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Abstract. In the current field of medical research, identifying and evaluating the 

key factors affecting the onset of cancer and especially the lung cancer’s onset is 

of great significance to improve the early management and diagnosis of lung can-

cer. This study employed a comprehensive approach, utilizing both the random 

forest algorithm and logistic regression, to analyze and predict the risk factors 

associated with lung cancer. Logistic regression algorithm can provide a model 

for the probabilistic relationship between features and lung cancer risk. Pearson 

correlation analysis's feature importance scoring method and random forest algo-

rithm can select the most influential features from numerous potential risk factors 

to build an efficient lung cancer risk prediction model. The study began with a 

preliminary analysis of multiple variables in the data set to determine their rele-

vance to lung cancer development. Pearson correlation analysis was employed to 

assess the magnitude of the linear relationship between each feature and the risk 

of lung cancer, and random forest algorithm was further used to score and rank 

the importance of the features. On the basis of feature selection, specific features 

were selected as input variables for model training, and a lung cancer risk pre-

diction model was constructed by machine learning algorithm. By comparing and 

analyzing the baseline model constructed with all the features, the selected fea-

ture model maintains comparable or even higher prediction accuracy while re-

ducing the model complexity. This result proves that feature selection plays a 

crucial role in enhancing model efficiency and accuracy. 

Keywords: Lung Cancer; Logical Regression, Pearson Correlation; Random 
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1 Introduction 

Lung cancer remains the primary cause of cancer-related fatalities worldwide, present-

ing a significant public health challenge. Historical records show a stark increase in 

lung cancer cases, from fewer than 22 documented cases in the late 1840s to 1.8 million 

newly diagnosed cases globally in 2012, resulting in 1.6 million deaths in that same 

year alone [1-3]. Despite advancements in diagnostics and treatment, early detection 

and management of lung cancer are hindered by the complex interplay of genetic, en-

vironmental, and lifestyle risk factors. A comprehensive understanding of how these  
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factors collectively impact lung cancer risk is lacking, as many studies focus on isolated 

factors without assessing their interaction and relative importance. 

Magnetic Resonance Imaging has been called “Since the X-ray found that the devel-

opment of the most important medical diagnosis field” 100 years ago [4]. Throughout 

its brief history, starting from the pioneering research by Lauterbur et al. and subse-

quent foundational studies, MRI has evolved into a fundamental cornerstone of con-

temporary medical care [5]. However, the principle of MRI is subtle and less intuitive 

compared to more traditional medical imaging, and its effectiveness in imaging air-

filled lungs is limited. Moreover, statistical analysis plays a vital role in revealing the 

complexity of disease incidence, progression, and treatment outcomes. Random Con-

trolled Trails, multiple regression analyses, etc. have greatly improved the understand-

ing of lung cancer, using random effects models to assess the likelihood of publication 

bias for all prior lung conditions and all subcategories by funnel plots and to assess 

sources of heterogeneity by meta-regression [6, 7]. The field of lung cancer research 

and diagnosis has undergone profound changes through the integration of Machine 

Learning (ML) technologies, with major leaps in the ability to detect, classify, and pre-

dict the outcomes of this complex disease, and as these technologies continue to evolve 

[8], they have the capacity to transform the diagnosis, therapy, and outlook of lung 

cancer, ultimately enhancing results and standard of living. 

In order to solve such problems that may exist in traditional methods, this study used 

a dual analysis method, combining Pearson correlation analysis with the Random For-

est algorithm's feature importance score, to isolate those factors that contribute to lung 

cancer risk. The study sought to go beyond statistical analysis to gain a deeper under-

standing of the biological and environmental mechanisms of lung cancer. By identify-

ing the most influential risk factors, the aim is to shed light on the pathways by which 

these factors influence lung cancer development. By improving the specificity and ac-

curacy of lung cancer risk prediction, this study aims to promote a paradigm shift in 

methods for lung cancer prevention and early detection. 

