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Abstract. Due to the mortality and disabilities caused by ischemic stroke, it is of 

great significance to provide accurate segmentation during the treatment of is-

chemic stroke. In this study, pre-trained UNets were utilized to save the compu-

tational resource and provide accurate prediction of lesion area caused by is-

chemic stroke. More specifically, this study proposed four ImageNet-based pre-

trained models as encoders for constructing UNets, which aim at applying non-

medical priori knowledge to improve the efficiency and performance of each neu-

ral network. Additionally, a self-defined UNet was built as a baseline. All five 

models were trained on the ATLAS 2.0 dataset after a data filter and binary focal 

loss were used to mitigate the data imbalance. Finally, trainable parameters, train-

ing time and segmentation results from all five models were used for comparison.  

Experimental results indicate that pre-trained models achieve a recall rate of ap-

proximately 0.95 on average and consume only half of the time that self-defined 

UNet costs. Briefly, pre-trained models achieve a more competitive performance 

than that of the self-defined UNet and can deliver accurate segmentation results 

for patients suffering from ischemic stroke. 
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1 Introduction 

Stroke is a detrimental and potentially lethal disease, causing significant mortality and 

disabilities worldwide [1]. Additionally, approximately 60–80% of strokes are caused 

by obstructions disrupting blood flow in brain tissue, also known as ischemic stroke 

[2]. Thus, timely diagnosis and accurate detection of the lesion area are crucial and 

urgent. Magnetic Resonance Imaging (MRI) is commonly utilized to help identify and 

quantify these infarcts for diagnosis, supporting personalized treatment plans. How-

ever, manual detection cost considerable time and effort, potentially leading to delays 

in treatment timing. Besides, the process of artificially identifying lesions from MRI 

slices is rather subjective. Such biased diagnoses can elevate the risk of irreversible and 

severe brain damage, potentially causing secondary damage to patients [3]. Thus, com-

puter science can be considered to help with the early detection and recognition of brain 

lesion with MRI due to their superior processing performance in a short period of time 

[4]. 
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In the early field of ischemic stroke segmentation, the previous segmentation was 

using digital image processing technology, such as thresholding, region-growing, clus-

tering, etc [5]. Even though these algorithms notably improve the efficiency and accu-

racy compared to manual inspection at that time. However, the prediction performance 

still has a large space to be further improved. With the rapid development of Graphics 

Processing Unit (GPU) and Central Processing Unit (CPU) processing power, deep 

learning has become extraordinarily popular and impressive, allowing model training 

with millions of images and providing robustness to variations in image [6]. 1989 wit-

nessed the birth of Convolutional Neural Network (CNN) [7] which is still one of the 

most significant and powerful machine learning algorithms widely used in the field of 

medical image processing [8-11]. The U-net architecture, composed of CNN, was then 

proposed in 2015 and showed awesome performance on a wide range of biomedical 

segmentation tasks [12]. However, deep learning models normally require advanced 

computational resources, such as high-level CPU or GPU and large amounts of Random 

Access Memory (RAM) [13], which is too expensive and unacceptable to the majority 

of small businesses and organizations. To mitigate such problems, transfer learning is 

an effective and efficient method by using pre-trained structures of deep neural net-

works and their weights. El Jurdi et al. suggested that a Fully Convolutional Networks 

(FCN) with indirectly related prior knowledge could benefit the medical segmentation 

task [14]. But most of the pre-trained models are based on ImageNet instead of a MRI 

dataset, which may cause potential negative impact on training process. To address this 

gap, this research aims to assess the feasibility of employing an FCN with indirectly 

related prior knowledge for Infarct Segmentation. 

