations, might require lower thresholds to ensure finer detail and 

accuracy. 
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4.3 Limitations 

One limitation of the study is the focus on a specific set of thresholds and image 

datasets. Future studies could expand the range of thresholds tested and include a 

broader variety of image types and conditions to determine how these factors might 

influence the optimal threshold setting. Additionally, the study does not account for 

potential biases in the dataset selection, which might affect the generalizability of the 

results. 

4.4 Future Research 

Further research could explore the integration of adaptive thresholding mechanisms that 

adjust based on the content and characteristics of the image set, potentially enhancing 

both efficiency and accuracy dynamically. Moreover, investigating the combination of 

vision transformers with other types of feature extraction and matching algorithms 

could provide insights into more robust methods for panorama stitching. Another 

promising avenue would be the application of machine learning techniques to predict 

the optimal similarity threshold based on the initial assessment of image features, 

thereby automating and optimizing the stitching process further. 

5 Conclusion 

Driven by the need for efficient and accurate panorama stitching in the realm of 

computer vision, this research embarked on a journey to optimize the process through 

the innovative application of ViTs, combined with traditional methods like SIFT and 

FLANN. The work rigorously tested various similarity thresholds to understand their 

impact on computational load and clustering quality. 

Our experiments have conclusively demonstrated that an increased similarity 

threshold correlates with reduced time costs and FLANN comparison counts, 

significantly enhancing computational efficiency across all dataset sizes. However, it's 

apparent that excessively high thresholds lead to diminished clustering accuracy, 

particularly for larger datasets. Notably, a threshold of 0.45 strikes an ideal balance for 

smaller datasets, markedly decreasing computational demands while preserving the 

integrity of image groupings. Larger datasets, in contrast, necessitate a more cautious 

approach to threshold setting to ensure clustering fidelity. 

The study’s insights pave the way for future explorations into adaptive thresholding 

and the merging of vision transformers with varied feature detection methods for 

panorama stitching. Upcoming research should broaden the scope to include diverse 

image datasets and thresholds, and harness machine learning to refine and automate the 

stitching process. 
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is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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