
Comparison and Application of Implementing Image 

Homographs in Computer Vision  

Xingqi Qiu 

School of International Education, GuangDong University of Technology, Guangzhou, 511495, 

China 

3121010028@mail2.gdut.edu.cn 

Abstract. In the field of computer vision, planar homography plays a pivotal 

role in our research process. The homography matrix is capable of performing a 

variety of functions such as image warping, stitching, and video stitching. Within 

the realm of epipolar-geometry, it enables the execution of numerous tasks, 

including 3D reconstruction. This paper primarily focuses on the creation of 

panoramic images through automatic stitching of photographs with using 

homographic matrix, comparing the efficacy and efficiency of different feature 

extraction algorithms in terms of feature point matching, like Speeded Up Robust 

Features (SURF), Features from Accelerated Segment Test (FAST), and KAZE 

Scale-Invariant Feature Transform (SIFT), Oriented FAST and Rotated BRIEF 

(ORB),and put forward some applications. Consequently, this leads to variations 

in the effectiveness and efficiency of images stitched using the homography 

matrix. This paper finished a feature matching experiment based on comparing 

the panoramic image with using different feature detect algorithms. For scenarios 

requiring high accuracy where processing time can be longer, SIFT, KAZE, or 

SURF might be better choices. On the other hand, for applications that need fast 

response, FAST or ORB would be more appropriate. 

Keywords: Feature Detect Algorithms, Deep Learning, Panorama, Homograph. 

1 Introduction 

Panoramic image stitching is an active research area that involves multiple sub-tasks 

such as image detection, alignment, stitching, and image blending [1]. In the ever-

evolving landscape of computer vision, the application of homography matrices 

alongside feature extraction and matching algorithms has increasingly become a focal 

point. The efficacy of these complex techniques, however, can vary substantially 

depending on a multitude of situational factors. Consequently, it is imperative in a range 

of differing contexts to ascertain the algorithm that is optimally aligned with the 

requirements of the given application. As it stands, a significant body of contemporary 

research endeavors to refine the methodologies underpinning feature extraction and 

matching. The pursuit of obtaining precise planar homography matrices, especially 

within the confines of more restrictive environments, represents one such area of 

intense scholarly concentration. The current state of the art in this field is underscored  

  
© The Author(s) 2024
Y. Wang (ed.), Proceedings of the 2024 2nd International Conference on Image, Algorithms and Artificial
Intelligence (ICIAAI 2024), Advances in Computer Science Research 115,
https://doi.org/10.2991/978-94-6463-540-9_79

mailto:3121010028@mail2.gdut.edu.cn
https://doi.org/10.2991/978-94-6463-540-9_79
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-540-9_79&domain=pdf


   

 

by a series of notable advancements and ongoing challenges. Foremost among these is 

the progression of sophisticated feature detection and matching algorithms, which form 

the cornerstone of many computer vision tasks. Innovations in homography 

computation and the development of robust transformation models continue to enhance 

our capacity to manipulate and align images with high precision. 

However, different feature extraction and matching algorithms may demonstrate 

varied effectiveness under different circumstances. This means that in diverse 

scenarios, identifying the most suitable algorithm for application is requisite. Currently, 

the majority of research is dedicated to improving this feature extraction and matching 

techniques and obtaining planar homography matrices under more constrained 

conditions. The current state of the field can be characterized by several key 

developments and challenges: Advanced Feature Detection and Matching Algorithms, 

Homography and Transformation Models, Real-time and Panoramic Video Stitching. 

Nonetheless, in most instances, when we need to employ mature algorithms to 

accomplish tasks, the challenge lies in choosing the most appropriate algorithm for the 

task at hand. This paper introduces several classic and practical feature detection 

algorithms and provides a detailed comparison of these algorithms’ differences and 

applicability in static environments and dedicated to comparing the differences among 

these algorithms and explain the method of how to use auto-stitched skills to make a 

panoramic image and compare the different feature detection algorithms under the same 

setting and parameters. 

2 Method 

This part is about to introduce the typical methods the paper used. Besides, this part 

will show the basic steps of that algorithms and give the brief description. 

