
Improvements in GPipe Pipeline Parallel Acceleration:

Choices, Constraints and Optimal Strategies of Micro-

Batch

Riqian Hu

HDU-ITMO Joint Institute, Hangzhou Dianzi University, Hangzhou, 310000, China

20321114@hdu.edu.cn

Abstract. As the scale of deep learning models continues to grow, large-scale

models in machine vision and natural language processing (NLP) have achieved

tremendous success. For instance, the current NLP giant GPT-3 has pushed the

parameter count to the scale of billions. However, due to the significant surpas-

sing of GPU physical memory limitations by large-scale deep neural networks,

current strategies like data parallelism are no longer sufficient for model training.

The latest pipeline parallelism strategies, such as the static layer partitioning of

GPipe and PipeDream, as well as the dynamic layer partitioning of VPipe, have

enabled model training segmentation and acceleration. In the current pipeline

strategies like GPipe, the batch-splitting pipelining algorithm splits mini-batches

on the same accelerator into overlapping computation stages, creating micro-

batches to achieve pipelining. Users usually need to manually fine-tune the gran-

ularity of pipeline segmentation, i.e., micro-batch size (M), to determine the op-

timal value by observing changes in throughput. This article observes that M is

not the smallest factor that affects throughput and proposes that batch size/micro-

batch size (B/M) is the decisive factor that determines the changes in throughput.

This article focuses on proving the rationality of B/M and quantitatively giving

the selection range of B/M. For any given multi-GPU training scenario, by ana-

lyzing the optimal value of B/M in advance, the debugging cost can be reduced,

and the throughput can be maximized quickly before training, thus accelerating

the efficiency of multi-GPU parallelism.

Keywords: Multi-card training, Pipeline parallelism, GPipe, Micro-batch

1 Introduction

1.1 A Subsection Sample

Humans have never ceased to imagine and pursue artificial intelligence. How to con-

struct a model that possesses human-level intelligence has always been a problem that

AI scientists strive to solve [1]. In recent years, as researchers delve deeper into the

field, an increasing number of outstanding models have been created, gradually ap-

proaching human-level perception and reasoning capabilities.

© The Author(s) 2024
Y. Wang (ed.), Proceedings of the 2024 2nd International Conference on Image, Algorithms and Artificial
Intelligence (ICIAAI 2024), Advances in Computer Science Research 115,
https://doi.org/10.2991/978-94-6463-540-9_101

https://doi.org/10.2991/978-94-6463-540-9_101
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-540-9_101&domain=pdf

In the field of computer vision, in 2012, AlexNet [2], based on convolutional neural

networks, made remarkable achievements in image recognition, making Convolutional

Neural Networks (CNN) the mainstream in machine recognition. In 2015, ResNet [3],

designed to address the "degradation problem," successfully broke the limitation of net-

work depth, marking a turning point where machine recognition accuracy surpassed

human performance. In 2018, AmoebaNet [4], inspired by the principle of survival of

the fittest in biological systems, was developed, paving the way for automated network

design as a new approach. In 2020, Vision Transformer [5], based on a pure attention

mechanism, was introduced into the field of machine recognition. Among them, Scal-

ing ViT with 2 billion parameters pushed the recognition accuracy of ImageNet to new

heights [6]. These models approach problem-solving from different angles and exhibit

diverse architectures, but they converge on one aspect: the larger and deeper the model,

the stronger its representational capacity and robustness [7].

The development of computer processing power and advancements in the field of

deep learning are closely intertwined. To train larger and deeper models, there is a

growing demand for increased computational power in computer hardware. In 2007,

NVIDIA introduced CUDA (Compute Unified Device Architecture). Although CUDA

was not originally designed specifically for deep learning, it provides highly optimized

GPU parallel computing capabilities. This is particularly beneficial for model training

that involves extensive matrix calculations and tensor operations. Parallel execution on

GPUs is considered a viable solution for significantly accelerating computation speed

in such scenarios. In 2009, Andrew Ng's team was among the first to leverage GPUs

for model training, significantly accelerating the training speed [8]. Since then, the

training of deep learning models has become deeply intertwined with the computational

power provided by GPUs.

