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Abstract. As the scale of deep learning models continues to grow, large-scale 

models in machine vision and natural language processing (NLP) have achieved 

tremendous success. For instance, the current NLP giant GPT-3 has pushed the 

parameter count to the scale of billions. However, due to the significant surpas-

sing of GPU physical memory limitations by large-scale deep neural networks, 

current strategies like data parallelism are no longer sufficient for model training. 

The latest pipeline parallelism strategies, such as the static layer partitioning of 

GPipe and PipeDream, as well as the dynamic layer partitioning of VPipe, have 

enabled model training segmentation and acceleration. In the current pipeline 

strategies like GPipe, the batch-splitting pipelining algorithm splits mini-batches 

on the same accelerator into overlapping computation stages, creating micro-

batches to achieve pipelining. Users usually need to manually fine-tune the gran-

ularity of pipeline segmentation, i.e., micro-batch size (M), to determine the op-

timal value by observing changes in throughput. This article observes that M is 

not the smallest factor that affects throughput and proposes that batch size/micro-

batch size (B/M) is the decisive factor that determines the changes in throughput. 

This article focuses on proving the rationality of B/M and quantitatively giving 

the selection range of B/M. For any given multi-GPU training scenario, by ana-

lyzing the optimal value of B/M in advance, the debugging cost can be reduced, 

and the throughput can be maximized quickly before training, thus accelerating 

the efficiency of multi-GPU parallelism. 
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1 Introduction  

1.1 A Subsection Sample 

Humans have never ceased to imagine and pursue artificial intelligence. How to con-

struct a model that possesses human-level intelligence has always been a problem that 

AI scientists strive to solve [1]. In recent years, as researchers delve deeper into the 

field, an increasing number of outstanding models have been created, gradually ap-

proaching human-level perception and reasoning capabilities. 
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In the field of computer vision, in 2012, AlexNet [2], based on convolutional neural 

networks, made remarkable achievements in image recognition, making Convolutional 

Neural Networks (CNN) the mainstream in machine recognition. In 2015, ResNet [3], 

designed to address the "degradation problem," successfully broke the limitation of net-

work depth, marking a turning point where machine recognition accuracy surpassed 

human performance. In 2018, AmoebaNet [4], inspired by the principle of survival of 

the fittest in biological systems, was developed, paving the way for automated network 

design as a new approach. In 2020, Vision Transformer [5], based on a pure attention 

mechanism, was introduced into the field of machine recognition. Among them, Scal-

ing ViT with 2 billion parameters pushed the recognition accuracy of ImageNet to new 

heights [6]. These models approach problem-solving from different angles and exhibit 

diverse architectures, but they converge on one aspect: the larger and deeper the model, 

the stronger its representational capacity and robustness [7]. 

The development of computer processing power and advancements in the field of 

deep learning are closely intertwined. To train larger and deeper models, there is a 

growing demand for increased computational power in computer hardware. In 2007, 

NVIDIA introduced CUDA (Compute Unified Device Architecture). Although CUDA 

was not originally designed specifically for deep learning, it provides highly optimized 

GPU parallel computing capabilities. This is particularly beneficial for model training 

that involves extensive matrix calculations and tensor operations. Parallel execution on 

GPUs is considered a viable solution for significantly accelerating computation speed 

in such scenarios. In 2009, Andrew Ng's team was among the first to leverage GPUs 

for model training, significantly accelerating the training speed [8]. Since then, the 

training of deep learning models has become deeply intertwined with the computational 

power provided by GPUs. 

As the size of models continues to increase, a single GPU is no longer sufficient to 

meet the demands of training large-scale models. For instance, the massive GPT-3 

model [9], which consists of 175 billion parameters, requires distributed training across 

multiple GPUs over the course of several weeks. However, relying solely on splitting 

the network layers for achieving model parallelism does not yield satisfactory results, 

as the problem of imbalanced activations within the layers significantly leads to perfor-

mance degradation.  