2.1 Model construction 

SIFT Scale-invariant feature transform (SIFT) features were proposed by David G. 

Lowe [2] and represent an algorithm for image feature detection and description. It 

extracts location-, scale-, and rotation-invariant keypoint descriptors and locates scale-

space extrema in pictures. This is extensively employed in domains like object 

identification and picture matching. It operates by identifying precise locations and 

main orientations of extrema (feature points, keypoints) across different scale spaces, 

constructing keypoint descriptors for feature extraction. SIFT is renowned for its high 

stable and strong robustness, what’s more the discrimination ability of SIFT is also 

admirable. However, inevitably, SITF need higher computation cost, and which is an 

enormous and fatal problem in currently. Therefore, it is hard to use SIFT to deal with 

the real-time process assignment. 

The concept of the Gaussian pyramid was introduced in the context of the SIFT 

operator. The Gaussian pyramid is built using the following steps: First, the original 

image is doubled in size. This becomes the first layer of the first octave in the Gaussian 

780             X. Qiu



   

 

pyramid. The second layer of the first octave pyramid is created by applying Gaussian 

convolution to the picture at the first layer of the first octave. The Gaussian convolution 

function is utilized in this process, in SIFT the σ =1.6. 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−
(𝑥−𝑥0)

2+(𝑦−𝑦0)
2

2𝜎2                (1) 

Then, by multiplying σ (sigma) by a scaling factor k, a new smoothing factor σ = 

k*σ is obtained. This new factor is used to smooth the image at the second layer of the 

first octave, and the resulting image serves as the third layer, continuing in this manner, 

we eventually obtain L layers of images. Within the same set, each layer of images has 

the same dimensions but different smoothing factors. By taking the image from the 

third-to-last layer of the first set and down sampling it by a scaling factor of 2, we obtain 

the first layer of the second set (Table 1).  

Table 1. SIFT algorithm 

SIFT algorithm 

1. Potential locations of interest are indicated using a Gaussian differential function that is 

invariant to scaling and rotation. 

2. To find the scale position, an enhanced model is applied to each possible site, choosing 

important points according to their stability. 

3. Each keypoint is allocated one or more directions based on the local image gradient 

directions. The direction, size, and position of important points are transformed throughout 

subsequent procedures to maintain their integrity. 

4. At the chosen scale, local image gradients are measured close to each feature point. These 

gradients are converted into a representation that guarantees a low translational similarity 

by permitting large distortion and illumination variations in local shape comparison. 

SURF The Speeded Up Robust Features (SURF) algorithm [3] is an improvement and 

acceleration of SIFT (Table 2). SIFT is popular for its accuracy and robustness, but it 

may be slower due to its large computational load. On the other hand, while retaining 

some of the scale and rotation invariance features of SIFT, SURF has been optimized 

for speed, making it particularly useful in real-time applications or situations where 

computational resources are limited. It improves the computational efficiency of feature 

detection and description by using integral images to quickly approximate the Hessian 

matrix and box filters to accelerate the convolution process. 

SURF employs box-type filters as an approximation to the Gaussian blur used in SIFT, 

which allows for faster computation. The filter's size fluctuates, while the image's size 

stays constant. The following is a representation of the filter: 

𝑆(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗)
𝑦
𝑗=0

𝑥
𝑖=0                   (2) 

In order to attain scale invariance, SURF further employs the Hessian matrix's σ-

scale determinant for feature point detection. The Hessian matrix H(x, σ) at scale σ is 

defined for a given point x=(x, y) in the picture as follows: 

Comparison and Application of Implementing Image Homographs             781



   

 

𝐻(𝑥, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝜎) 𝐿𝑥𝑦(𝑥, 𝜎)

𝐿𝑥𝑦(𝑥, 𝜎) 𝐿𝑦𝑦(𝑥, 𝜎)
]                (3) 

Lxx(x, σ) is the second order Gaussian derivatives' convolution assessed at point x. 

Table 2. SURF algorithm 

SURF algorithm 

1. SURF uses integral images to quickly calculate the sum of intensities in any image 

rectangle. 