As the size of models continues to increase, a single GPU is no longer sufficient to

meet the demands of training large-scale models. For instance, the massive GPT-3

model [9], which consists of 175 billion parameters, requires distributed training across

multiple GPUs over the course of several weeks. However, relying solely on splitting

the network layers for achieving model parallelism does not yield satisfactory results,

as the problem of imbalanced activations within the layers significantly leads to perfor-

mance degradation.

In this context, pipeline parallelism techniques have been introduced into model

training and have been proven to be effective and reliable [10]. Common pipeline par-

allelism techniques include PipeDream [11] and GPipe [10]. PipeDream stores all acti-

vation tensors in the GPU memory and waits for the backward pass [11], while GPipe

only retains the activation tensors involved in the communication part of the forward

pass [10]. Both approaches belong to static partitioning. The latest VPipe technology

can dynamically allocate the computational workload among GPUs by introducing a

virtual layer into the existing pipeline parallelism pipeline and hardware [12]. This

helps to avoid throughput bottlenecks caused by an imbalanced workload on individual

GPUs, whether it is too heavy or too light.

Using GPipe, it is possible to represent a model as a sequence of layers, and groups

of consecutive layers can be divided into cells. These cells are then assigned to separate

accelerators. Building upon this partitioned arrangement, a new algorithm for pipeline

1012 R. Hu

parallelism with batch splitting was proposed. The algorithm involves initially splitting

a mini batch of training examples into smaller micro-batches, and then executing each

set of micro-batches in a pipeline fashion across the cells. Synchronous mini-batch gra-

dient descent is applied for training, wherein gradients are accumulated across all mi-

cro-batches within a mini-batch and applied at the end of each mini-batch [10].

Under the GPipe pipeline parallelism strategy, users need to define the size of the

micro-batch (M), which determines the number of chunks a mini batch is divided into

for pipeline parallelism [10]. Huang et al. chose M=1, 4, 32 in their GPipe experiment

and stated that "Batch size (B) was adjusted to fit memory when M>>K (number of

partitions on accelerators)" but it is unknown what batch size values they chose. In the

experimental process, it can be observed that M is not the only value that affects GPU

throughput, and after investigation, batch size/micro-batch size (B/M) is an important

factor that affects throughput. This article will demonstrate the important role of B/M

and discuss methods for selecting the optimal B/M. By calculating the optimal B/M

value, I can increase the training throughput of GPipe by 3% through adjusting hy-

perparameters.

2 Main Idea of GPipe

2.1 Concept of multi-card training

In deep learning, batch size refers to the number of samples used for training the model

in a single iteration. Compared to using the entire dataset for one iteration, using a ran-

dom subset of the training set for multiple iterations can better mitigate model overfit-

ting. Both excessively large and small batch sizes have limitations on model training.

An excessively large batch size may lead to out-of-memory (OOM) errors and result in

overfitting. On the other hand, a very small batch size can result in poor generalization,

leading to lower accuracy and other issues. Finding an appropriate batch size is crucial

for balancing memory constraints, model performance, and generalization capabilities.

As the model size increases, I may encounter limitations in GPU memory that pre-

vent us from training the entire model on a single GPU. Therefore, I adopt a strategy of

partitioning the model, where a batch is divided into multiple mini batches, which is

called model parallelism. Each mini batch is then assigned to a separate GPU for train-

ing, and the gradient information is passed from one GPU to the next. This partitioning

strategy allows us to distribute the workload across multiple GPUs and overcome the

memory limitations, enabling efficient training of large models. By exchanging gradi-

ent information between GPUs, the model parameters can be collectively updated dur-

ing the training process.

2.2 Definition of micro-batch

In the context of deep neural networks, it is possible to represent any network as a

sequence of L layers. By specifying the number of partitions, K, the sequence of L layers

can be divided into K composite layers or cells [10], each of them called a mini batch.

Fig. 1 below shows the procedure of L layers partition.

