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Abstract. This paper explores the enhancement of security and robustness in the 

field of facial recognition by investigating adversarial example attacks. The 

author not only introduces an advanced adversarial example generation technique 

by utilizing key facial landmarks, but also investigates universal mask-based 

adversarial example generation strategy. These research efforts increase the 

precision and efficiency of attacks and extend the scope, affecting a broader range 

of users. Through extensive experimental setups with the Residual Network 

(ResNet)-50 model and the Chinese Academy of Sciences (CASIA) Face Image 

Database Version 5.0 (CASIA-FaceV5), this paper assesses the effectiveness of 

the proposed methods under different attack scenarios and various evaluation 

criteria, such as L0, L1 norms, and the Structural Similarity Index. These results 

demonstrate that mask-based attacks and universal perturbations significantly 

reduce recognition accuracy while maintaining the concealment of the examples. 

This study emphasizes the security aspect of current facial recognition technology, 

which has profound implications for the safety of digital life. 
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1 Introduction 

Facial recognition technology, as a biometric technology based on artificial 

intelligence, has been widely applied in every aspect of people’s daily life [1]. Not only 

in mobile phone unlocking, access control system, etc., but also in finance, justice, 

security monitoring and other fields. In 2022, the global market for facial recognition 

technology was evaluated to be worth $5.15 billion. It was expected to expand at a 

compound annual growth rate (CAGR) of 14.9% from 2023 to 2030. However, as the 

facial recognition technology becomes more widely used, its security issues have 

become increasingly important, especially in the context of adversarial attacks [2,3]. 

Additionally, more and more research show that face recognition systems can be easily 

fooled by simple printed masks or specially crafted glasses. Such attack cases remind 

the shortcomings of traditional facial recognition technology in defending against 

adversarial attacks. 

In today’s facial recognition technology area, adversarial example attacks have 

emphasized the significance of security. And here are five main types of adversarial 
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example attacks. Goodfellow et al. first introduced the Fast Gradient Sign Method 

(FGSM) in 2014 to produce adversarial examples through a gradient update, which is 

the one of the earliest and most widely known adversarial example generation methods 

[4]. Because of its fast generation speed and simple implementation, it has become a 

benchmark method in adversarial example area. Kurakin et al. introduced the Basic 

Iterative Method (BIM) which enhanced the FGSM attack through multiple iterations 

[5]. Projected Gradient Descent (PGD) is an advanced method based on BIM (and 

FGSM) proposed by Madry et al. In this method after each perturbation step, the 

adversarial example is re-projected onto the specific function [6]. DeepFool proposed 

by Moosavi-Dezfooli et al. seeks the minimal perturbation to push images to decision 

boundaries [7]. Carlini et al.'s Carlini and Wagner Attack (C&W Attack) finely tunes 

perturbations to minimize detectability and ensure high success rates [8]. These 

methods not only deepen the understanding on model existing vulnerabilities, but also 

show the importance of improving the security of facial recognition technology. 

Therefore, this paper aims to enhance the security and robustness of facial 

recognition technology by deeply exploring adversarial example attacks in facial 

recognition technology. The author proposed an improved technique for generating 

adversarial examples, which includes a method based on key facial region masks to 

enhance the precision and efficiency of attacks. Besides, the author adopted a universal 

mask-based strategy to extend the scope of attacks to a broader range of users. These 

research not only improve the development of adversarial example generation 

technology, but also contribute to enhancing the security and robustness of facial 

recognition systems. 

2 Method 

2.1 Mask-Based Adversarial Example Generation 

Mask Convex Hull Extraction. In this study, the author employes the Dlib library's 

face detector to identify faces within images, which is important in recognizing 

impressionable regions to adversarial attacks. The shape_predictor_68_face_landmarks 

model is utilized to detect 68 facial landmarks in each image, including critical areas 

such as the eyes, nose, mouth, and jawline. These landmarks are then used to create 

convex hulls with OpenCV’s cv2.convexHull, defining regions for adversarial attacks. 