2. The algorithm utilizes a Hessian matrix-based approach for keypoint detection.  

3. Similar to SIFT, SURF refines the position, scale, and ratio of the detected keypoints 

to find the most stable and accurate features. 

4. For each keypoint, an orientation is assigned based on the dominant direction of the 

local gradients around the keypoint.  

5. Constructs descriptors for the keypoints by extracting the sum of the wavelet 

responses around the keypoint location. The responses are organized into a vector, 

which represents the local gradient structures around the keypoint. 

6. Keypoint Matching. 

ORB Oriented Features from Accelerated Segment Test (FAST) and Rotated Binary 

Robust Independent Elementary Features (BRIEF) (the full name of ORB) [4], is a highly 

efficient feature point detection and description algorithm designed to be an effective 

alternative to SIFT and SURF (Table 3). Building on the strengths of FAST keypoint 

detection and BRIEF descriptors, ORB introduces keypoint orientation and employs a 

swift binary descriptor to facilitate efficient matching, which is a new concept 

compared to the SURF and SIFT. By utilizing rapid binary strings for feature 

description and matching, ORB is faster than SIFT and SURF, making it more suitable 

for real-time applications. ORB has been specially designed with a rotation-invariant 

weighting mechanism, and it employs an efficient learning algorithm to ensure quick 

feature description computation. Although ORB adopts certain scale invariance 

measures through its multi-scale detection algorithm, its performance in handling 

extensive scale changes is not as robust as that of SIFT and SURF As this paper 

mentioned before, orb is usually used in real-time process tasks. The Rotated BRIEF 

algorithm generates a binary string descriptor by selecting n pairs of pixels, denoted as 

pi and qi (i=1, 2…, n), around a feature point within its neighborhood. It then compares 

the grayscale values of each pixel pair. If the intensity at pixel pi exceeds that at pixel 

qi, a ‘1’ is placed in the binary string; otherwise, a ‘0’ is assigned. After comparing all 

designated pixel pairs, a binary string of length n is produced. 

782             X. Qiu



 

 

If P is a feature point and Q is the gray centroid within the neighborhood, the vector 

PQ
→ represents the direction of the feature point. The calculation method for the centroid 

is as follows: 

𝑚𝑖𝑗 = ∑ ∑ 𝑥𝑖𝑦𝑗𝐼(𝑥, 𝑦)𝑟
𝑦=−𝑟

𝑟
𝑥=−𝑟                  (4) 

In this case, r is the neighborhood's radius, i and j are either 0 or 1, and I(x, y) is the 

gray value of the pixel at (x, y). The gray centroid may thus be written as follows: 

Q=
𝑚10

𝑚00
,
𝑚01

𝑚00
                          (5) 

The angle of the feature point is represented as: 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚01, 𝑚10)                    (6) 

Table 3. ORB algorithm 

ORB algorithm 

1. ORB begins by swiftly detecting potential feature points in the image as corners using the 

FAST algorithm. 

2. These FAST corners are then scored and filtered using the Harris corner detector to 

determine the most prominent keypoints. 

3. For each keypoint, ORB calculates its orientation using a method based on the intensity 

centroid of the surrounding pixels, enhancing rotational invariance of the feature. 

4. Subsequently, ORB applies a rotated version of the BRIEF descriptor to the pixels around 

each keypoint to maintain the descriptor’s orientation consistency. 

5. these orientation-corrected BRIEF descriptors can be used for efficient feature point 

matching, especially using Hamming distance for fast matching. 

KAZE A key attribute of the KAZE algorithm is its use of non-linear scale-space 

technology, which marks a significant departure from methods based on linear scale 

spaces like SIFT and SURF. In non-linear scale areas, KAZE provides more accurate 

feature recognition and description in comparison to traditional techniques like SIFT 

and SURF. Designed with the dual aims of preserving essential image features while 

eliminating noise, KAZE may necessitate more computational resources than SIFT and 

SURF. However, the improvements in performance and effectiveness it brings to 

certain applications offer clear advantages. The KAZE algorithm's developers build a 

non-linear scale space by using Additive Operator Splitting (AOS) and non-linear 

diffusion filtering techniques. Variations in picture luminance (L) over various scales 

are treated by non-linear diffusion filtering as a divergence of a flow function, which is 

characterized by a non-linear partial differential equation:    

