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Abstract. Measuring dependencies between two variables in an extremely large 

data set is an increasingly important problem, naturally then the methods to solve 

such problems warrants equal if not greater attention. This paper aims to 

overview an effective measure of dependence, the MIC. This statistical measure 

is equitable giving no preference to certain function types. It is also general, being 

able to analyze both linear and nonlinear function types as well as combinations 

and superpositions of both. The key methodology such as the definitions and 

steps of MIC are explained as well as a proof of the central recursive algorithm 

which allows realistic runtimes for MIC. Other heuristic and approximations that 

make it both an accurate and efficient algorithm are also covered, namely the 

purpose and effect of equipartition and the clumping of the master partition. 

MICe, an approximation of MIC is also explained. This approximation fully 

utilizes the two heuristics of equipartition and clumping. This paper also briefly 

explains why these simplifications can still provide accurate results with a 

significantly faster runtime. 

Keywords: Mutual information, Entropy, Grid-partition, Correlation 

coefficient, Maximal Information Coefficient 

1 Introduction 

Within this report I highlight the intertwined relationship between data science and 

artificial intelligence, where artificial intelligence uses the methodology of data science 

for machine learning and analysis and data science in turn uses AI as an efficient tool 

for data analysis. The significance of detecting of associations need also be established, 

where their importance primarily lies in detecting interesting and undiscovered 

relations which can be further researched into potential new discoveries or fields of 

studies. But realistically when given extremely large datasets with hundreds if not 

thousands of variables each with a potential relationship to another, the task of finding 

correlations and associations seams unfeasible. Yet problems like these are emerging 

even more in both number and importance as academic subjects become more 

interdisciplinary and intertwined. A potential solution may simply to go through each 

pair of combination and rank the level of association between pairs through some 

measure. This measure needs to be general, meaning it can capture a wide variety of 

relationships, both linear, nonlinear as well as combinations and superpositions of both. 

It also needs to be equitable in scoring these relationships so one functional relationship  
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isn’t scored higher than another when under the same noise conditions. The importance 

of this lies in the fact that “entire classes of relationships could be missed, as scores for 

those relationships might be dominated by those of other classes of relationships” [7]. 

I aim to report an established and highly effective method of discovering such 

relationships, the maximal information coefficient or MIC. The MIC is an effective 

measure of relationships, it can accurately identify both functional and nonfunctional 

relationships and provides equitable scores for functional relationships [4].  

I cover the basic methodology of the process which can be broken down into three 

simple steps. First applying various grids of x by y to the graphed pair points and finding 

the partition that provides the maximal mutual information between the x columns 

partition and y rows partition. Second, normalizing the values by dividing by the upper 

bound of the mutual information which is 𝑙𝑜𝑔2(min(|X|,|Y|)) and storing them in the 

characteristic matrix. Lastly, the largest value of the matrix is found which is the MIC 

[4]. A more detailed description for the various definitions needed to understand the 

process is also given. The definition of mutual information in this context, the idea of 

normalizing and a proof to provide context as well as defining the characteristic matrix 

is also given.  

I also review the proof of the recursive formula the algorithm uses to compute the 

maximal mutual information. This is one of the ways the algorithm reduces 

computational time as by using the recursive formula the problem can be broken down 

into subproblem. Another method to reduce computational time is also described where 

partitioning one axis equally will produce larger entropies and by extension larger 

mutual information reducing the number of partition configurations to check. Finally I 

go over MICe , a more effective approximation that uses two methods, equipartition of 

the larger axis and clumping of the master partition to provide an accurate 

approximation that can be run in reasonable time. 

2 Literature review 

The primary focus in data science is to collect, clean and analyze data for useful insights 

that could help make predictions on other data. Ai is similar in that it requires data to 

be processed but this data is used to train machine learning algorithms so that the AI 

can perform complex tasks, decisions and predictions. 

AI can be seen as an extension of data science. Data science aims to find insights, 

relations and useful information from data from which a human decision is made [3]. 

AI further learns from the insights obtained through methods of data science to enhance 

decision making processes and optimize operations. 

Both AI and Data science rely on a large amount of data [3]. In more general terms AI 

is better suited for mimicking simple human behavior that rely on learning from 

experience [3]. For deep insights that will affect strategic decision making, data science 

is better suited.  