Improvements in GPipe Pipeline Parallel Acceleration 1013

Fig. 1. Diagram of naive model parallelism strategy

As depicted in the above diagram, with the utilization of model parallelism, the mas-

sive number of parameters that would have exceeded the memory limit of a single GPU

are divided and allocated across multiple GPUs, enabling parallel training of the model.

However, the drawback of this model parallelism strategy is evident. As seen in each

stage of GPU training, the GPU enters a stagnant state and waits until it receives the

backward-propagated parameters. Consequently, the model parallelism strategy inevi-

tably results in significant bubbles that lead to low efficiency.

GPipe introduced the strategy of pipeline parallelism to address the issue of low ef-

ficiency in model parallelism. GPipe states that if the Kth partition of the model contains

layers i to j, it is possible to further divide the mini batch into micro-batches based on

the following equation (Equation 1, 2), allowing different accelerators to process dif-

ferent micro-batches simultaneously.

 WK = wi ∪ wi+1 ∪…∪ wj (1)

 FK = fi ∘ fi+1 ∘…∘ fj (2)

Fig. 2. Pipeline parallelism with divided micro-batches

With the theoretical foundation of partitioning, I can further divide each partition by

splitting the mini batches assigned to each GPU into smaller micro-batches. These mi-

cro-batches serve as the fundamental units for computation. At a finer granularity, I can

introduce a certain level of overlap in the GPU's computation cycles, thereby achieving

1014 R. Hu

parallel computing effects. As shown in Fig. 2, this approach significantly reduces the

efficiency loss caused by bubbles.

2.3 GPipe limitation

While GPipe is designed to minimize bubbles, it is inevitable to observe some degree

of bubbles in the training process. To enhance training efficiency, it is important to

minimize the bubble value. Although the exact duration of bubbles cannot be quanti-

fied, I can define a bubble ratio as the ratio of bubble time to the total training time of

an epoch. This is represented by Equation 3, and a sketch map is provided in Fig. 3. By

reducing the bubble ratio, I can improve the throughput of training. Note that I will use

the abbreviation BR to refer to the bubble ratio.

Fig. 3. Sketch of Equation 3

𝐵𝑅 =
(𝐾 − 1)𝑡1 + (𝐾 − 1)𝑡2

𝑀𝑡1 + (𝐾 − 1)𝑡1 + (𝐾 − 1)𝑡2 + 𝑀𝑡2

=
(𝐾 − 1)(𝑡1 + 𝑡2)

(𝑀 + 𝐾 − 1)(𝑡1 + 𝑡2)

=
𝐾 − 1

𝑀 + 𝐾 − 1
(3)

As shown in the above equation, under the assumption of equal partitioning (as as-

sumed in the GPipe paper), the value of BR is a constant that is independent of the

forward or backward propagation time. It is solely determined by the values of K and

M.

The GPipe paper suggests that when M ≥ 4 × K, the performance loss caused by

bubbles can be neglected. From Equation 3, it can be deduced that under the condition

M ≥ 4 × K, the BR will always remain below 20%. Theoretically, reducing the BR by

approximately 80% represents a significant improvement in performance.

I conducted tests using the open-source torchgpipe library [13] with the AmoebaNet-

D model on the ImageNet dataset. However, after testing several cases, I found that the

experimental results differed from what was described in the GPipe paper. The optimal

solution of M ≥ 4 × K did not hold for all batch sizes. When testing with smaller batch

sizes, whether using two, four, or eight GPUs (with K equal to the number of GPUs),

the highest throughput was generally achieved at a relatively small value of M. The

Improvements in GPipe Pipeline Parallel Acceleration 1015

training results are shown in Fig. 4, where empty values indicate that training was not

possible due to insufficient GPU memory.

Fig. 4. Results of training throughput using GPipe

(a) B=96 (b) B=128 (c) B=256 (d) B=512

Upon observing the graph, several points can be noted. Firstly, as B increases, the

peak throughput shifts towards larger values of M (towards the right). Additionally, it

is evident that the value of M cannot be too large or too small. This indicates that alt-

hough bubbles are reduced with sufficiently large M values, other performance losses

are increased. The specific reasons behind these phenomena will be analyzed in the

next section.