In this regard, this study selected several popular pre-trained models to do transfer 

learning on the ATLAS 2.0R dataset, including VGG16, MobileNet, ResNet50. And 

these models are utilized as encoders in each U-net. To evaluate and compare the seg-

menting ability of different U-net combinations, metrics such as Precision, Recall, Area 

Under the Curve (AUC), Dice Similarity Coefficient (DSC) were measured, and this 

paper took trainable parameter and training time into consideration. Through this anal-

ysis, this study aims to prove that non-medical pre-trained encoder is beneficial and 

valid when training a model with limited computational resources and memory space.  

2 Method 

2.1 Data Preprocessing 

In this study, the ATLAS 2.0 dataset shown in Fig. 1 is utilized to segment ischemic 

stroke lesions. The original dataset consisted of 955 T1-weighted 3D brain scans, which 

are split into a training dataset (655) with corresponding masks and a testing dataset 

(300) without any labels. All grayscale images are pre-processed using the MNI152 

template. To evaluate the performance of the model's predictions, only a portion of the 

data from the training dataset with their labels is selected for this research. 
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Fig. 1. The sample images and corresponding labels in the collected dataset used. 

 

The shape of each brain scan is 197 × 233 × 189. Only 100 patients with 3D MRI 

scans from the training pictures with corresponding marks are selected, amounting to a 

total of 18,900 slices. As shown in Fig. 2, the ATLAS 2.0 dataset is extremely imbal-

anced with a large number of negative labels (1,229,615,012), while positive labels 

(9,015,388) are rarely presented. To be more specific, the ratio of the positive and neg-

ative labels is about 0.7 to 99.3 in the original dataset, which notably slows the conver-

gence of the training process and deteriorates model's performance. To address this 

issue preliminarily, a data filter is made to retain those slices with at least 100 pixels 

labeled as positive during the data preprocessing. Following that, the proportion of pos-

itive labels sharply increases to 2.8%, which effectively enhances the quality of dataset 

and potentially contributes to a better model performance.   
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Fig. 2. The proportion of positive labels and negative labels 

To ensure compatibility with various transfer learning models, the data will be stand-

ardized to a size of 255x255 through resizing. Afterward, this study splits this dataset 

in a ratio of 6:2:2 for the training, validation, and testing sets. To improve model con-

vergence and reduce gradient vanishing risks, normalization was applied to scale voxel-

based values within the range of 0 to 1.  

2.2 Self-designed UNet 

Firstly, a self-designed UNet is built as the baseline for the experiment. Then, four 

ImageNet-based pretrained models are used to build combined UNet, including 

VGG16-UNet, MobileNet-UNet, ResNet-UNet, DenseNet-UNet. As suggested by the 

authors [15], the FCN employs pixel-to-pixel mapping to determine pixel classes using 

the ground truth. FCN evolves from the classical CNN, retaining convolution and pool-

ing layers but replacing fully connected layers with convolutional layers. The architec-

ture of these unets commonly consists of contracting and expanding paths. A contract-

ing path encodes pixel-based inputs into low-dimensional features (e.g., edges or lines) 

by down sampling, while an expanding path decodes these low-level characteristics 

through up sampling. The decoding process can restore the spatial resolution lost during 

the down sampling operations, aiding networks in generating accurate predictions.  

UNet using Transfer Learning. Transfer Learning empowers a model to leverage 

prior knowledge to solve a related problem [16]. However, as the pre-trained model in 

the medical domain is rarely accessible, a model with indirectly related prior knowledge 

can potentially improve the performance of segmentation [17]. The architecture of the 

following 4 UNets using Transfer Learning utilizes pre-trained models as the encoders. 

These encoders all require input shapes of 256x256x3. To simulate RGB inputs, a con-

catenation operation is performed after the input layer stacks three inputs together.  
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VGG16. The architecture of VGG16 [18] is distinguished by its uniformity and depth, 

comprising a total of 16 convolutional and fully connected layers. The network archi-

tecture is meticulously organized into successive blocks, each containing multiple con-

volutional layers, interspersed with max-pooling layers for spatial down-sampling.No-

tably, VGG16 exhibits a substantial depth compared to its predecessors, with an exten-

sive stack of convolutional layers, contributing to its expressive power in modeling 

intricate patterns within visual data. This depth facilitates the hierarchical extraction of 

abstract features at multiple levels of granularity, enabling the network to learn rich 

representations of visual semantics. 