This study meticulously applies Pearson correlation analysis to evaluate the linear 

relationship between various factors and lung cancer risk. Subsequently, the Random 

Forest algorithm is utilized to perform a feature importance analysis, allowing for the 

ranking and selection of the most influential factors. This dual-analytical approach fa-

cilitates the identification of key risk factors and their incorporation into a predictive 

model. Through dividing the data into smaller segments, a corresponding decision tree 

is gradually built [9]. By comparing the performance of this model against those built 

with a comprehensive dataset, this study aims to demonstrate the efficacy of focusing 

on significant predictors, thereby contributing to the optimization of lung cancer risk 

prediction models. 

2 Method 

2.1 Data Preparation 

The study utilizes a dataset sourced from the Kaggle website, encompassing medical 

records of over 300 patients [10]. This dataset includes 15 features, such as age, 
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smoking status, and alcohol consumption, aimed at predicting a binary outcome regard-

ing lung cancer presence (whether a patient has lung cancer or not). Through thorough 

analysis of these features, this study identified the most impactful factors for the mod-

el's predictive performance. These selected features were then used to train the pro-

posed prediction model. 

In the data preprocessing stage of this study, standardized data processing is con-

ducted to eliminate the influence of different measurement scales and ensure the effec-

tiveness of model training. Second, this study converts the string-type features in the 

data to numeric features, a step that is critical to making the data fit into the algorithmic 

model.  

After data preprocessing, this study performed Pearson correlation analysis to iden-

tify linear relationships between features in the dataset. By calculating the Pearson cor-

relation coefficient between the features, which features had a significant linear corre-

lation with the binary classification outcome of lung cancer can be determined. This 

analysis not only helps to understand the correlation between different features and the 

likelihood of developing lung cancer, but also provides the scientific basis for feature 

selection. 

2.2 Machine Learning-based Lung Cancer Prediction 

The Workflow of Machine Learning. From this study, a series of key steps shown in 

Fig. 1. are typically followed to build and evaluate the model. First, the problem defi-

nition phase defines the project's objectives and problem statement. The data collection 

phase then involves acquiring and collating data sets for training and testing the model. 

The data preprocessing stage includes steps such as cleaning data, processing missing 

values, and feature engineering to ensure data quality and availability. The model build-

ing phase then involves selecting the appropriate model type and model training to learn 

the data patterns. In the branch of model construction, the model selection phase in-

volves selecting the model type that best fits the problem, while the model training 

phase involves fitting the model parameters using the training data. The parameter tun-

ing phase involves adjusting model parameters to optimize performance. Finally, the 

model evaluation phase evaluates the model's performance utilizing test datasets. These 

steps constitute a complete machine learning project flow, helping to ensure that effi-

cient and accurate models are built to solve specific problems. 

 
Fig. 1. Process flow of machine learning. 
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Logistic Regression. The potential impact of data science and machine learning in 

healthcare is garnering growing attention [11-15]. Machine learning includes a spec-

trum of techniques, spanning from practical statistical methods like supervised logistic 

regression models to more complex computational models, for example, a variety of 

neural networks [16]. 

Logistic Regression, a commonly employed algorithm in statistics and machine 

learning, is primarily utilized for addressing binary classification tasks. Despite its 

name containing "regression," logistic regression functions as a classification tech-

nique. It makes predictions about the likelihood of an event happening by mapping the 

output of linear regression between 0 and 1 using a logical function (usually the Sig-

moid function). 

The basic form of logistic regression model can be expressed as: y=σ(θTX), 𝑦  is the 

predicted output (0 or 1) given the input 𝑋 (eigenvector),𝜃 is model parameters (includ-

ing weights and bias)，𝜎 is sigmoid function.  

Sigmoid function, also known as the logistic function, is the crucial part of logistic 

regression. Its formula is: 

𝜎(𝑧) =
1

1+𝑒−𝑧                                                     (1) 

This function corresponds to any real number 𝑧 to the interval (0,1), making it inter-

pretable as a probability. Within the realm of logistic regression, z is typically the linear 

combination of features and parameters, i.e., 𝑧=𝜃𝑇𝑋. 