3 Find the optimized micro-batch

3.1 Reasons for the constraint on micro-batch size

There are several key factors that influence the selection of the M, which determines

that the optimal value of M falls within a certain range and should not be too large or

too small.

The reason for not choosing an excessively small value for M is quite evident: when

M is too small, the main issue is that it leads to excessive GPU memory usage within

one epoch, resulting in OOM errors. Moreover, the value of M is closely related to the

BR. A larger value of M allows for a reduction in the BR, thereby improving GPU

throughput.

1016 R. Hu

The GPipe paper encourages us to increase the value of M as much as possible.

However, based on the recent experimental results, it can be concluded that GPU

throughput is sensitive to larger M values, as it rapidly decreases beyond a certain

threshold. To verify the hypothesis of a "threshold," I continued testing the relationship

between throughput and M. In Fig. 4, the granularity of M partitioning is relatively large

(using powers of 2 as inputs). To further investigate, I conducted tests at a finer granu-

larity (incrementing by 1 each time) for M, as shown in Fig. 5.

Fig. 5. Results of training throughput in specific samples

(a) B=128 (b) B=512

As depicted in the above graph, the optimal value of M is not a specific threshold

but lies within a small range. Our goal moving forward is clear: I need to identify the

optimal range for M that maximizes the training throughput of the model.

There are several reasons why M cannot be set to a very large value. After gaining a

deep understanding of the GPipe principles, several factors are identified that limit the

choice of M and lead to a decrease in throughput as M increases. The first reason is that

GPipe introduces the method of re-materialization to reduce memory usage. It has been

observed that recomputing certain values is more efficient than randomly reading them

from memory. During the forward computation process, each accelerator exclusively

retains the output activations at the partition boundaries, optimizing memory utilization

[14]. The second reason is that as the value of M increases, there are more accumula-

tions of gradients during each mini batch, leading to a performance cost. At the conclu-

sion of every mini batch, the gradients obtained from all M micro-batches are collected

and utilized to update the model parameters across all accelerators [10]. The third rea-

son is that if batch normalization [15-20] is used in GPipe, the sufficient statistics of

inputs during training are computed over each micro-batch and over replicas if neces-

sary. Clearly, an increase in the value of M results in a higher number of batch normal-

ization computations. The increased computations can diminish the advantages of GPU

parallelism, leading to a performance cost.

Improvements in GPipe Pipeline Parallel Acceleration 1017

3.2 Factors influencing throughput

Since GPipe assumes balanced partitions [10], I only need to set all balances to the

same value. In this paper, our focus is on throughput rather than model training accu-

racy. Therefore, I can set the optimizer to a fixed value, using AdamW uniformly, and

select three epochs. Finally, I calculate the average throughput.

To facilitate quick modification of variables, I have provided an interface in the com-

mand line, as shown in the code snippet below.

After conducting several experiments, I have plotted the relationship among B, M,

and the number of GPUs, as shown in Fig. 6. The absence of data points in certain areas

is due to OOM errors, preventing the retrieval of results.

Fig. 6. Throughput with micro-batch sizes and GPUs

(a) B=128 (b) B=256 (c) B=512 (d) B=1024

From the four graphs above, several key observations can be made. First, as the batch

size increases, the maximum throughput value consistently shifts towards the right. Alt-

hough both the B and M can impact the throughput, the ratio B/M provides useful in-

formation. The maximum throughput value is consistently found near B/M = 32. Sec-

ond, as the number of GPUs increases, the model training can utilize smaller micro-

batches. With a smaller micro-batch range, the search space for the optimal throughput

value can be expanded.

Meanwhile, as the batch size increases, the advantages of multi-GPU parallel com-

putation become more evident. As shown in Fig. 7, when I set B/M to 32, I can observe

a noticeable differentiation in throughput with increasing batch size in multi-GPU set-

ups. When the batch size reaches 1024, the throughput of a single GPU remains rela-

tively stable, while each additional GPU contributes to a 20-50% increase in through-

put.