In this context, pipeline parallelism techniques have been introduced into model 

training and have been proven to be effective and reliable [10]. Common pipeline par-

allelism techniques include PipeDream [11] and GPipe [10]. PipeDream stores all acti-

vation tensors in the GPU memory and waits for the backward pass [11], while GPipe 

only retains the activation tensors involved in the communication part of the forward 

pass [10]. Both approaches belong to static partitioning. The latest VPipe technology 

can dynamically allocate the computational workload among GPUs by introducing a 

virtual layer into the existing pipeline parallelism pipeline and hardware [12]. This 

helps to avoid throughput bottlenecks caused by an imbalanced workload on individual 

GPUs, whether it is too heavy or too light. 

Using GPipe, it is possible to represent a model as a sequence of layers, and groups 

of consecutive layers can be divided into cells. These cells are then assigned to separate 

accelerators. Building upon this partitioned arrangement, a new algorithm for pipeline 
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parallelism with batch splitting was proposed. The algorithm involves initially splitting 

a mini batch of training examples into smaller micro-batches, and then executing each 

set of micro-batches in a pipeline fashion across the cells. Synchronous mini-batch gra-

dient descent is applied for training, wherein gradients are accumulated across all mi-

cro-batches within a mini-batch and applied at the end of each mini-batch [10]. 

Under the GPipe pipeline parallelism strategy, users need to define the size of the 

micro-batch (M), which determines the number of chunks a mini batch is divided into 

for pipeline parallelism [10]. Huang et al. chose M=1, 4, 32 in their GPipe experiment 

and stated that "Batch size (B) was adjusted to fit memory when M>>K (number of 

partitions on accelerators)" but it is unknown what batch size values they chose. In the 

experimental process, it can be observed that M is not the only value that affects GPU 

throughput, and after investigation, batch size/micro-batch size (B/M) is an important 

factor that affects throughput. This article will demonstrate the important role of B/M 

and discuss methods for selecting the optimal B/M. By calculating the optimal B/M 

value, I can increase the training throughput of GPipe by 3% through adjusting hy-

perparameters. 

2 Main Idea of GPipe 

2.1 Concept of multi-card training 

In deep learning, batch size refers to the number of samples used for training the model 

in a single iteration. Compared to using the entire dataset for one iteration, using a ran-

dom subset of the training set for multiple iterations can better mitigate model overfit-

ting. Both excessively large and small batch sizes have limitations on model training. 

An excessively large batch size may lead to out-of-memory (OOM) errors and result in 

overfitting. On the other hand, a very small batch size can result in poor generalization, 

leading to lower accuracy and other issues. Finding an appropriate batch size is crucial 

for balancing memory constraints, model performance, and generalization capabilities. 

As the model size increases, I may encounter limitations in GPU memory that pre-

vent us from training the entire model on a single GPU. Therefore, I adopt a strategy of 

partitioning the model, where a batch is divided into multiple mini batches, which is 

called model parallelism. Each mini batch is then assigned to a separate GPU for train-

ing, and the gradient information is passed from one GPU to the next. This partitioning 

strategy allows us to distribute the workload across multiple GPUs and overcome the 

memory limitations, enabling efficient training of large models. By exchanging gradi-

ent information between GPUs, the model parameters can be collectively updated dur-

ing the training process. 

2.2 Definition of micro-batch 

In the context of deep neural networks, it is possible to represent any network as a 

sequence of L layers. By specifying the number of partitions, K, the sequence of L layers 

can be divided into K composite layers or cells [10], each of them called a mini batch. 

Fig. 1 below shows the procedure of L layers partition. 
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Fig. 1. Diagram of naive model parallelism strategy 

As depicted in the above diagram, with the utilization of model parallelism, the mas-

sive number of parameters that would have exceeded the memory limit of a single GPU 

are divided and allocated across multiple GPUs, enabling parallel training of the model. 

However, the drawback of this model parallelism strategy is evident. As seen in each 

stage of GPU training, the GPU enters a stagnant state and waits until it receives the 

backward-propagated parameters. Consequently, the model parallelism strategy inevi-

tably results in significant bubbles that lead to low efficiency. 

