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Abstract. A serious brain condition with a high death rate, intracranial 

hemorrhage (ICH) requires a precise and timely diagnosis. While Computed 

Tomography (CT) is commonly used for its speed and accessibility, its diagnostic 

accuracy is limited compared to Magnetic Resonance Imaging (MRI). However, 

the latter is often less accessible and more time-consuming. This study addresses 

this challenge by leveraging transfer learning techniques to enhance ICH 

detection in CT images using the detailed features available in MRI scans. 

Specifically, this study employed the ATLAS v2.0 stroke MRI dataset as the 

source domain and adapt it to a target dataset of ICH CT images from Kaggle. 

Three models, including U-Net, Residual U-Net, and Attention U-Net, are trained 

and evaluated on both datasets to assess their performance and transfer learning 

capabilities. The models are pretrained on the MRI dataset and fine-tuned on the 

CT dataset, utilizing different learning rates for encoders and decoders to 

preserve and adapt features effectively. The results indicate that the Attention U-

Net outperforms the other models, demonstrating superior performance in both 

training and testing metrics. This research demonstrates the potential of 

combining the rapid assessment capabilities of CT with the detailed visualization 

strengths of MRI, setting a new standard in the diagnosis of ICH. The findings 

suggest that transfer learning from stroke MRI to ICH CT can significantly 

improve segmentation accuracy, thereby enhancing diagnostic efficiency and 

patient outcomes. 
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1 Introduction 

The Intracranial Hemorrhage (ICH) is a severe neurological condition that requires a 

precise and timely diagnosis [1]. Research reveals that ICH patients has over 40% death 

rate in 30 days [2]. Therefore, a fast and accurate detection methodology is crucial for 

ICH diagnosis. Computed Tomography (CT) is usually a first choice for ICH detection 

because of its speed and availability. However, it is challenging to detect ICH via 

radiological assessment of intracranial blood, due to the variance of intracranial blood 

caused by age and location [1]. On Magnetic resonance imaging (MRI), the appearance 

of intracranial hemorrhage undergoes complex signal intensity changes [1], meaning 

an accurate detection could be established in this way. Since MRI is time consuming  
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and may not be available in some small hospitals, it is required to have a detection 

methodology that combines the speed of CT and the accuracy of MRI. Deep learning 

is being used extensively for medical picture segmentation these days, and numerous 

publications have been published demonstrating its effectiveness in the field [3]. 

Originally, a number of models were created for medical and biological picture 

segmentation, drawing inspiration from FCNs and encoder-decoder models [4]. For 

instance, U-Networks with very few training images and yields more precise 

segmentations [5]. Based on U-Net backbone, there are also several advanced models 

like Residual U-Net and Attention U-Net. 

In general, previous research trained and validated the model on a dataset with a 

single distribution. For ICH CT/MRI datasets, the shortage of cases forces researchers 

to enhance model performance by reconstructing model itself. However, the disability 

of model generalization could not be solved in this way. Moreover, most of medical 

image datasets merely focus on one domain. For ICH, CT datasets are common, but 

MRI datasets are not because of the scarcity and collection difficulty of ICH MRI data. 

One simple and direct approach is to train model on MRI dataset in other domain, such 

as stroke or brain tumor, and then apply this pretrained model to ICH CT dataset. This 

approach is called transfer learning. Transfer learning improve learner from one domain 

by transferring information from a related domain [6]. Due to the relationship of Stroke 

MRI and ICH CT, the transfer learning method could be applicable. 

This research aims to bridge this gap through the application of transfer learning 

techniques, leveraging the rich detail available in MRI data to enhance CT image 

segmentation. This study applies transfer learning method by utilizing the ATLAS v2.0 

stroke MRI image segmentation dataset [7] as the source and adapting it to a target 

dataset of brain CT images with ICH masks from Kaggle. Three models will be trained 

and evaluated on both datasets to assess their transfer learning capabilities using several 

metrics. This approach promises to combine the rapid assessment capabilities of CT 

with the detailed visualization strengths of MRI, potentially setting a new standard in 

ICH diagnosis. 