In logistic regression, this study uses the dot product of the model parameters θ (in-

cluding weights and bias) with the feature vector X to represent the linear combination 

of the input data:  

𝜃𝑇𝑋 = 𝜃0 + 𝜃1𝑋1 + 𝜃2𝑋2+. . . +𝜃𝑛𝑋𝑛                                (2) 

Here, θ0 is the bias term (also known as the intercept), θ1,θ2,...,θn are the weights, 

and X1,X2,...,Xn are the input features. 

By passing the linear combination 𝜃𝑇𝑋 through the sigmoid function, this study ob-

tains the predicted probability y: 

y = 𝜎(𝜃𝑇𝑋)                                                     (3) 

This probability represents the likelihood of the target variable y being of the positive 

class (usually encoded as 1) given the input features X. 

To train the logistic regression model, this study needs a loss function to assess the 

variance between the model's predictions and observed outcomes. The commonly used 

loss function in logistic regression is the log loss (also known as logistic loss or cross-

entropy loss): 

J(θ)= −
1

𝑚
+ ∑ [𝑦(𝑖)𝑙𝑜𝑔(𝑦(𝑖)) + (1 − 𝑦(𝑖))log (1 − 𝑦(𝑖))]

𝑚

𝑖=1
           (4) 

Here, 𝑚 represents the number of samples, 𝑦(𝑖) denotes the true label of the i-th in-

stance, and 𝑦(𝑖) represents the predicted probability by the model for the i-th instance. 

Finally, training the logistic regression model involves minimizing the loss func-

tion J(θ), typically achieved through gradient descent or other optimization algorithms. 

The update rule for gradient descent is: 

𝜃𝑗 = 𝜃𝑗 − 𝛼 
∂𝐽(𝜃)

∂𝜃𝑗
                                                 (5)  
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Here, α signifies the learning rate, and 
∂𝐽(𝜃)

∂𝜃𝑗
 signifies the partial derivative of the loss 

function concerning the parameter θj. 

By iteratively updating the parameters θ, it can find the minimum of the loss func-

tion, thereby training an optimal logistic regression model. 

Random Forest. This study initially explores tree-based models as they serve as the 

foundational elements of random forest algorithm. The model entails iteratively parti-

tioning the provided dataset into two subsets based on a specific criterion until a prede-

fined stopping criterion is satisfied. The end nodes of decision trees are referred to as 

leaves [17].  

The two-dimensional input Spaces are all segmented into the direction aligned with 

one of the axes. Fig. 2 indicates the graphical representation of divided subspaces. 

 
Fig. 2. Graphical representation of divided subspaces. 

Random Forest, an ensemble learning technique, is predominantly employed for 

classification and regression tasks, demonstrating strong performance across a wide 

array of datasets. Additionally, Random Forest is robust against statistical assumptions 

and preprocessing complexities, capable of effectively managing extensive datasets 

characterized by high dimensionality and missing values [18]. It improves model accu-

racy and stability by constructing multiple decision trees and aggregating their predic-

tions. A key advantage of Random Forest is its ability to handle nonlinear data and its 

robustness against overfitting, especially in datasets with a large number of features. 

Random Forest comprises numerous decision trees, each trained autonomously with 

randomness introduced in two ways: In ensemble learning methods like Random For-

est, two key techniques are employed to enhance the diversity and robustness of indi-

vidual decision trees within the ensemble. Firstly, bootstrap sampling involves training 

each decision tree on a random sample of the original dataset selected with replacement. 

This process creates multiple subsets of the data, allowing each tree to learn from 

slightly different perspectives. Secondly, random feature selection is implemented at 
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each decision node, where the algorithm chooses a subset of features randomly to de-

termine the best split. By introducing randomness in both data sampling and feature 

selection, Random Forest promotes model variance and reduces overfitting, leading to 

more reliable and accurate predictions across diverse datasets. 