GPipe introduced the strategy of pipeline parallelism to address the issue of low ef-

ficiency in model parallelism. GPipe states that if the Kth partition of the model contains 

layers i to j, it is possible to further divide the mini batch into micro-batches based on 

the following equation (Equation 1, 2), allowing different accelerators to process dif-

ferent micro-batches simultaneously. 

 WK = wi ∪ wi+1 ∪…∪ wj (1) 

 FK = fi ∘ fi+1 ∘…∘ fj (2) 

 

Fig. 2. Pipeline parallelism with divided micro-batches 

With the theoretical foundation of partitioning, I can further divide each partition by 

splitting the mini batches assigned to each GPU into smaller micro-batches. These mi-

cro-batches serve as the fundamental units for computation. At a finer granularity, I can 

introduce a certain level of overlap in the GPU's computation cycles, thereby achieving 
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parallel computing effects. As shown in Fig. 2, this approach significantly reduces the 

efficiency loss caused by bubbles. 

2.3 GPipe limitation 

While GPipe is designed to minimize bubbles, it is inevitable to observe some degree 

of bubbles in the training process. To enhance training efficiency, it is important to 

minimize the bubble value. Although the exact duration of bubbles cannot be quanti-

fied, I can define a bubble ratio as the ratio of bubble time to the total training time of 

an epoch. This is represented by Equation 3, and a sketch map is provided in Fig. 3. By 

reducing the bubble ratio, I can improve the throughput of training. Note that I will use 

the abbreviation BR to refer to the bubble ratio. 

 

Fig. 3. Sketch of Equation 3 

𝐵𝑅 =
(𝐾 − 1)𝑡1 + (𝐾 − 1)𝑡2

𝑀𝑡1 + (𝐾 − 1)𝑡1 + (𝐾 − 1)𝑡2 + 𝑀𝑡2

=
(𝐾 − 1)(𝑡1 + 𝑡2)

(𝑀 + 𝐾 − 1)(𝑡1 + 𝑡2)

=
𝐾 − 1

𝑀 + 𝐾 − 1
(3)

 

As shown in the above equation, under the assumption of equal partitioning (as as-

sumed in the GPipe paper), the value of BR is a constant that is independent of the 

forward or backward propagation time. It is solely determined by the values of K and 

M. 

The GPipe paper suggests that when M ≥ 4 × K, the performance loss caused by 

bubbles can be neglected. From Equation 3, it can be deduced that under the condition 

M ≥ 4 × K, the BR will always remain below 20%. Theoretically, reducing the BR by 

approximately 80% represents a significant improvement in performance. 

I conducted tests using the open-source torchgpipe library [13] with the AmoebaNet-

D model on the ImageNet dataset. However, after testing several cases, I found that the 

experimental results differed from what was described in the GPipe paper. The optimal 

solution of M ≥ 4 × K did not hold for all batch sizes. When testing with smaller batch 

sizes, whether using two, four, or eight GPUs (with K equal to the number of GPUs), 

the highest throughput was generally achieved at a relatively small value of M. The 
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training results are shown in Fig. 4, where empty values indicate that training was not 

possible due to insufficient GPU memory. 

 

Fig. 4. Results of training throughput using GPipe 

(a) B=96 (b) B=128 (c) B=256 (d) B=512 

Upon observing the graph, several points can be noted. Firstly, as B increases, the 

peak throughput shifts towards larger values of M (towards the right). Additionally, it 

is evident that the value of M cannot be too large or too small. This indicates that alt-

hough bubbles are reduced with sufficiently large M values, other performance losses 

are increased. The specific reasons behind these phenomena will be analyzed in the 

next section. 

3 Find the optimized micro-batch 

3.1 Reasons for the constraint on micro-batch size 

There are several key factors that influence the selection of the M, which determines 

that the optimal value of M falls within a certain range and should not be too large or 

too small. 

The reason for not choosing an excessively small value for M is quite evident: when 

M is too small, the main issue is that it leads to excessive GPU memory usage within 

one epoch, resulting in OOM errors. Moreover, the value of M is closely related to the 

BR. A larger value of M allows for a reduction in the BR, thereby improving GPU 

throughput. 
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The GPipe paper encourages us to increase the value of M as much as possible. 