2 Method 

2.1 Data Preparation 

This study contains 2 domains of datasets. The source domain utilizes the ATLAS v2.0 

dataset [7]. The ATLAS v2.0 dataset contains 955 MRI images (655 labeled, 300 non-

labeled). MRIcron, an open-source program for visualizing brain imaging and 

designating volumes of interest, was used to manually draw masks on each individual 

brain in native space once brain lesions were discovered for each MRI. For every MRI, 

at least one lesion mask could be found [7]. Fig. 1 displays an example of the source 

dataset. The Computed Tomography Images for Intracranial Hemorrhage Detection 

and Segmentation v1.3.1 dataset is used as the target domain. This dataset with 82 CT 

images was gathered, 36 of which were for patients with an intracranial bleeding 

diagnosis [8]. Both source and target dataset are composed of gray scale images and 
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masks with 2 categories (background, focus). The formats of both source and target 

dataset are .nii.gz files. 

The source and target dataset were processed by preprocessing, dateset generation 

and data augmentation. The preprocessing step includes loading, slicing, filtering, and 

saving the data. The .nii.gz data of images and masks was initially loaded by nibabel. 

Since each .nii.gz file contains multiple 2D images, it was sliced with interval = 10. 

The image, mask slices would be filtered by the ratio of focus in the mask with threshold 

= 0.005. Then the pipeline reshapes original images and masks into 224 × 224 × 1 

images and save filtered slices into images and masks folders. For dataset generation, 

the tf.data.Dataset generated the dataset by reading and zipping images and masks. The 

images and masks were resized into 0 to 1 by dividing 255, then split into training, 

validation, and test set (60%, 20%, 20%). The training and validation applied data 

augmentations including random zooming, random rotating and random flipping. These 

augmentation process will be repeated for 5 times. 

 
Fig. 1. A sample image with mask in ATLAS v2.0 dataset. 

2.2 Transfer learning-based U-Nets 

Transfer Learning. Transfer Learning can be categorized into heterogeneous and 

homogeneous. When the measurements (features) of the source domain project differ 

from those of the target domain project, this is known as heterogeneous transfer 

learning. On the other hand, homogenous transfer learning occurs when the domain 

metrics are same for projects in the source and destination domains.  

This study is heterogeneous transfer learning of image segmentation from Stroke 

MRI to ICH CT. Three models are pretrained on source domain and fine-tuned on target 

domain by applying different learning rates in encoders and decoders. A lower learning 

rate for encoders preserves the pretrained features, preventing them from being 

drastically altered and preserves diversity of pretrained features. A higher learning rate 

for decoders improves the speed of adapting the target domain and utilizing the 

extracted features from encoders effectively. 

Residual blocks. When deeper networks are able to begin converging, a degradation 

issue has been revealed: accuracy becomes saturated (which may not come as a 

surprise) and then rapidly declines as the depth of the network increases. [9]. The skip 
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connection in residual blocks helps mitigate the vanishing gradient problems and allows 

gradients directly flow through connections, making the training process easier and 

robust. The structure of the residual block is shown in Fig. 2. 

 

 

Fig. 2. A building block of Residual learning. 

The structure of residual block in this work includes 1 input, 2 convolution layers 

with 3 × 3 filters (one stride=2, the other one stride=1), Batch Normalization, and 

activated by sigmoid. The input passes through a convolution layer with 1 × 1 filter and 

stride=2 to match the output shape, then skip connected with the activated result, and 

output with a Batch Normalization and Dropout. 

Attention mechanisms. The human visual attention system, which selectively focuses 

on portions of the visual field to gather precise information while disregarding less 

relevant regions, is the model from which neural networks' attention mechanisms are 

derived. It learns to emphasize salient feature information that is essential for a given 

job in feature maps while automatically focusing on the target region and suppressing 

unnecessary feature responses [10, 11]. The basic architecture of Attention Gate is 

shown in Fig. 3. 

The architecture of Attention Gate in this work contains 2 inputs x, g, which are 

convolved separately with filters shapes 1 × 1, then added together and activated by 

ReLU. This part is convolved by 1×1 filters again with sigmoid activation. After 

resampling, this part would multiply with input x and outputs xˆ. 

Attention Gate enables the original model to have soft attention via multiplying 

extracted feature from CNN with a sigmoid generated attention ranging from 0 to 1. 