These hulls indicate the most influential facial features for recognition algorithms, 

ensuring that the attack is targeted. Each extraction process can be visualized by using 

OpenCV to verify accuracy and adjust the detection parameters accordingly.  

Gradient Attack Execution. In this study, the author mainly employes gradient-based 

attack algorithms including FGSM and I-FGSM to operate pixels within the convex 

hull [9]. By calculating the gradient of the loss function in relation to the input image, 

these attack algorithms are able to determine optimal perturbation directions. The result 

of the function can be utilized to find out the disturbance in image that can misdirect 

classifier into mistakenly detecting the face. FGSM calculates these perturbations by 

first determining the loss function’s gradient due to the image. The aim of it is assessing 
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how each change would affect the output. It then applies a sign function to these 

gradients, creating a vector that points to the direction of maximum increase in loss. 

This vector is controlled by epsilon which decides the magnitude of the perturbation. 

The epsilon not only ensures that the modifications are subtle enough to remain 

undetected by human, but also enough to mislead the classifier. The difference between 

FGSM and others is that the FGSM applies only single step update using the gradient 

sign, while I-FGSM introduces iterative process which can gradually approach the 

decision boundary. In order to ensure the naturalness of the area without convex hull, 

perturbations are only incrementally applied within the convex hull in the process of I-

FGSM. Parameters such as step size, iteration number, and perturbation magnitude 

(epsilon) are iteratively tuned to balance the attack efficacy against concealment. The 

attack's effectiveness is assessed by its capacity to reduce recognition accuracy while 

maintaining the concealment of the adversarial examples. 

2.2 Universal Mask-Based Adversarial Example Generation 

This approach introduces a universal adversarial perturbation that attacks multiple users 

in a dataset by applying a single perturbation vector across various images. This process 

begins with initializing a zero tensor for the perturbation as the initial state for iterative 

updates. It will be iteratively updated using an optimization loop that processes batches 

of images from the data loader. During each iteration, the facial mask generated via 

Dlib's detectors focuses the perturbation on facial landmarks. The perturbation is 

refined through a series of gradient descent steps managed by the Adam optimizer. The 

Adam optimizer, an extensively employed optimization algorithm, is famous for its 

ability to effectively manage sparse gradients and its adaptive learning rate capabilities. 

Adam optimizer adapts the learning rates based on the averages of recent gradients for 

the weights. This approach allows for smaller optimization steps when gradients are 

large to prevent overshooting, and larger steps when gradients are small to accelerate 

convergence.  

Additionally, the author uses a learning rate scheduler to continuously modify the 

learning rate across training iterations. The scheduler reduces the learning rate 

according to a predetermined schedule to strike a balance between the adversarial 

example's concealment and attack effect. In this paper, the step attenuation strategy is 

adopted. Every 10 steps, the learning rate will be reduced by a fixed proportion, so as 

to refine the disturbance and ensure the optimal balance between the attack effect and 

the concealment of the adversarial example.  

The entire process is iteratively refined, ensuring the universal perturbation 

develops robust capabilities to generalize across the dataset. 

2.3 Evaluation Indexes 

In this experiment, the author mainly focuses on two primary metrics to assess 

adversarial attack’s efficacy: the success rate of the attack and the quality of adversarial 

examples. 

Success Rate. In this experiment, the "Success Rate" metric is used to 
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assess the potency of the adversarial attacks. The success rate in the experiment is 

described as the probability that model will correctly classify the adversarial examples. 

This metric is critical in assessing the effectiveness of the adversarial methods applied, 

as a lower success rate indicates a stronger adversarial capability. 

L0, L1 Norms. This experiment calculates the L0 norm to count the number of pixels 

that have been changed, which gives a recognition of the sparsity of the perturbation. 

The L1 norm, summing up the absolute differences across all pixels, provides insight 

into the total magnitude of change. 

Structural Similarity Index Measure (SSIM). This experiment also utilizes 

Structural Similarity Index as one of the assessment criteria of concealment. This metric 

measures the visual similarity between the original and adversarial examples. SSIM 

accounts for luminance, contrast, and structure of the image. It will output a value 

between -1 and 1, where 1 indicates perfect similarity. A higher SSIM score indicates 

that the adversarial image is harder to detect both visually and algorithmically. 