In a random forest, two key techniques are used to improve the diversity and robust-

ness of the individual decision trees in the integration. First, through self-sampling, 

each decision tree is trained on stochastic samples of original data, using a put-back 

sampling method. This process creates multiple subsets of the data, enabling each tree 

to learn from a slightly different perspective. Secondly, at each decision node, the al-

gorithm randomly selects a subset of features to determine the best split. By introducing 

randomness into data sampling and feature selection, random forests promote model 

variability and reduce overfitting, resulting in more reliable and accurate predictions on 

different data sets. 

In classification tasks, Random Forest predictions are determined through a majority 

vote or averaging of all decision tree predictions. The ultimate class is the one that 

garners the most votes. In regression tasks, predictions are calculated as the average of 

all decision tree predictions. 

Random Forest model development typically involves several key steps. Firstly, 

model parameters, such as the quantity of trees, maximum tree depth, and minimum 

samples for splitting, are selected to configure the ensemble. Subsequently, the model 

is trained using training data, where each decision tree learns from bootstrapped sam-

ples and random feature subsets. Following training, the model's performance is evalu-

ated using separate test data to assess its predictive accuracy. To optimize model per-

formance, parameters are tuned based on evaluation results, and the training-evaluation 

cycle is iterated until the optimal configuration is achieved.  This iterative process of 

parameter selection, training, evaluation, and tuning is crucial for building a Random 

Forest model that effectively generalizes to new data and delivers robust predictions. 

Random Forest also offers insights into feature importance, which is invaluable for 

understanding the data and the model's decision-making process.  The evaluation of 

feature importance is primarily conducted by observing the contribution of each feature 

to model performance at the decision tree split nodes. In particular, the significance of 

a feature can be assessed by evaluating the reduction in model performance when the 

values of that feature are randomly shuffled. A higher feature importance score indi-

cates a greater influence of that feature on the predictive outcome of the model. 

3 Result and Discussion 

3.1 The Feature Selection Based on Pearson Correlation and Random Forest 

  

12             H. Ye



Table 1. Pearson Correlation with target variable. 

SMOKING    -0.058179 

SHORTNESS OF BREATH -0.060738 

AGE    -0.089465 

CHRONIC DISEASE     -0.110891 

ANXIETY    -0.144947 

FATIGUE -0.150673 

YELLOW_FINGERS   -0.181339 

PEER_PRESSURE   -0.186388 

CHEST PAIN       -0.190451 

COUGHING         -0.248570 

WHEEZING        -0.249300 

SWALLOWING DIFFICULTY -0.259730 

ALCOHOL CONSUMING -0.288533 

ALLERGY   -0.327766 

 
Table 2. Random Forest Feature Importance. 

 AGE                       0.248064 

ALLERGY                   0.086116 

ALCOHOL CONSUMING         0.074769 

YELLOW_FINGERS            0.071846 

SWALLOWING DIFFICULTY     0.065598 

PEER_PRESSURE             0.058936 

CHRONIC DISEASE           0.055938 

ANXIETY                   0.052924 

COUGHING                  0.052341 

WHEEZING                  0.051886 

FATIGUE                   0.051380 

CHEST PAIN                0.050294 

SHORTNESS OF BREATH       0.045077 

SMOKING                   0.034832 

Table 3. Random Forest Accuracy. 

 precision recall f1-score support 

1 0.95 0.99 0.97 113 

2 0.83 0.45 0.59 11 

accuracy   0.94 124 

macro avg 0.89 0.72 0.78 124 

weighted avg 0.94 0.94 0.94 124 

The Pearson correlation coefficient shown in Table 1 shows the linear correlation 

between each feature and the target variable, which may be a certain disease or other 

outcome. A negative value signifies a negative correlation meaning the magnitude of 

target variable tends to decrease as the eigenvalue increases. Here, the feature that af-

fects the target variable least is "ALLERGY" (-0.327766) and the feature that affects 

most is "COUGHING" (-0.248570). 