This technique allows model to focus on essential parts to acquire more details and 

prevent learning from noises and irrelevant features. This mechanism would lead to a 

better transfer learning result by preserving attention instead of just features of source. 

 

Fig. 3. The basic schematic of attention gate . 
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U-Net Architecture. For biomedical image segmentation, U-Net is one of the useful 

models with a Fully Convolutional Network (FCN) including encoder, bottleneck, and 

decoder. Because of its U-shaped structure with context information, short training 

time, and minimal amount of data required, the well-liked U-Net meets the needs of 

medical picture segmentation [12]. The basic U-Net architecture is shown in Fig. 4. 

The U-Net architecture is used as a backbone for 3 models in this work. Those 

models are consisted of a set of downsampling and upsampling blocks with filters = 

[64, 128, 256, 512, 1024]. The downsampling block is consisted by 2 Convolution - 

Batch Normalization - ReLU blocks. The upsampling block is composed of Transpose 

Convolution - concatenate - Convolution blocks. 4 downsampling constitutes the 

encoder part, 1 for bottleneck, and 4 upsampling for decoder. 

The Residual U-Net replaces all Double-Convolution Layers in the encoder of 

original U-Net architecture. The Attention U-Net keeps the same encoder, applying AG 

with inputs from encoders and upsampled result in decoders with same output shape. 

 
Fig. 4. The basic architecture of U-Net. 

2.3 Implementation Details 

Loss Function. This study applies the combined loss function of Binary Cross Entropy 

and Dice Loss. For each formula below, y represents the true value and p represents the 

predicted value. 

For a given random variable or sequence of events, the Binary Cross Entropy (BCE) 

primarily analyzes the difference between two probability distributions. Since 

segmentation is pixel-level classification, it is frequently employed for classification 

objectives and performs well [13]. 

 

𝐵𝐶𝐸 = −𝑦𝑙𝑜𝑔𝑝 − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝)                               (1) 

 

In the field of computer vision, the dice coefficient is a widely used statistic that 

evaluates the similarity between two images. Additionally, it was modified as the Dice 

Loss (DL) loss function later in 2016 [13]. It mainly focuses on the overlapping of true 

and predicted masks. 
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𝐷𝐿 = 1 −
2𝑦𝑝+1

𝑦+𝑝+1
                                                  (2) 

 

The combined loss function is adding BCE and DL, which combines the difference 

of classes and the overlapping of masks. 

 

𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐵𝐶𝐸 + 𝐷𝐿                                           (3) 

 

Optimizer. The Adaptive Moment Estimation (Adam) optimizer, which combines 

AdaGrads with RMSProp, is used in this work. Adam has a number of benefits, 

including the ability to work with sparse gradients, the elimination of the need for a 

fixed objective, the ability to execute step-size annealing naturally, and step-sizes that 

are approximately limited by the step size hyperparameter [14]. 

Evaluation Metrics. The evaluation metrics for this study applies the Dice coefficient 

and the Intersection Over Union (IoU). The degree of overlap between two datasets is 

described by the Dice coefficient. It is computed by multiplying the overlap between 

the two datasets' total pixel counts by two. For an overlapping pair of reference and 

image objects of NR and NI pixels, respectively, the dice coefficient, Dc, can be 

expressed as follows: 

𝐷𝑐 =
2𝑁𝑂

𝑁𝑅+𝑁𝐼
                                                      (4) 

where NO is the amount of overlapped pixels [15]. The Jaccard index, usually referred 

to as the Jaccard similarity coefficient, is another name for IoU and is a commonly used 

metric for comparing the similarity between sample sets. In general, the intersection of 

sample sets A and B defines IoU (A, B).  

 

𝐼𝑜𝑈(𝐴, 𝐵) =
𝐴∩𝐵

𝐴∪𝐵
=

𝐴∩𝐵

|𝐴|+|𝐵|−𝐴∩𝐵
                                    (5) 

 

Many works of computer vision like object detection and image segmentation at the 

pixel or instance level, have made extensive use of the IoU as an assessment metric 

[16]. 