∂L

∂t
= div(c(x, y, t)∇L)                       (7) 

The c(x,y,t) means the g( |∇Lσ(x, y, t)| ). The gradient ∇Lσ  is of the Gaussian-

smoothed image Lσ and several expressions for the g() function are provided in the 

Comparison and Application of Implementing Image Homographs             783



   

 

article “KAZE Features” [5] (Table 4). This equation significantly enhances the 

algorithm’s ability to manage luminance changes, making it particularly effective for 

high-detail image analysis. The non-linear approach ensures that features are preserved 

with higher fidelity, supporting advanced image processing tasks. 

Table 4. KAZE algorithm 

KAZE algorithm 

1. Constructs a non-linear scale space to efficiently handle image details at different scales. 

2.  Proceeds to detect key points using a multi-scale approach. 

3. Applies a descriptor to each key points to capture its unique attributes, enabling the 

comparison of features across different images. 

4.  the algorithm finalizes the feature set, readying it for applications such as image matching, 

recognition, or tracking. 

FAST The FAST [6] corner detection algorithm focuses on high-speed corner detection 

using a technique known as "Accelerated Segment Test" to swiftly identify corner 

points within an image (Table 5).  

Table 5. FAST algorithm 

FAST algorithm 

1.Choose a candidate pixel in the image that might be a corner. This pixel is referred to as the 

test pixel. 

2.Surround the test pixel with a circle of 16 pixels at a certain radius. This circle is used to 

determine if the test pixel is a corner. 

3. Examine the test pixel's intensity in relation to the 16 other pixels' intensities within the 

circle. If a pixel on the circle has an intensity that differs noticeably from the test pixel's intensity, 

it is deemed to be a component of the corner. 

4.If there is a collection of n consecutive pixels in the circle (where n may generally be 12 out 

of 16) that are all darker than the test pixel by the same threshold (let's say t) or all brighter than 

the test pixel by the same threshold, then the pixel is considered a corner. 

5.In order to increase the algorithm's efficiency, a faster test looks just at the first, fifth, ninth, 

and thirteenth pixels before looking at all 16 pixels. To cut down on computation time, the test 

pixel is instantly excluded as a corner if these pixels are not all darker or all brighter than the test 

pixel (plus or minus the threshold). 

6.Once all potential corners have been detected, a non-maximum suppression (NMS) step is 

applied. This step eliminates corners that are not local maxima to refine the corner detection and 

reduce the number of features. 

7.Optionally, the intensity threshold (t) can be varied to control the number of corners detected, 

allowing the algorithm to adapt to different image conditions and requirements. 

The key advantage of the algorithm is its velocity, making it suitable for real-time 

visual systems. the FAST algorithm excels in speed, making it well-suited for real-time 

applications. Its main trade-off is the potential reduction in the robustness of detected 

features, especially in comparison to more comprehensive (but slower) algorithms like 

SIFT and SURF. However, its efficiency makes it a popular choice, especially in 

784             X. Qiu



   

 

applications where processing time is critical, and it serves as a fundamental building 

block for more complex feature detection and matching algorithms like ORB. 

In fact, when comparing pixel grayscale values, a threshold (t) needs to be added. 

𝑆𝑝−>𝑥 = {

𝑑, 𝐼𝑝→𝑥 ≤ 𝐼𝑝 − 𝑡 (𝑑𝑎𝑟𝑘)

𝑠, 𝐼𝑝 − 𝑡 < 𝐼𝑝→𝑥 < 𝐼𝑝 + 𝑡 (𝑠𝑖𝑚𝑖𝑎𝑙𝑟)

𝑏, 𝐼𝑝 − 𝑡 ≤ 𝐼𝑝→𝑥  (𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑟)

          (8) 

In this expression, p->x means the pixel point x on the ring which surround pixel 

point p, (x=1,2,3...,16), and the Sp−>x means the interval category corresponding to 

the grayscale of point p. This means, if the neighborhood of point p has a sequence of 

n points whose comparison results are Sp−>x =d or b. then p is considered a corner 

point. Generally, n is set to 12, known as FAST-12; in practice, n=9 often yields better 

results. 