ResNet. The innovation of ResNet [19] architecture are residual blocks, which consist 

of a series of convolutional layers accompanied by identity mappings through skip con-

nections. These connections allow the network to learn residual functions, capturing 

the difference between the input and output of each block. By learning residual map-

pings rather than raw mappings, ResNet facilitates smoother gradient flow during train-

ing, enabling the direct propagation of information from earlier layers to deeper layers. 

MobileNet. MobileNet [20] emerges as a pioneering solution to the burgeoning de-

mand for lightweight yet powerful CNN architectures tailored for mobile and embed-

ded vision applications. MobileNet embodies a paradigm shift towards efficiency-

driven design principles, enabling real-time inference on resource-constrained devices 

without compromising on performance. 

DenseNet. The hallmark of DenseNet [21] lies in its dense connectivity pattern, 

wherein each layer receives feature maps from all preceding layers and passes its own 

feature maps to all subsequent layers within a dense block. This densely connected ar-

chitecture promotes feature reuse and fosters deep supervision, enabling effective in-

formation flow throughout the network while mitigating the degradation issue associ-

ated with very deep networks. 

2.3 Loss Function 

The loss function, Binary Focal Loss, is primarily used in binary classification tasks, 

designed to address class imbalance and focus on hard-to-classify examples. It en-

hances the training of CNN by penalizing confident predictions more than uncertain 

ones, thereby improving the model's ability to learn from challenging samples. 

Lfl = {
−(1 − p)γ log(p)     if y = positive

−(p)γ log(1 − p)     if y = negative
                        (1) 

p ∈ [0,1] and γ are modulation factors that can be adjusted. 
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2.4 Evaluation Metrics 

To have a comprehensive evaluation and comparison of models’ performance, Area 

Under Curve, Dice Similarity Coefficient (DSC), Recall and Precision are used in this 

project. AUC is widely used metric in binary classification tasks. It represents the area 

under the Receiver Operating Characteristic (ROC) curve, which plots the true positive 

rate against the false positive rate. And it indicates the model's ability to distinguish 

between positive and negative labels, with higher values indicating better performance. 

DSC, known as the F1 score, evaluates a model's predicted performance by calculating 

the intersection of the predicted and actual segmentation. A higher DSC indicates a 

desirable overlapping area segmented between the predicted and ground truth. Besides, 

Recall measures a model's capability in predicting positive instances from actual posi-

tive samples. A higher recall value illustrates that the model excels in capturing all 

positive instances. Similarly, precision reveals the precision of predicted positive pre-

dictions to all ground truth positive instances. A greater precision value signifies the 

model's proficiency in minimizing false positives. 

3 Results and Discussion 

 
Fig. 3. UNet and combined UNet Curves in Accuracy and Loss 
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Fig. 3 presents four graphs that reveal improvements for the self-defined UNet and 

four pretrained UNet with increasing epochs. Noticeably, during the initial stage, the 

validation loss of self-defined UNet showed little drop, while other pretrained UNET 

exhibited a stable performance. After several epochs, all networks have reached satu-

ration, achieving approximately 98% accuracy. This suggests that they have already 

undergone significant learning with a large number of 0 labels and have performed well 

on validation. However, due to the scarcity of positive labels, their predictions may not 

accurately reflect in accuracy. This viewpoint is validated by a continuously decreasing 

loss, indicating that both networks keep learning from the minority positive labels. Af-

ter around 10 epochs, their loss values saturate at the same position, approximately 

around 0.1. However, the validation curve serves only as a reference for model training 

in the experiment and cannot be considered the final evaluation criterion. It is worth 

noting that ResNet-UNet exhibits significant fluctuations on both the accuracy and loss 

curves, since ResNet utilizes skip connections that directly bypass some layers, which 

helps the network learn more complex features. However, this architecture may make 

the network more susceptible to noise in the input data, leading to fluctuations in the 

loss curve during training. Besides, ResNet is typically deeper and more complex than 

the standard encoder in UNet. The increased number of layers and connections may 

introduce instability and variability into the training process. 