However, based on the recent experimental results, it can be concluded that GPU 

throughput is sensitive to larger M values, as it rapidly decreases beyond a certain 

threshold. To verify the hypothesis of a "threshold," I continued testing the relationship 

between throughput and M. In Fig. 4, the granularity of M partitioning is relatively large 

(using powers of 2 as inputs). To further investigate, I conducted tests at a finer granu-

larity (incrementing by 1 each time) for M, as shown in Fig. 5. 

 

Fig. 5. Results of training throughput in specific samples 

(a) B=128 (b) B=512 

As depicted in the above graph, the optimal value of M is not a specific threshold 

but lies within a small range. Our goal moving forward is clear: I need to identify the 

optimal range for M that maximizes the training throughput of the model. 

There are several reasons why M cannot be set to a very large value. After gaining a 

deep understanding of the GPipe principles, several factors are identified that limit the 

choice of M and lead to a decrease in throughput as M increases. The first reason is that 

GPipe introduces the method of re-materialization to reduce memory usage. It has been 

observed that recomputing certain values is more efficient than randomly reading them 

from memory. During the forward computation process, each accelerator exclusively 

retains the output activations at the partition boundaries, optimizing memory utilization 

[14]. The second reason is that as the value of M increases, there are more accumula-

tions of gradients during each mini batch, leading to a performance cost. At the conclu-

sion of every mini batch, the gradients obtained from all M micro-batches are collected 

and utilized to update the model parameters across all accelerators [10]. The third rea-

son is that if batch normalization [15-20] is used in GPipe, the sufficient statistics of 

inputs during training are computed over each micro-batch and over replicas if neces-

sary. Clearly, an increase in the value of M results in a higher number of batch normal-

ization computations. The increased computations can diminish the advantages of GPU 

parallelism, leading to a performance cost. 
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3.2 Factors influencing throughput 

Since GPipe assumes balanced partitions [10], I only need to set all balances to the 

same value. In this paper, our focus is on throughput rather than model training accu-

racy. Therefore, I can set the optimizer to a fixed value, using AdamW uniformly, and 

select three epochs. Finally, I calculate the average throughput. 

To facilitate quick modification of variables, I have provided an interface in the com-

mand line, as shown in the code snippet below. 

After conducting several experiments, I have plotted the relationship among B, M, 

and the number of GPUs, as shown in Fig. 6. The absence of data points in certain areas 

is due to OOM errors, preventing the retrieval of results. 

 

 

Fig. 6. Throughput with micro-batch sizes and GPUs 

(a) B=128 (b) B=256 (c) B=512 (d) B=1024 

From the four graphs above, several key observations can be made. First, as the batch 

size increases, the maximum throughput value consistently shifts towards the right. Alt-

hough both the B and M can impact the throughput, the ratio B/M provides useful in-

formation. The maximum throughput value is consistently found near B/M = 32. Sec-

ond, as the number of GPUs increases, the model training can utilize smaller micro-

batches. With a smaller micro-batch range, the search space for the optimal throughput 

value can be expanded. 

Meanwhile, as the batch size increases, the advantages of multi-GPU parallel com-

putation become more evident. As shown in Fig. 7, when I set B/M to 32, I can observe 

a noticeable differentiation in throughput with increasing batch size in multi-GPU set-

ups. When the batch size reaches 1024, the throughput of a single GPU remains rela-

tively stable, while each additional GPU contributes to a 20-50% increase in through-

put. 
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Fig. 7. Throughput with batch sizes under B/M=32 

Therefore, the key to increasing GPU throughput is to find an optimal B/M value and 

appropriately increase the batch size while ensuring model training accuracy. In the 

next section, I will discuss how to find the optimal B/M value. 

3.3 Find an optimized B/M 

In deep learning, the determination of M typically depends on the GPU memory capac-

ity and the size of the model. In general, to maximize training speed and efficiency, it 

is desirable to keep each GPU as busy as possible. This means using the largest feasible 

micro-batch size to leverage the parallel computing capabilities of the GPU without 

causing memory overflow. 