2.2 Feature Detection 

Feature detection refers to the process of identifying points of interest within an image. 

These points, or features, are distinctive and can be easily recognized in different 

images of the same scene or object. For instance, the Harris corner detector [7], which 

focus on the corner point. It slid a fixed window in any direction on an image, one 

compares the situation before and after the slide. If a significant change in the grayscale 

within the window area occurs between the pre-slide (before the sliding) and post-slide 

situations, it is considered that a corner has been encountered within the window. If 

there is no change in the grayscale within the window area before and after the slide, 

then there are no corners present in that window area. The goal is to detect features that 

are invariant to transformations such as scaling, rotation, and illumination changes. 

SIFT, SURF, ORB, and KAZE are a few of the frequently utilized feature 

identification techniques. These algorithms look for regions in the image that have 

unique patterns or textures that stand out from their surroundings, which can then be 

used as markers for identifying and tracking objects across multiple images. 

2.3 Feature Matching 

Feature matching takes the process a step further by finding correspondences between 

features detected in different images. This involves comparing features detected in one 

image with those in another to find matches based on similarity measures. The matching 

process is critical in applications such as stereo vision, where matching features across 

left and right images allow for depth estimation, and in panorama stitching, where 

overlapping images are seamlessly merged based on matched features. Algorithms like 

the Brute-Force matcher and the Fast Library for Approximate Nearest Neighbors 

(FLANN )-based matcher [8] are often used for this purpose, and this paper focus on 

the Brute-Force matcher. Feature matching relies on descriptors, which are unique 

signatures generated for each detected feature during the detection phase, to compare 

and identify similar features across different images. 

Comparison and Application of Implementing Image Homographs             785



   

 

Feature detection and feature matching enable a wide range of computer vision 

applications, from augmenting reality to creating 3D models from 2D images. Their 

effectiveness lies in their ability to identify and leverage the unique characteristics of 

images to recognize, track, and analyze objects across different views and scales. 

In the process of feature matching, we employ the K-nearest neighbors (KNN) 

algorithm to sift through initial matches, further refining these matches by 

implementing Lowe's ratio test. This involves taking a keypoint from one image, then 

identifying its two closest matches in the other image based on the Euclidean distance. 

We estimate the distance between the closest and second-closest matches; if the 

quotient of these distances is lower than a predetermined threshold (T), the match is 

considered acceptable. Obviously, lowering the ratio threshold (T) will reduce the 

number of matching points but make them more stable. In our experiments, this paper 

actually recommends a ratio threshold of 0.8 because some algorithms, like ORB, 

require more matching points. Experimental observations suggest that an optimal 

threshold ranges from 0.4 to 0.6. Values under 0.4 lead to a scarcity of matches, while 

those over 0.6 tend to include numerous inaccurate matches. This approach is crucial 

for mitigating issues related to keypoints that do not match due to factors like image 

occlusion and complex backgrounds, ensuring that only the most plausible matches are 

retained. 

Planar Homography transformation refers to the mapping relationship between two 

different two-dimensional plane matrices on a plane. This mapping is a linear 

transformation, with specific correspondences, such that for every point on one matrix, 

there is a unique corresponding point on the other matrix [9] 

3 Result  

3.1 Settings 

In order to find the homography matrix to implement applications, this paper used 

SIFT, SURF, ORB, FAST algorithms to do the feature detection and used Random 

Sample Consensus (RANSAC) [10] to deal with the noisy point and estimate the 

parameter in modeling. In feature matching, this paper only uses the Brute force 

matching. The “reprojThresh” (reprojective threshold) is the maximum allowable 

reprojection error threshold used in computing the homography (perspective 

transformation) between images. This parameter is crucial in image stitching, 

particularly in feature matching and finding the homography matrix. This paper has the 

fix “reprojThresh”, which equal to 50. The match rate means the rate of all the detected 

points from the two original images divided by the number of matched points.  