Detecting associations is significant in that discovering novel and unknown correlations 

could potentially lead to new discoveries or further investigation for causal 

relationships. Understanding relationships between variables is important when the 
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goal is to optimize some outcome for example analyzing what variables will increase 

sales or what changes to the company will increase employee satisfaction, retention, 

and efficiency.  

To further illustrate the importance of association detection and MIC, some concrete 

examples of applications are described. Analysis of factors connected to railway 

accidents is analyzed utilizing MIC [10]. Analysis of a cities flood susceptibility with 

respect to many different variables is analyzed with the case study of Zhengzhou city 

revealing that permeability, proportion of buildings and grasslands were the top 3 

factors influencing flood susceptibility [11]. The Mic is also used as a method to 

identify differentially expressed genes and is shown to be as good as if not more 

effective than established methods [12]. 

MIC is better suited for detecting non linear relationships, whereas the Correlation 

Coefficient is better at detecting linear relationships than MIC. Both measures however 

suffer from increasing noise. When looking for unknown relationships, it is better to 

use MIC as it can detect a larger variety of more complex relationships than Correlation 

Coefficient. 

3 Background 

Before introducing the method of solving such problems, some background knowledge 

is needed. Entropy which is a core component of the concept of mutual information, is 

the measure of randomness of a variable, defined in equation 1 [5].  

H(X) = − ∑ p(x)log(p(x))                                                            (1) 

Mutual information as the name implies measures how much knowing one variable will 

tell you about the other. When defined in terms of entropy, mutual information can be 

represented in 3 ways as shown in equation 2, 3 and 4 [5]. 

I(X; Y) = H(X) + H(Y) − H(X, Y)                                                (2) 

I(X; Y) = H(Y) − H(Y|X)                                                     (3) 

I(X; Y) = H(X) − H(X|Y)                                                      (4) 

Intuitively it can be understood that mutual information measures dependencies be-

tween two variables but looking at the randomness of both. If X and Y are related, by 

knowing exactly what X is one can reduce the entropy or randomness of Y as there is 

a functional relationship, whereas if X and Y are completely unrelated, by knowing X, 

the uncertainty or entropy in Y is not reduced at all. Essentially mutual information 

measures how much entropy or uncertainty is reduced in one variable by knowing the 

other. 
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4 MIC technical background 

4.1 Definitions 

A set of ordered pairs D can partition the graph via a grid separating the x values into 

X bins and y values into Y bins, this is known as a x by y grid [4]. 

With this grid D where all x and y are positive integers we can create two distribu-

tions, one from the bins of x and one from the bins of y where each bins probability is 

points in bin divided by total points [4].  

Define I∗(D, x, y) to be the mutual information of the x by y grid whose partition 

produces the largest possible mutual information between the x bin distribution and y 

bin distribution [4]. 

Now define the term I∗(D, x, y)/ log min{x, y} in order to normalize the mutual 

information value. This division normalizes the values as different grid resolutions pro-

duce different maximum mutual information so in order to normalize them we divide 

each mutual information by the upper bound which is log min{x, y} [4]. 

The Matrix containing all the normalized maximum mutual information values I∗

(D, x, y)/ log min{x, y} that have a grid size less than a predefined B(n) of sample size 

n is known as the characteristic matrix M(D). Where M xy (D) is the I∗(D, x, y)/ log 

min{x, y} value of a x by y grid in the (x,y) cell of the matrix. The MIC score is the 

largest M xy (D) score in the entire matrix [4]. 

B(n) in its code implementation is controlled by the float variables alpha and n. if 

alpha is in (0,1] then B will be the maximum between n to the power of alpha and 4 

where n is the number of samples. If alpha is greater than or equal to 4 then alpha 

defines directly the B parameter [2].  

Further considering B(n), for any n points it is possible to make a n by n grid so that 

every point is in its own cell assuming no x values or y values are repeated. This implies 

maximal mutual information of 1 [1]. Although this may seem optimal it may result in 

many irrelevant or unnecessary relations being picked up or even noise being mistaken 

for relation. On the other hand, having minimal numbers of cells may result in complex 

and minute relationships to be overlooked [1]. The benefit however is faster runtime. 