1018 R. Hu

Fig. 7. Throughput with batch sizes under B/M=32

Therefore, the key to increasing GPU throughput is to find an optimal B/M value and

appropriately increase the batch size while ensuring model training accuracy. In the

next section, I will discuss how to find the optimal B/M value.

3.3 Find an optimized B/M

In deep learning, the determination of M typically depends on the GPU memory capac-

ity and the size of the model. In general, to maximize training speed and efficiency, it

is desirable to keep each GPU as busy as possible. This means using the largest feasible

micro-batch size to leverage the parallel computing capabilities of the GPU without

causing memory overflow.

GPU memory not only needs to store the model parameters but also the activations

and gradients. An excessively large micro-batch size inputs many samples to the GPU

at once, resulting in high memory usage and potential OOM errors. On the other hand,

a very small micro-batch size can lead to underutilization of the Arithmetic Logic Units

(ALUs), reducing the training efficiency of the model, as shown in Fig. 8.

Improvements in GPipe Pipeline Parallel Acceleration 1019

Fig. 8. Comparison of throughput on different memory usages

To select an appropriate B/M, it should be understanded what B/M represents for

GPU. Firstly, to prevent overflow of memory on the video card, it is needed to manually

specify an upper bound on the B/M. As GPipe supports re-materialization, assuming a

batch size of B samples is evenly distributed over M micro-batches, the number of sam-

ples the GPU needs to process at once is B/M. If the size of a single sample is S, then

(B×S)/M. Meanwhile, the GPipe paper also mentions that during the backward pass,

the Kth accelerator recomputes the composite forward function FK. Assuming the model

has L layers, is divided into K partitions, and each partition has N mini-batches, with

each mini-batch divided into M micro-batches. For recompute to proceed smoothly, the

GPU must reserve at least O(N+(N×L)/(M×K)) space to complete the recompute.

Therefore, when selecting M, the rule should be followed which is shown in Inequation

4:

𝑀𝑎𝑥 {
B × S

𝑀
, 𝑁 +

𝐿

𝐾
×

𝑁

𝑀
} < 𝐺𝑃𝑈′𝑠 𝑀𝑒𝑚𝑜𝑟𝑦 (4)

This is just an estimate, and actual experimentation and tuning may be necessary, as

memory usage may not be perfectly linear and may be affected by factors such as

CUDA memory management. After determining an upper bound for B/M, it ensures

that memory overflow will not occur.

From the recent testing, the optimal B/M for multi-GPU parallelism lies near the

upper bound of B/M for a single GPU. This is because when near the upper bound for

a single GPU, the memory utilization is highest, leveraging the advantages of GPU

1020 R. Hu

parallel computing to the fullest. However, why could the optimal B/M for multi-GPU

parallelism also lie to the left of the upper bound? This is because as K increases, the

memory required for recomputing decreases, and the GPU can store more samples,

causing the minimum value of B/M to shift to the left.

When searching for B/M, the following method can be used: first, set M=1, which is

equivalent to not dividing into micro-batches. At this point, except for B, all variables

in Equation 4 are constants. Then, the maximum theoretical value of B can be calcu-

lated, and thus B/M can be obtained. Although the theoretical value has been deter-

mined, the value of B/M still needs to be further determined, as the mechanism of

CUDA memory allocation is far more complicated, and B/M can only be greater than

or equal to the theoretical value.

As multiple GPUs are available, test benches with different B values on each of the

GPUs can be synchronized, or stress testing can be used, and the GPU memory usage

can be monitored in real-time through methods such as nvidia-smi or

torch.memory_allocated(). By eliminating B values that can cause memory

overflow, the maximum value of M can be obtained, which is now the actual maximum

M value needed and is the desired B/M. A significant improvement in training through-

put can be observed by scaling B and M proportionally. The B/M value can be fine-

tuned and the optimal values of B and M can be chosen while ensuring training accu-

racy.