To compare the application effects of homography matrices generated under 

different feature detection algorithms, this paper utilizes plane homography to realize 

panoramic images, hereby comparing the differences among various detection 

algorithms under static conditions. 

786             X. Qiu



   

 

3.2 Evaluation Metrics 

Incorrect detection and matching can impact the intuitive stitching effect. The 

robustness of the method and use requirements are reflected in the number of feature 

points created from pictures and the needed number of feature points. The difficulty of 

the approach is demonstrated by the runtime for producing panoramic photos. The 

quality of the homogeneous matrices produced by the algorithm may be seen in the size 

of the teeth in the gaps. 

3.3 Experiment 

This experiment used different feature detected algorithm to obtain the homography 

matrix to implement the panoramic image and feature matching, which aim to compare 

the efficacy and effect, hereby comparing the differences among various detection 

algorithms under static conditions (Figure 1). 

    

Fig.1.Original figures 

SIFT KAZE ORB FAST Feature Match Here, this paper set three different ratio,0.6, 

0.8, and “reprojective” threshold=50.0 (Table 6, figure 2, figure 3, figure 4, figure 5). 

⚫ Ratio=0.6 

 

 
Fig. 2. Showing matching points with SIFT KAZE ORB FAST from top to bottom, left to right. 

(Ratio=0.6) 

 

⚫ Ratio=0.8 

 

Comparison and Application of Implementing Image Homographs             787



   

 

 

Fig.3. Showing matching points with SIFT KAZE ORB FAST from top to bottom, left to right. 

(Ratio=0.8) 

Table 6 The experiment data collection 

 Number of  

matched 

points 

ratio=0.6 

Number of  

matched 

points 

ratio=0.8 

Running 

Time 

ratio=0.6 

Running 

Time 

ratio=0.8 

Match Rate 

Ratio=0.6 

Match Rate 

Ratio=0.8 

SIFT 162 272 0.146 0.147 13.84% 24.38% 

KAZE 137 224  0.2506 0.256 19.27% 32.35% 

ORB 10 52 0.354 0.310 2.02% 12.08% 

FAST 16 43 0.0897 0.0977 11.94% 33.58% 

SIFT KAZE ORB FAST SURF comparison of panorama 

⚫ Ratio=0.6 

 

788             X. Qiu



   

 

 

Fig.4 Panorama image with SIFT KAZE ORB FAST SURF from top to bottom, left to right.  

⚫ Ratio=0.8 

 

 

 

Fig.5 Panorama image with SIFT KAZE ORB FAST SURF from top to bottom, left to right  

To compare the differences in the effects of using homographic matrices obtained 

through various feature detection and matching algorithms, this paper employs different 

Comparison and Application of Implementing Image Homographs             789



   

 

feature detection algorithms combined with brute-force feature matching techniques 

and RANSAC to create homography matrices for implementing panoramic stitching 

technology. The results indicate that, under certain feature point matching constraints, 

there are noticeable differences in outcomes. 

The generic rank of feature detected algorithm for their ability to detect low quality 

and low quantity of features is: 

SIFT>KAZE>FAST>ORB 

But, if we enhance the restriction of the matching: 

SIFT>KAZE>ORB>FAST 

That meanings that in the static feature matching SIFT shows the best performance 

among the others however, at the meanwhile, SIFT and KAZE probably shown more 

costly in large-scaled task. The ORB and FAST doesn’t have good enough effect to 

support them to be used in static and low quantity image stitching task because of the 

lack of the matching points. 

The generic order of running time (from high to low) for their ability to finish 

panoramic image (in low quantity match points) is: 

ORB>KAZE>SIFT>FAST 

Specially, when using ORB to do the panoramic image, if the number of the matched 

points increase, the running time decrease at the meanwhile. Although in this 

experiment ORB need the most time, but if the restriction of the match decreasing, the 

order probably will like: KAZE>SIFT>ORB>FAST 

This paper also found that despite the preference of the creator of the Lowe’s test 

algorithm to increase the ratio size to adapt different algorithms, this article finds that 

moderately reducing the ratio size is beneficial for improving the stitching results in 

panorama assembly tasks based on static and small quantities of feature detection. Too 

high a ratio can lead to many incorrect matches, not only increasing the computational 

cost but also not yielding good outcomes. For example, with ORB and FAST, this could 

result in significant gaps, while the stability of algorithms like SIFT, SURF, and KAZE 

might be impacted. 