3 Results 

3.1 Experimental Setups 

The experiment uses the ResNet50 network architecture to train the model due to its 

robustness and widely used in facial recognition tasks. It utilizes the CASIA Face Image 

Database Version 5.0 (CASIA-FaceV5) as the dataset, which includes a diverse range 

of images representative of real-world variations [10]. The experiment is implemented 

using many libraries such as OpenCV and Dlib for image processing and facial 

landmarks extraction. Aimed at avoiding the problem of over fitting, several data 

augmentation techniques are used in the training process such as resizing, random 

rotation, and color jitter, simulating real-world variations. Fig. 1 shows an example of 

the Mask Convex Hull Extraction. 

 

Fig. 1. Example of the Mask Convex Hull Extraction . 
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3.2 Face Image Selection 

From the dataset, the author randomly selects an individual face image as target for the 

attack. Each selected image is subjected to a no-target attack which the goal is to 

misdirect the model to mistakenly classify the image without specifying a particular 

targeted class. 

3.3 Different Attack Modes 

For each image, the "shape_predictor_68_face_landmarks” from Dlib library will first 

extract the key facial landmark, which is assigned as the region of attack. Attack tasks 

including usual attack, iteration attack, and universal mask attack are selected 

respectively for testing.  

Usual Attack. In the usual attack, the experiment sets two attack methods: FGSM 

applied to the whole image and FGSM targeted only at facial landmarks, under the same 

condition to see the different effect.  

Iteration Attack. In each iteration of the 10 iterations, the loss’s gradient is calculated. 

The original image is modified by applying the sign of the gradient, which is multiplied 

by alpha(the step size for each iteration, calculated as epsilon divided by the number of 

iterations), to introduce perturbations. After each modification, the image is clipped to 

ensure the perturbations stay within the valid pixel range [0,1]. 

Universal Mask Attack. The experiment initializes a zero tensor for the perturbation, 

which is optimized by the Adam optimizer through several iterations in each batch of 

images. The optimizer focuses on maximizing misclassification through perturbations 

on detected facial landmarks. During the process, the optimizer’s learning rate is 

modified by the learning rate scheduler at specified intervals (every 10 steps), reducing 

it by a factor of 0.99. The aim of it is fine-tuning the optimization through the process. 

Fig. 2 shows a representative example of the perturbation. 

 

 

Fig. 2. Visualization of universal perturbation . 
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3.4 Result Analysis 

In the experiment, the model's accuracy when exposed to adversarial examples from 

the CASIA-FaceV5 dataset is evaluated, and the correct classification rates are reported. 

Results are reported for epsilon in different conditions. Results are listed in Table 1. 

These consequences indicate a significant decline in model’s accuracy with the increase 

in epsilon in all methods. The accuracy even drops significantly from 97.45% to a mere 

7.32% as epsilon increases from 0.01 to 0.3 in whole page FGSM attack. These drastic 

reductions suggest that these attack strategies are capable of misdirecting the model 

into incorrect classification. Compared to FGSM attacks that focus on facial landmarks, 

global FGSM attacks typically achieve stronger impacts as they modify the entire image, 

potentially exploiting more vulnerabilities in the facial recognition system. 

Compared to the FGSM, I-FGSM (both focusing on facial landmarks) is more 

effective because it applies FGSM multiple times, making small adjustments each time. 

This allows for finer manipulation to find the smallest perturbations, resulting in better 

effectiveness. 

Table 1. Model sensitivity to adversarial attacks 

 
Raw 

Accuracy 

Epsilon  

0.01 

Epsilon  

0.05 

Epsilon  

0.1 

Epsilon  

0.3 

FGSM 

(whole page) 
97.45% 94.04% 51.12% 20.01% 7.32% 

FGSM 

(facial landmarks) 
97.45% 95.41% 91.33% 56.07% 20.43% 

I-FGSM 97.45% 91.33% 75.15% 44.90% 18.30% 

Universal Attack 97.45% 96.34% 90.47% 58.22% 46.29% 

 
The universal attack performs not as well as other three methods in different epsilon 

since its broader applicability across different images. Selecting a group of pictures to 

experiment, the average model identification accuracy can drop to 55.82% while 

maintaining a great concealment.  