Table 1. Hardware and environment

Hardware / Software Parameters and Version

CPU Intel® Xeon® Gold 6330 2.00GHz

GPU NVIDIA RTX 3090(24GB) × 8

Code Language Python 3.8

ML Framework PyTorch 2.0.0

Operation System Ubuntu 20.04 LTS

CUDA 11.8

4 Testbench evaluation

In this chapter, to prove my point, I will conduct tests on a new platform. Table 1 below

shows my test environment. To demonstrate that the optimal B/M can bring maximum

throughput and is a fixed value, the following experiments are conducted. 1. Fix M and

adjust B to observe changes in throughput. 2. Fix B and adjust M to observe changes in

throughput. It was found that although B and M are two independent quantities, the size

of throughput is always related to the ratio of B/M and will always achieve the maxi-

mum throughput at the same B/M value.

Improvements in GPipe Pipeline Parallel Acceleration 1021

4.1 Check the optimal B/M value

An experiment was initially conducted by fixing M at 32 (as demonstrated in the Huang

et al. paper) and adjusting B. As demonstrated in graph (a) of Fig. 9, it was observed

that the maximum throughput was achieved when the B/M ratio fell within the range of

40-50. Further tests are conducted within this range, as presented in graph (b) of Fig. 9,

revealing that the optimal B/M ratio was approximately 45.

Fig. 9. Throughput variance with B/M based on M=32

Subsequently, B was fixed at 1600 and M was adjusted. As presented in graph (a) of

Fig. 10, it was observed that the maximum throughput was achieved when the B/M ratio

fell within the range of 44-52. Further tests are conducted within this range, as demon-

strated in graph (b) of Fig. 10, revealing that the optimal B/M ratio was approximately

46.

Fig. 10. Throughput variance with B/M based on B=1600

4.2 Check on broader batch sizes

To demonstrate that the same B/M is effective for all batch sizes, I conducted the fol-

lowing test, as shown in Fig. 11. The results showed that the B/M value that achieved

the maximum throughput is a fixed value (strictly speaking, a small range of values),

and if B does not exceed the memory limit, the value of M can be determined by B.

With such a constraint relationship, the number of debugging attempts can be reduced

and the maximum throughput of training can be quickly determined.

1022 R. Hu

Fig. 11. Test bench on broader variants B and M

Of course, determining the optimal B/M is a process that can be influenced by vari-

ous factors such as different GPUs, CUDA versions, and PyTorch versions that affect

memory allocation to varying degrees. Only through testing can the ideal B/M value for

training a specific model be determined.

4.3 Compared to the baseline

On this basis, I conducted additional experiments with eight cards to compare with the

baseline. With the B/M value that achieved the maximum throughput, the experimental

data are compared with the results presented in the Huang et al. paper. The results are

shown in Table 2.

As shown in Table 2, the experimental variable is the number of GPUs (partition K),

and the tested model is AmoebaNet-D. In comparison to the results presented in the

paper by Huang et al., the experimental results of GPU throughput obtained purely

through B/M tuning, without employing additional training techniques or utilizing new

algorithms, are as follows.

Table 2. Comparison of optimized B/M and results in GPipe on AmoebaNet-D

K Baseline (Huang et al.) Optimized B/M Improvement

1 / 0.67× /

2 1× 1.03× 3.00%

4 1.7× 1.75× 2.94%

8 2.7× 2.79× 3.33%

Improvements in GPipe Pipeline Parallel Acceleration 1023

After testing, by applying the optimal B/M value, the training throughput by 3% can

be increased by adjusting the hyperparameters without changing the network structure

and algorithm. Of course, improving GPipe is not the main content of this article.