To optimize between runtime and effective analysis, B(n) is shown to have optimal 

value when alpha is set to 0.6 [4]. 

4.2 Proof of log min{x, y} as upper bound 

To prove that log min{x, y} is the upper bound we start with: 

I(X;Y) = H(X) – H(X,Y) = H(Y)-H(X,Y),  Therefore I(X;Y) <= min(H(X), H(Y)) 

And H(X) < log(|X|) where |X| is the cardinality or size of the alphabet. This is be-

cause entropy is maximal on a uniform distribution so H(X) = - Σp(x) * log(p(x)) Be-

cause its uniform all p(x) is the same and p(x) = 1/size of alphabet so H(X) = -  log(p(x)) 

= -log(1/alphabet size) = log(alphabet size) So entropy is upper bounded by the log of 

its alphabet size. 
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4.3 Basic methodology  

The basic process of calculating the MIC between two variables X and Y can be split 

into 3 steps. 

Step1: 

The x,y points can be plot on a graph and for different grids of x by y find the parti-

tion such that the mutual information or I∗(D, x, y) as defined above is maximized. The 

distribution of x is each the number of points in each x column partition divided by the 

total points, the same applies for the y distribution except it is rows. 

To find the mutual information use equation 5 [5]: 

I(X; Y) = ∑ ∑ p(x, y)log (
p(x,y)

p(x)p(y)yϵ𝒴x∈𝒳                             (5) 

Where p(x,y) is just the number of values in cell (x,y) divided by total number of 

points. 

Step2:  

The maximum values can be normalized by dividing each mutual information by its 

upper bound which is the log2(min(|X|,|Y|)) where |X| is the number of x columns for 

the partition and |Y| is the number of y rows of the partition, a minimum is used between 

the two as mutual information can be written in two ways, I(X;Y) = H(X) - H(X|Y) = 

H(Y) – H(Y|X) [5]. 

Step3:  

The normalized values are added to a characteristic matrix to be stored where the 

largest value is the MIC. The storing method of the matrix is that the x,y cell of the 

matrix stores the maximum normalized mutual information of an x by y grid.  

By intuition one might question why there is a need to store all values when all we 

need is the largest, naturally the grids of lower resolution will have lower values than 

grids of higher resolution so the largest MIC value will definitely come from grids of 

higher resolution. The reason for this is because the recursive method (which is what I 

review next) used in the algorithm to calculate the maximal mutual information requires 

the maximal mutual information of smaller grid resolutions, thus we are incentivized 

to keep track of all values to make calculating higher values easier. 

5 Proof overview of recursive equation 

5.1 Symbol definition  

The Goal is to prove the recursive formula equation 6 shown below which is used to 

calculate the maximum mutual information of a grid [4]. 

F(m, l) =  max
1≤i<m

{
i

m
F(i, l − 1) −

m−i

m
H(〈i, m〉, Q)}                           (6) 

In this equation F(m,l) is defined as max{H(P)-H(P,Q)}  for all size ≤ l and for the 

first m points of D where  𝑙 > 1 and 𝑙 < 𝑚 ≤ 𝑛. 𝑛 represents the size of D , m is the 

first m points of D where D is a set of ordered pairs and l is the X axis partition size. P 
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is the partition distribution of x and Q is the fixed partition distribution of y. Let P = ⟨0 

= c0,...,cl = m⟩ be the x-axis partition maximizing H(P) − H(P,Q). Let #∗,j denote the 

number of points in the j-th column of P and meaning that #∗,j = cj − cj−1. An easy 

way to visualize this is to disregard the partitioning of the y axis and assume only the x 

axis has been partitioned, the number of points contained in the nth column of the x 

partition is denoted as #*,n. The same applies to the y partition except its #n,* . Define 

#i,j to be the number of points in the (i,j) cell of the partition grid [4]. 

5.2 Proof 

The following heavily cites source [4]. 