The concealment of the adversarial examples is assessed with the L0, L1 norms, 

and SSIM. Results are shown in Table 2. While the attack proves effective in decreasing 

the performance of the model, the concealment of the adversarial images, as the SSIM 

index in this experiment, remains high (0.99 for both FGSM with facial landmarks and 

I-FGSM, 0.98 for Universal Attack). But the FGSM on whole page only gets 0.36 on 

same condition. This suggests that despite the successful deception of the model by 

attacks on facial landmarks, the visual quality of the images remains high. The 

visualization comparison is demonstrated in Fig. 3. 

The L0 and L1 norms further prove these findings. The number of pixels changed 

(L0) and the total magnitude of changes (L1) are relatively low for the facial landmarks 

targeted FGSM and I-FGSM attacks compared with the FGSM applied to whole images. 

Table 2. Performance measured by L0 norm, L1 norm, and SSIM. 

 L0 norms L1 norms SSIM 

FGSM(whole page) 50175 1883223 0.36 

FGSM(facial landmarks) 20982 106789 0.99 
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I-FGSM 20901 98981 0.99 

Universal Attack 40147 252830 0.98 

 

 

Fig. 3. Comparison of whole image and the proposed mask-based perturbation, with 

epsilon equals 0.05. 

4 Discussion 

In the experiment, the author tested the model's accuracy against adversarial examples 

across different attack methods. The result shows that accuracy significantly decreases 

as the epsilon increases. For example, under the FGSM attack on facial landmarks, 

accuracy decreases from 97.45% to 20.43% as epsilon increased from 0.01 to 0.3. This 

steep decline indicates that these attack methods effectively misdirect the model into 

incorrect classifications. 

Compared to the standard FGSM attack, the FGSM and I-FGSM on facial 

landmarks effectively reduce the model’s recognition accuracy while maintaining high 

stealthiness. According to the SSIM index, attacking methods based on facial 

landmarks demonstrate high stealthiness (SSIM value of 0.99), compared with the 

traditional FGSM, which shows much lower stealthiness (SSIM value of 0.36). This 

suggests that attacks focus on facial features are less detectable to the naked eye yet 

still effectively reduce recognition accuracy. 

While the attack methods demonstrated in this study are proven effective, they still 

have their limitations. For example, the universe attack perturbation strategy though 

quite adaptable across multiple targets in test, does not perform as well under different 

epsilon values compared to other methods. It still needs further research to explore how 

to optimize this strategy to enhance its effectiveness in broader applications. 

Moreover, the current attack models focus primarily on the effectiveness against a 

single model. Future endeavors could consider multi-model or cross-model attack 

strategies to enhance the generalizability of adversarial examples. By employing 

ensemble learning techniques, effective attacks against various facial recognition 

models could be achieved, significantly improving the universality of adversarial 

examples. 
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5 Conclusion 

This paper utilized a generation strategy based on facial landmarks and universal mask. 

The author found that, compared to the normal strategy, these strategies based on facial 

landmarks can keep a great concealment while maintaining an effective misdirection. 

By iteratively optimizing the mask across the entire dataset, this paper found out a 

universally applicable perturbation capable of attacking on multiple targets. This 

universe attack strategy makes the attack no longer limited to a single target user, but 

can widely affect multiple users which greatly expand the scope of the attack. It means 

the perturbation vector can be added to different input data and misdirect a well-trained 

model about these perturbed data. 

In the future, the author will try to combine the mask-based adversarial examples 

and the universal mask with the concept of ensemble learning. A multi-model attack 

strategy will be employed to promote adversarial example’s transferability. By 

attacking multiple different face recognition models, the adversarial example can 

achieve efficient attacks which significantly improve the universality of adversarial 

examples. 
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medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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