5 Conclusion

Based on the facts described in the GPipe paper, this article analyzes the role of the

hyperparameter micro-batch (M) in GPipe pipeline parallelism and innovatively pro-

poses that M is not the smallest factor affecting GPU throughput, but rather the ratio of

batch size (B) to micro-batch size, i.e., B/M. In the section of finding the optimal B/M,

this paper explains how to select the optimal B/M technique, and quantitatively pro-

vides inequalities to define the range of values for B and M. Finally, this paper also

demonstrates that the impact of B/M on GPU training throughput is global. That is, by

constraining the optimal B/M ratio, it is possible to reduce the number of micro-batches

debugging attempts and maximize GPU training throughput within a limited number of

attempts, thereby increasing the training speed. However, this paper still has potential

limitations. The optimal throughput does not necessarily mean that the accuracy of

model training can be optimized, and future research can discuss the relationship be-

tween the two.

References

1. Minsky, M.: Steps toward artificial intelligence. Proceedings of the IRE. 49, 8–30 (1961).

2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional

Neural Networks. Communications of the ACM. 60, 84–90 (2017).

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). (2016).

4. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for Image Classifier

Architecture Search. Proceedings of the AAAI Conference on Artificial Intelligence. 33,

4780–4789 (2019).

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: Trans-

formers for image recognition at scale, https://arxiv.org/abs/2010.11929.

6. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. 2022

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (2022).

7. Kaplan, J., McCandlish, S., Henighan, T., et al.: Scaling laws for neural language models,

https://arxiv.org/abs/2001.08361.

8. Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using graphics

processors. Proceedings of the 26th Annual International Conference on Machine Learning.

(2009).

9. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., et al.: Language models are few-shot learn-

ers, https://arxiv.org/abs/2005.14165.

10. Huang, Y., Cheng, Y., Bapna, A., et al.: GPipe: Efficient training of giant neural networks

using pipeline parallelism, https://arxiv.org/abs/1811.06965.

11. Narayanan, D., Harlap, A., Phanishayee, A., et al.: PipeDream: Generalized pipeline paral-

lelism for DNN training. Proceedings of the 27th ACM Symposium on Operating Systems

Principles. (2019).

1024 R. Hu

12. Zhao, S., Li, F., Chen, X., Guan, X., et al.: VPipe: A virtualized acceleration system for

achieving efficient and scalable pipeline parallel DNN training. IEEE Transactions on Par-

allel and Distributed Systems. 33, 489–506 (2022).

13. Kim, C., Lee, H., Jeong, M., et al.: Torchgpipe: On-the-fly pipeline parallelism for training

giant models, https://arxiv.org/abs/2004.09910.

14. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear memory cost,

https://arxiv.org/abs/1604.06174.

15. Zhang, B., Zhou, Z., Cao, W., Qi, X., Xu, C., Wen, W.: A new few-shot learning method of

bacterial colony counting based on the edge computing device. Biology. 11, 156 (2022).

16. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing

internal covariate shift, https://arxiv.org/abs/1502.03167.

17. Lyu, Y., Yang, Z., Liang, H., Zhang, B., Ge, M., Liu, R., Zhang, Z., Yang, H.: Artificial

Intelligence‐assisted Fatigue Fracture Recognition based on morphing and fully convolu-

tional networks. Fatigue & Fracture of Engineering Materials & Structures. 45,

1690–1702 (2022).

18. Wang, L., Yang, Y., Min, R., Chakradhar, S.: Accelerating deep neural network training

with inconsistent stochastic gradient descent. Neural Networks. 93, 219–229 (2017).

19. Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R.M., Boybat, I., di Nolfo, C., Sidler, S.,

Giordano, M., Bodini, M., Farinha, N.C., Killeen, B., Cheng, C., Jaoudi, Y., Burr, G.W.:

Equivalent-accuracy accelerated neural-network training using analogue memory. Nature.

558, 60–67 (2018).

20. Mahmoud, M., Edo, I., Zadeh, A.H., Mohamed Awad, O., Pekhimenko, G., Albericio, J.,

Moshovos, A.: TensorDash: Exploiting sparsity to accelerate deep neural network training.

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

(2020).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Improvements in GPipe Pipeline Parallel Acceleration 1025

https://arxiv.org/abs/1502.03167
http://creativecommons.org/licenses/by-nc/4.0/

	Improvements in GPipe Pipeline Parallel Acceleration: Choices, Constraints and Optimal Strategies of Micro-Batch