F(m, l) = max{H(P) − H(P, Q)}                                        (7) 

F(m, l) = ∑
#∗,j

m
log (

m

#∗,j
) − ∑ ∑

#i,j

m
log (

m

#i,j
)

|Q|
i=1

l
j=1

l
j=1                            (8) 

Equation 8 is obtained by using the formula for entropy given in equation 1 and joint 

entropy given in equation 9 on the definition of F(m,l) which is given in equation 7 [4]: 

H(X, Y) =  − ∑ ∑ p(x, y)logp(x, y)𝑥𝜖𝑋𝑦𝜖𝑌                                    (9) 

Where p(x) is 
#∗,j

m
 and p(x,y) is 

#i,j

m
 , the probability inside the log is flipped because 

the negative sign of the equation is moved inside [4]. 

F(m, l) = ∑ ∑
#i,j

m
log (

#i,j

#∗,j
) 

|Q|
i=1

l
j=1                                     (10) 

F(m, l) = ∑ ∑
#i,j

m
log (

#i,j

#∗,j
) + ∑

#i,l

m
log (

#i,l

#∗,l
)

|Q|
i=1

|Q|
i=1

l−1
j=1                      (11) 

Equation 10 can be obtained by from equation 8 by replacing 
#∗,j

m
 with 

#i,j

m
  and then 

doing a summation over I, artificially adding the summation over I so it can merge the 

with other part of equation 8. When merging the fractions inside the log cancels the m 

out leaving equation 10 [4]. 

Equation 11 is obtained from equation 10 by separating out the final term of the 

summation from j=1 to l [4]. 

 

F(m, l) =
cl−1

m
∑ ∑

#i,j

cl−1
log (

#i,j

#∗,j
) +

#∗,l

m
∑

#i,l

#∗,l
log (

#i,l

#∗,l
) 

|Q|
i=1

|Q|
i=1

l−1
j=1            (12) 

F(m, l) =
cl−1

m
(H(P′) − H(P′, Q)) −

#∗,l

m
H(〈cl−1, m〉, Q)             (13) 

F(m, l) =
cl−1

m
(F(cl−1, l − 1) −

m−cl−1

m
H(〈cl−1, m〉, Q)               (14) 

Equation 12 is simple algebra, adding in an extra term which cancels out. 
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For equation 13 we simply use the entropy formula but instead of a partition where 

P = ⟨0 = c0,...,cl = m⟩, we use P’ = ⟨0 = c0,...,cl-1⟩ so just the previous partition exclud-

ing the last column. We apply the same logic to the end part but P is now only a single 

column or partition, the partition from cl-1 to m, ie the last column [4].  

In Equation 14 we use the given formulas to tidy the proof up, the right hand side is 

from the above definition where the nth partition is Cn – Cn-1 but we swap out Cn for 

m as they are the same. 

This provides us with a method of recursion to compute the maximal entropy faster, 

reducing the amount of calculations needed and speeding up runtime. 

Another simple way to reduce the calculations to find the maximal entropy is to 

always partition the X and Y in a equal way, so that the number of points in each par-

tition should be relatively the same. This is because from the formula of mutual infor-

mation and the fact we fix one axis, by maximizing entropy we maximize the mutual 

information. Entropy is maximized when it is applied to a uniform distribution. 

 

6 MICe 

Although the MIC exhibits many extremely useful properties for a relation analysis tool 

such as generality and equitability its practicability is still limited by its computation 

speed. According to Shao and Liu “if the original approximate algorithm of MIC is 

directly applied into detecting bivariate correlations in high dimensional big data, the 

computation time is very long” [8]. 

The MICe , an approximate measure is designed to be faster than the standard 

method without losing much accuracy. Its effectiveness and importance is demon-

strated by Albanese and Davide when used in conjunction with other MIC measures, 

“In particular, TICe is characterized by high power, which has been obtained at the cost 

of equitability, while MICe performs better on this side, showing reduced performances 

in terms of power. These two MIC-based measures compensate each other, and their 

combination is extremely promising as a data exploration tool” [9]. 