So, the quality of panoramic image (in low quality matched points): 

SIFT > SURF > KAZE > ORB > FAST 

The effect of the two ratios:0.6>0.8 

4 Conclusion 

This paper primarily concentrates on generating panoramic images through automatic 

stitching of photographs using a homographic matrix. It compares the effectiveness and 

efficiency of various feature extraction algorithms in terms of feature point matching, 

such as SURF, SIFT, ORB, FAST, KAZE, and proposes potential applications. 

SIFT/SURF is the best suited for environments demanding high stability and precise 

feature detection, which need high computation resource. ORB is ideal for real-time or 

resource-constrained applications, including visual applications on mobile devices. 

KAZE is optimal for scenarios with rich image details requiring high-quality feature 

descriptions. FAST might be the most appropriate for instances where speed is crucial, 

790             X. Qiu



   

 

such as in tracking and surveillance. Normally, as for stitching the static panoramic 

image, in term of the quality, this paper recommends the SIFT, SURF, KAZE and if 

the responsible time is a requirement and, FAST is the best resort. However, if it is 

possible to get enormous, detected matches and concern about the running time, ORB 

is a nice algorithm for that. 

Feature detection technologies will progressively evolve, where more accurate 

detection and matching will yield more precise homography matrices. This 

advancement will enhance scientific and technological research in the field of computer 

vision. However, the panorama stitching currently available in market applications 

remains a static function, and there is still significant room for improvement in the 

efficiency of obtaining homography matrices. 

Reference 

1. M. Brown, R. Szeliski and S. Winder, "Multi-image matching using multi-scale-oriented 

patches," 2005 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, San Diego, CA, USA, 1, 510-517. (2005) 

2. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International 

Journal of Computer Vision 60, 91–110. (2004) 

3. Bay, H., Tuytelaars, T., Van Gool, L. SURF: Speeded Up Robust Features. In: Leonardis, 

A., Bischof, H., Pinz, A. (eds) Computer Vision – European Conference On Computer 

Vision. 2006. Lecture Notes in Computer Science, 110, 346-359. (2006) 

4. E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient alternative to SIFT 

or SURF," 2011 International Conference on Computer Vision, Barcelona, Spain, 3, 2564-

2571, (2011) 

5. Alcantarilla, P.F., Bartoli, A., Davison, A.J. KAZE Features. In: Fitzgibbon, A., Lazebnik, 

S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – European Conference On 

Computer Vision, 2012. Lecture Notes in Computer Science, 7577, 214-227, (2012). 

6. Rosten, E., Drummond, T. Machine Learning for High-Speed Corner Detection. In: 

Leonardis, A., Bischof, H., Pinz, A. (eds) Computer Vision – European Conference On 

Computer Vision, 2006. Lecture Notes in Computer Science, 3951, 430-443, (2006). 

7. Harris, C. G., & Stephens, M. J. A combined corner and edge detector. Alvey vision 

conference, 19, 189-192, (1998). 

8. V. Vijayan and P. Kp, "FLANN Based Matching with SIFT Descriptors for Drowsy Features 

Extraction," 2019 Fifth International Conference on Image Information Processing (ICIIP), 

Shimla, India, 600-605 (2019). 

9. Multiple View Geometry in Computer Vision Second Edition, Richard Hartley and Andrew 

Zisserman, Cambridge University Press, March, 23-24 (2004). 

10. Martin A. Fischler, Robert C. Bolles, Random Sample Consensus: A Paradigm for Model 

Fitting with Applications to Image Analysis and Automated Cartography, 24, 381-395. 

Comparison and Application of Implementing Image Homographs             791



   

 

 

 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

792             X. Qiu

http://creativecommons.org/licenses/by-nc/4.0/

	Comparison and Application of Implementing Image Homographs in Computer Vision