 
Fig. 4. Visualization of Results of each UNet  

 

Fig. 4 showcases six sets of MR slices depicting delineated areas in the brain by self-

defined UNet and four pretrained UNet, aimed at demonstrating their segmentation per-

formance. Ischemic stroke, caused by blood flow blockages, manifests as a dark area 

on an MRI slice, distinctly discernible from surrounding brain cells. This lesson aligns 

with the ground truth, indicating the location of infarcts. In the prediction image, the 
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shape predicted by the model is obtained, and when overlaid on the previous image, it 

delineates the predicted infarct region. The highlights denote the  predicted region or 

ground truth. It is evident that the model's predictions are relatively accurate. 

The figure shows that the pretrained UNet model's predictions closely resemble the 

distribution of actual labels and produce fewer false positive and false negative results. 

On the other hand, the UNet model tends to predict more positive labels, thereby pro-

ducing more False Positive results. This observation is consistent with UNet's high re-

call and low DSC results. 

Table 1. A tabular representation of evaluation results (threshold = 0.5) 

Model AUC Re-

call 

Pre-

cision 

DSC Traina-

ble Param-

eter 

Non-

Trainable 

Parameter 

Ti

me per 

epoch 

(s) 

UNet 0.99

93 

0.95

44 

0.89

69 

0.92

48 

17,302,0

17 

7,680 40 

VGG1

6-UNet 

0.99

90 

0.96

22 

0.89

42 

0.92

69 

11,143,8

09 

14,718,5

28 

20 

Res-

Net-UNet 

0.99

87 

0.93

44 

0.88

47 

0.90

89 

12,083,5

21 

8,593,02

4 

20 

Mo-

bileNet-

UNet 

0.99

83 

0.94

78 

0.90

77 

0.92

73 

9,470,27

3 

620,096 20 

Dense-

Net-UNet 

0.99

86 

0.95

22 

0.90

35 

0.92

72 

12,083,5

21 

4,326,72

0 

20 

 

Table 1 presents the AUC metric that demonstrates each model equipped with a de-

sirable ability to identify negative and positive samples, indicating the effectiveness of 

representation learning. It’s obvious that all five models exhibit similar ability to predict 

positive instances, as indicated by their recall values of around 0.95 and precision val-

ues of about 0.9. DSC balances recall and precision, revealing that pretrained UNET 

excels in segmenting infarcts. The results demonstrate that a non-medical pre-trained 

encoder is beneficial and valid. 

Additionally, the proposed self-defined UNet has significantly more trainable pa-

rameters than the other four pretrained models, as the encoders of the pretrained models 

are frozen during the training process. This also explains why the pretrained models 

require only half the training time per epoch compared to our self-defined UNet (40 

seconds). The results illustrate that utilizing non-medical pre-trained encoder is an op-

tional and effective way to save computational resources and memory space. 
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4 Conclusion 

In this work, non-medical pre-trained encoders are proposed to train UNet models seg-

menting ischemic stroke. Data filter and focal loss function are used to mitigate the 

impact of imbalanced dataset and improve the performance of all five models. Addi-

tionally, all four ImageNet-based pretrained encoders models performed well on the 

ATLAS 2.0 dataset. Some experiments were conducted to evaluate the proposed 

method. Experimental results demonstrated that the models trained with this method 

are comparable to or even better than the centralized baseline with much fewer param-

eters and training time. In future research, some preprocessing methods such as Syn-

thetic Minority Over-sampling Technique (SMOTE) will be adopted to increase the 

number of minority class samples for balancing class distribution.  
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