GPU memory not only needs to store the model parameters but also the activations 

and gradients. An excessively large micro-batch size inputs many samples to the GPU 

at once, resulting in high memory usage and potential OOM errors. On the other hand, 

a very small micro-batch size can lead to underutilization of the Arithmetic Logic Units 

(ALUs), reducing the training efficiency of the model, as shown in Fig. 8. 
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Fig. 8. Comparison of throughput on different memory usages 

To select an appropriate B/M, it should be understanded what B/M represents for 

GPU. Firstly, to prevent overflow of memory on the video card, it is needed to manually 

specify an upper bound on the B/M. As GPipe supports re-materialization, assuming a 

batch size of B samples is evenly distributed over M micro-batches, the number of sam-

ples the GPU needs to process at once is B/M. If the size of a single sample is S, then 

(B×S)/M. Meanwhile, the GPipe paper also mentions that during the backward pass, 

the Kth accelerator recomputes the composite forward function FK. Assuming the model 

has L layers, is divided into K partitions, and each partition has N mini-batches, with 

each mini-batch divided into M micro-batches. For recompute to proceed smoothly, the 

GPU must reserve at least O(N+(N×L)/(M×K)) space to complete the recompute. 

Therefore, when selecting M, the rule should be followed which is shown in Inequation 

4: 

𝑀𝑎𝑥 {
B × S

𝑀
, 𝑁 +

𝐿

𝐾
×

𝑁

𝑀
} < 𝐺𝑃𝑈′𝑠 𝑀𝑒𝑚𝑜𝑟𝑦 (4) 

This is just an estimate, and actual experimentation and tuning may be necessary, as 

memory usage may not be perfectly linear and may be affected by factors such as 

CUDA memory management. After determining an upper bound for B/M, it ensures 

that memory overflow will not occur. 

From the recent testing, the optimal B/M for multi-GPU parallelism lies near the 

upper bound of B/M for a single GPU. This is because when near the upper bound for 

a single GPU, the memory utilization is highest, leveraging the advantages of GPU 
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parallel computing to the fullest. However, why could the optimal B/M for multi-GPU 

parallelism also lie to the left of the upper bound? This is because as K increases, the 

memory required for recomputing decreases, and the GPU can store more samples, 

causing the minimum value of B/M to shift to the left. 

When searching for B/M, the following method can be used: first, set M=1, which is 

equivalent to not dividing into micro-batches. At this point, except for B, all variables 

in Equation 4 are constants. Then, the maximum theoretical value of B can be calcu-

lated, and thus B/M can be obtained. Although the theoretical value has been deter-

mined, the value of B/M still needs to be further determined, as the mechanism of 

CUDA memory allocation is far more complicated, and B/M can only be greater than 

or equal to the theoretical value. 

As multiple GPUs are available, test benches with different B values on each of the 

GPUs can be synchronized, or stress testing can be used, and the GPU memory usage 

can be monitored in real-time through methods such as nvidia-smi or 

torch.memory_allocated(). By eliminating B values that can cause memory 

overflow, the maximum value of M can be obtained, which is now the actual maximum 

M value needed and is the desired B/M. A significant improvement in training through-

put can be observed by scaling B and M proportionally. The B/M value can be fine-

tuned and the optimal values of B and M can be chosen while ensuring training accu-

racy. 