3 Results and Discussion 

This study evaluates the performance of U-Net, Residual U-Net and Attention U-Net 

on both source domain, target domain, and the performance of transfer learning, using 

dice score and IoU as evaluation metrics. Both evaluation and visualization are shown 

in the following sections. 
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3.1 The Performance on Source Domain 

For the source domain, the Attention U-Net has the best result that is IoU=0.5619, 

which is shown in Table 1. Fig. 5 selects a sample from the testing set of Source dataset 

for visualization. All of the predictions are close to ground truth while the Attention U-

Net performs better on details such as the size and shape of mask. For instance, the right 

boundary of prediction on Attention U-Net is flatter that is closer to the ground truth. 

 

Table 1. The Performance of Different Models on Source Dataset 

Model Training Loss Training IoU Testing Dice Score Testing IoU 

U-Net 0.1777 0.7481 0.6503 0.5166 

Residual U-Net 0.1752 0.7507 0.6869 0.5567 

Attention U-
Net 

0.1497 0.7821 0.6863 0.5619 

 

 

Fig. 5. Visualization of Results of Different Models on Source Dataset. 

The reason for high testing evaluation metrics may be because the size of source 

dataset is large. With data augmentation, the test result would be boosted. The 

advantage of Attention U-Net is the soft attention mechanism, leading to more focus 

on key features and preventing disturbances. 

3.2 The Performance on Target Domain 

For the target domain, the Attention U-Net performs the best that is shown in Table 2 

and Fig. 6. Both training and testing metrics of Attention U-Net are the best. All 

evaluation metrics for all models on target domain are lower than the result on source 

domain. 

Table 2. The Performance of Different Models on Target Dataset 

Model Training Loss Training IoU Testing Dice Score Testing IoU 

U-Net 0.3887 0.6102 0.2757 0.2455 

Residual U-Net 0.3468 0.5669 0.3250 0.2579 

Attention U-
Net 

0.2054 0.6881 0.4213 0.2714 
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Fig. 6. Visualization of Results of Different Models on Target Dataset. 

The decrease of evaluation metrics might be because the size of target dataset is 

small, leading to difficulty of feature extraction. Furthermore, the data quality of CT 

images is lower than MRI images, leading to abundant ambiguous features and noises. 

For Attention U-Net, it decreases the disturbance of noises in dataset by attention 

mechanism. Since the early-stopping is applied in training callbacks, it goes further 

than U-Net and Residual U-Net. 

3.3 The Performance of Transfer Learning 

For all these three models, transfer learning enhances most performances shown in 

Table 3 and Fig. 7. The Attention U-Net has the best performance, and U-Net has the 

best improvement. 

Table 3. The Performance of Different Models of Transfer Learning 

Model Training Loss Training IoU Testing Dice Score Testing IoU 

U-Net 0.1743 0.7096 0.4203 0.2666 

Residual U-Net 0.1871 0.6876 0.3811 0.2397 

Attention U-
Net 

0.1444 0.7365 0.4240 0.2704 

 

Fig. 7. Visualization of Results of Different Models of Transfer Learning. 

 

This phenomenon might be because of the difference in feature reusing ability of 

different model. For U-Net, the model structure is simple, and the number of parameters 

is small, so that it is easier for this model to adjust parameters. Thus, the improvement 

of U-Net by using transfer learning is significant. Both training and testing metrics are 

improved for U-Net. For Attention U-Net, although the model structure is complex, it 

has attention mechanism, leading to a better feature selection capability. Therefore, the 

training performance and testing performance especially testing Dice Score can be 

improved. For Residual U-Net, the skip connection is capable for handling vanishing 

gradient, but it is not regnant for reusing features learnt from source domain. Unlike the 

features, the residuals might differ for different datasets, that is not beneficial for 
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Residual U-Net to adapt the new features. Also, both source and target domain contain 

non-labeled data which cannot be used directly in transfer learning. This limitation can 

be reached by domain adaptation in future research. 

4 Conclusion 

This study applies transfer learning from stroke MRI to ICH CT that enhances the 

performance of image segmentation for detecting and locating ICH. The study 

compares the performance of three models including U-Net, Residual U-Net and 

Attention U-Net, using Dice Score and IoU as testing evaluation metrics. The result 

suggests that Attention U-Net performs better in transfer learning than both Residual 

U-Net and U-Net. For future studies, the variety and non-labeled data of source and 

target domain could be considered, and domain adaptation techniques could be applied 

to further generalize this task. 
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