The feature importance of a random forest model shown in Table 2 shows how im-

portant each feature is to the model's predictions. Here, "AGE" is the most important 
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characteristic (0.248064), followed by "ALLERGY" (0.086116) and "ALCOHOL 

CONSUMING" (0.074769). 

The accuracy of the random forest model trained using the selected features is 0. 94, 

while the accuracy using all features is 0.91. This suggests that in this case, the model 

using feature selection performs better. 

Combining the above analysis, this study can conclude that COUGHING and 

ALLERGY may be key features of the predicted target variable. The random forest 

model considers AGE as the most important feature, which has a significant impact on 

the prediction of target variables. 

According to Table 3, the model trained using the selected features performed well, 

with an accuracy of 0.927. In category 1 predictions, the model showed high accuracy 

is 0.94, the recall is 0.98 and the F1-score is 0.96, but was weaker in category 2 predic-

tions, with the precision of 0.67, 0.36 recall, and the F1-score is 0.47. This model excels 

in the context of overall data set with weighted avg accuracy, recall rate, and F1-score 

of 0.92. Although there is room for improvement in the category 2 predictions, overall 

the model is robust on the dataset, but further optimization is recommended to improve 

the prediction accuracy for category 2. 

3.2 Logistic Regression 

Table 4. The Performance of Logistic Regression. 

 precision recall f1-score support 

1 0.95 0.99 0.97 113 

2 0.83 0.45 0.56 11 

accuracy   0.94 124 

macro avg 0.89 0.72 0.78 124 

weighted avg 0.94 0.94 0.94 124 

 
Fig. 3. The Confusion Matrix. 
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According to the confusion matrix shown in Fig. 3, the model accurately predicted 

112 samples in the "YES" category, but incorrectly predicted 1 sample in the "YES" 

category as the "NO" category. For the "NO" category, the model correctly predicted 5 

samples, but mistakenly predicted 6 samples of the "NO" category as the "YES" cate-

gory. This means that the model has some difficulty in making predictions about the 

"NO" category. 

According to the above model evaluation metrics shown in Table 4, predictions for 

category 1 (1) performed well, achieving the 0.95 of accuracy, the 0.99 in recall rate, 

the F1-score of 0.97, with sample size of 113. This indicates that the model has high 

precision and recall rate when identifying category 1, and the comprehensive evaluation 

index also performs well. However, for category 2 (2) predictions, the model's perfor-

mance is more average, with the accuracy is 0.83, the recall rate is 0.45, and F1-score 

is 0.59, with a supporting sample size of 11. This means that the model has some chal-

lenges in recognizing category 2, especially in terms of recall rates. 

In total, the model's accuracy stands at 0.94, with weighted average accuracy, recall, 

and F1-score also at 0.94, respectively, indicating that the model performs well on the 

overall dataset. However, the macro average indicator shows the accuracy is 0.89, the 

recall rate is 0.72, and the F1-score (0.78), indicating that the model is lacking in bal-

ance between different categories. It is suggested that future research should focus on 

improving the prediction ability of category 2 to further improve the overall perfor-

mance and balance of the model. 

4 Conclusion 

This study analyzed and predicted the risk factors of lung cancer by using logistic re-

gression and random forest algorithm. Logistic regression algorithm can provide the 

modeling of the probabilistic relationship between features and lung cancer risk. Pear-

son correlation analysis and random forest algorithm are used in this study to select the 

most influential features from numerous potential risk factors and build an efficient 

lung cancer risk prediction model. Comprehensive experiments were carried out to as-

sess the proposed approach. The experimental results demonstrate the efficacy of lo-

gistic regression model is close to the performance of selected features and all features, 

while the performance of random forest model after feature selection is slightly better 

than that when all features are used. In the future, feature selection can be further opti-

mized to improve prediction accuracy across all categories. Continuous improvement 

in the feature selection process can potentially improve the overall prediction perfor-

mance of all categories, continuously improving the accuracy of predictions by opti-

mizing the model. 
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