MICe is an alternative estimate to MIC_approx. MICe runs faster than MIC due to 

two primary changes. The first change is the values used in the matrix of MICe, called 

the equicharacteristic matrix is different. Previously only the grid size configuration 

that gave the maximum mutual information with a fixed grid dimension of l,k was used 

(divided by a normalizing value). For MICe we still use the mutual information how-

ever for the bigger dimension between l and k, that dimensions partition is a fixed eq-

uipartition. Essentially, we only need to iterate over the possible partition configura-

tions of one axis instead of two as the larger one is a fixed equipartition. Although this 

approach may seem like the previously mentioned method of maximizing entropy 

through equipartition, the previous method required one axis to be a fixed equipartition 

while the other is iterated over, then the previously fixed axis is iterated over instead, 

and the other is equipartitioned. Essentially one axis is fixed the other isn’t and once 

those calculations have been completed the same is done again but the axes are 
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switched, with MICe only one iteration is needed rather than two. This new mutual 

information is again normalized and entered into the matrix [6]. 

The second way MICe improves runtime is by clumping. Although the original 

MIC_approx also utilizes clumping it is only for points within partitions whereas in 

MICe the clumping is for the master partition. The idea of a master partition can be 

thought of as the maximum possible resolution. For example, if I have n data points, 

for each axis the largest master partition is a partition of n as I can at most split them 

into n partitions each with one point. For the algorithm OPTIMIZEXAXIS which takes 

in a fixed partition of axis A, a master partition for axis B and a number K, the algorithm 

outputs the optimal partition for axis B given the fixed partition of A such that the 

partition of B is at most of k and k is a subset of the master partition. An easy way to 

understand the idea of a subset of a partition is to think of the partition as the maximum 

resolution. Every partition in your subset partition is made up of parts of the master 

partition. When the master partition is n there are no restrictions, however if my master 

partition was instead n/2 the smallest partition in my subset can contain at most n di-

vided by n/2 points, (assuming the master partition is an equipartition since clumping 

is ultimately and emulation of equipartition). How this relates to clumping is that for 

MICe , in order to find the maximal mutual information we first equipartition and fix 

the larger axis, let’s say its Y, next we need to find the optimal partition for the smaller 

axis X. If we set the set the fixed axis in OPTIMIZEXAXIS to be the larger equiparti-

tioned axis, the algorithm outputs exactly what we want, an optimal partition of the 

smaller axis. However, realistically setting the master partition to n is unfeasible, this 

is where clumping comes in. Rather than having n as the master partition/maximum 

resolution, we “clump” the master partition so that it is c*k, where c is a constant and 

k is what we fixed the maximum partition size of the axis to be. Intuitively we are 

reducing the maximum resolution reducing lots of computations [6]. 

To summaries, the improvements of MICe is that it fully takes advantage of the ben-

efits of equipartitioning to reduce the number of subproblems by half. It utilizes 

OPTIMIZEXAXIS to accurately calculate optimal partitions even with a less accurate 

master partition of c*k instead of n.  

The reason why cutting corners in these areas doesn’t affect accuracy is that in char-

acteristic matrices, the boundary which is just the outer ring of values of the matrix is 

the only values that need to be accurate as the maximum MIC value will definitely be 

on grids of higher resolution which correspond to the boundary of the matrix.  

The reason why cutting corners in these areas does not affect accuracy is due to the 

nature of characteristic matrices. In such matrices, the boundary, which is essentially 

the outer ring of values, is the only part that needs to be precise. This is because the 

maximum MIC value will be located on grids of highest resolution, which align with 

the boundary of the matrix. The method of equipartitioning complements this as the 

finer the equipartition the more accurate it is, as seen in the diagram below. 
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Fig 1. MIC and MICE comparison graphs  

The right hand side of figure 1 [6], denotes equipartition and the left the normal parti-

tion, it is shown finer equipartitions can approximate and approach the actual value. 

The limit of how fine an equipartition is lies on the boundary of the matrix so we can 

still afford to be less accurate with non-boundary values. 

7 Conclusion 

Having established the importance of identifying correlations and relations, the MIC is 

a powerful tool that is able to overcome many barriers of previous methods while still 

maintaining effective runtime. Its equitability and ability to analyze most functions 

makes it an ideal candidate for solving the increasing number of big data problems as 

well as finding meaningful insights. Through an overview of the MIC it is also shown 

that it effectively utilizes heuristics such as equipartition and clumping to make approx-

imations that are both accurate and feasible to run in the field. MICe is also explained 

as a faster and effective approximation making it an even more desirable candidate as 

a data analysis tool for the future. 
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