Table 1. Hardware and environment 

Hardware / Software Parameters and Version 

CPU Intel® Xeon® Gold 6330 2.00GHz 

GPU NVIDIA RTX 3090(24GB) × 8 

Code Language Python 3.8 

ML Framework PyTorch 2.0.0 

Operation System Ubuntu 20.04 LTS 

CUDA 11.8 

 

4 Testbench evaluation 

In this chapter, to prove my point, I will conduct tests on a new platform. Table 1 below 

shows my test environment. To demonstrate that the optimal B/M can bring maximum 

throughput and is a fixed value, the following experiments are conducted. 1. Fix M and 

adjust B to observe changes in throughput. 2. Fix B and adjust M to observe changes in 

throughput. It was found that although B and M are two independent quantities, the size 

of throughput is always related to the ratio of B/M and will always achieve the maxi-

mum throughput at the same B/M value. 
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4.1 Check the optimal B/M value 

An experiment was initially conducted by fixing M at 32 (as demonstrated in the Huang 

et al. paper) and adjusting B. As demonstrated in graph (a) of Fig. 9, it was observed 

that the maximum throughput was achieved when the B/M ratio fell within the range of 

40-50. Further tests are conducted within this range, as presented in graph (b) of Fig. 9, 

revealing that the optimal B/M ratio was approximately 45. 

 

Fig. 9. Throughput variance with B/M based on M=32 

Subsequently, B was fixed at 1600 and M was adjusted. As presented in graph (a) of 

Fig. 10, it was observed that the maximum throughput was achieved when the B/M ratio 

fell within the range of 44-52. Further tests are conducted within this range, as demon-

strated in graph (b) of Fig. 10, revealing that the optimal B/M ratio was approximately 

46. 

 

Fig. 10. Throughput variance with B/M based on B=1600 

4.2 Check on broader batch sizes 

To demonstrate that the same B/M is effective for all batch sizes, I conducted the fol-

lowing test, as shown in Fig. 11. The results showed that the B/M value that achieved 

the maximum throughput is a fixed value (strictly speaking, a small range of values), 

and if B does not exceed the memory limit, the value of M can be determined by B. 

With such a constraint relationship, the number of debugging attempts can be reduced 

and the maximum throughput of training can be quickly determined. 
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Fig. 11. Test bench on broader variants B and M 

Of course, determining the optimal B/M is a process that can be influenced by vari-

ous factors such as different GPUs, CUDA versions, and PyTorch versions that affect 

memory allocation to varying degrees. Only through testing can the ideal B/M value for 

training a specific model be determined. 

4.3 Compared to the baseline 

On this basis, I conducted additional experiments with eight cards to compare with the 

baseline. With the B/M value that achieved the maximum throughput, the experimental 

data are compared with the results presented in the Huang et al. paper. The results are 

shown in Table 2. 

As shown in Table 2, the experimental variable is the number of GPUs (partition K), 

and the tested model is AmoebaNet-D. In comparison to the results presented in the 

paper by Huang et al., the experimental results of GPU throughput obtained purely 

through B/M tuning, without employing additional training techniques or utilizing new 

algorithms, are as follows. 

Table 2. Comparison of optimized B/M and results in GPipe on AmoebaNet-D 

K Baseline (Huang et al.) Optimized B/M Improvement 

1 / 0.67× / 

2 1× 1.03× 3.00% 

4 1.7× 1.75× 2.94% 

8 2.7× 2.79× 3.33% 

Improvements in GPipe Pipeline Parallel Acceleration             1023



After testing, by applying the optimal B/M value, the training throughput by 3% can 

be increased by adjusting the hyperparameters without changing the network structure 

and algorithm. Of course, improving GPipe is not the main content of this article. 

5 Conclusion 

Based on the facts described in the GPipe paper, this article analyzes the role of the 

hyperparameter micro-batch (M) in GPipe pipeline parallelism and innovatively pro-

poses that M is not the smallest factor affecting GPU throughput, but rather the ratio of 

batch size (B) to micro-batch size, i.e., B/M. In the section of finding the optimal B/M, 

this paper explains how to select the optimal B/M technique, and quantitatively pro-

vides inequalities to define the range of values for B and M. Finally, this paper also 

demonstrates that the impact of B/M on GPU training throughput is global. That is, by 

constraining the optimal B/M ratio, it is possible to reduce the number of micro-batches 

debugging attempts and maximize GPU training throughput within a limited number of 

attempts, thereby increasing the training speed. However, this paper still has potential 

limitations. The optimal throughput does not necessarily mean that the accuracy of 

model training can be optimized, and future research can discuss the relationship be-

tween the two. 
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