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Abstract. As global population growth poses an increasing challenge to 

agriculture, the importance of crop pest management has increased. At present, 

most pest problems are solved by traditional manual methods, which are 

becoming increasingly inefficient in the face of increasing production capacity, 

so automated pest management has begun to attract people's attention. This study 

compared the performance of traditional models and advanced models in several 

fields of artificial intelligence in disease recognition tasks. The results show that 

Convolutional Neural Network (CNN) model has the best performance in 

recognition accuracy, but the execution efficiency is low. XGBoost model has an 

advantage in processing speed. Support vector machine (SVM) models do not 

perform well in identifying specific disease classes. The Random forest (RF) 

model also performs poorly. These experimental results show the potential and 

limitations of different technologies in improving the efficiency of crop disease 

management. 
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1 Introduction 

It is anticipated that the global population will increase by about 25% from its current 

level, presenting a considerable obstacle for the agricultural industry: dramatically 

increase crop yields to meet the growing demand for food. This challenge is 

compounded by widespread crop pests and diseases, which have the potential to 

significantly reduce yields and undermine food security. Barbetti (2012) [1] emphasizes 

that with the expansion of biodiversity of crop pathogens, pests and diseases will 

become an important challenge in crop production and management. Traditional 

approaches to managing these threats are largely manual and labor-intensive, often 

lacking the timeliness and accuracy required for effective pest management. 

Amidst this backdrop, the advent of computer vision and image recognition 

technologies, powered by the latest advancements in artificial intelligence, has emerged 

as a beacon of hope. These technologies are expected to revolutionize agricultural 

practices by detecting digital images to efficiently identify crop pests and diseases. This 

innovative approach not only establishes a foundation for timely and precise  
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interventions but also conforms to the standards of sustainable agriculture by 

potentially minimizing the use of chemical pesticides. 

Through the concerted efforts of many machine learning pioneers, particularly with 

the utilization of CNNs, the performance of systems tailored for image analysis has 

been significantly enhanced, enabling precise diagnosis of a wide range of plant 

pathologies.  Despite these technological strides, the application of such advanced 

systems in agriculture encounters significant challenges. Variations in image quality, 

attributable to environmental factors like lighting and weather, alongside the scarcity 

of comprehensive labeled datasets, pose substantial hurdles to the accuracy and 

reliability of these detection models. 

This study conducts a comprehensive analysis of the practical utility of diagnosing 

crop diseases and pests, thereby broadening the application scope of artificial 

intelligence in the agricultural domain. In contrast to previous research, this study 

focuses on exploring datasets associated with rice leaf. Through meticulous 

examination of these specific datasets, the authors aim to provide a comprehensive 

overview of the methods employed, achievements attained, and challenges 

encountered. 

2 Related Work 

In exploring the use of computer vision and deep learning for detecting and classifying 

crop diseases and pests, integrating these technologies has become key to enhancing 

agricultural management and food security. Recent studies show a shift from traditional 

machine learning to more sophisticated deep learning models, significantly advancing 

automatic disease detection in agriculture. 

In the realm of machine learning, Singla (2023) [2] applied a variety of machine 

learning algorithms to automate the classification and identification of plant diseases. 

Their method highlights the capabilities of machine learning in streamlining complex 

tasks in agriculture, establishing a standard for future research. Similarly, Punam and 

Goyal (2022) delved into the realm of automated botanical pathogen detection through 

the application of advanced image processing methodologies, aiming to uncover non-

disruptive and high-efficiency techniques for disease identification. 

In machine learning, deep learning technology is particularly prominent in the field 

of crop pest identification. For example, Alqahtani (2023) [3] developed a deep learning 

method that can accurately locate and identify plant leaf diseases, demonstrating the 

ability of deep learning to bolster the precision and expedite the process of pathogen 

identification. In addition, Amin (2022) [4] proposed an end-to-end deep learning 

model for classifying maize leaf diseases, further confirming the applicability and 

accuracy of deep learning in the solution of specific crop diseases. 

In addition to these studies on deep learning, Farhanah and Al Maki (2022) [5] utilize 

a feature-selection based BPSO-SVM approach to identify hop diseases. This 

innovative approach improves inspection accuracy while reducing computational 

complexity, demonstrating the benefits of customizing machine learning techniques to 

address specific agricultural challenges. 
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In the current agricultural application field of deep learning, CNN model is widely 

used, particularly within the realm of diagnosing and categorizing afflictions and pests 

that affect agricultural produce. The research by Aishwarya and Reddy (2023) [6] 

demonstrated The efficacy of employing an ensemble of CNNs for the categorization 

of peanut plant foliar diseases. By using deep learning combined with traditional image 

processing techniques, the method they developed not only improves the accuracy of 

disease recognition, but also enhances the processing speed, which is important for 

improving agricultural production efficiency and food safety. 

While these approaches are innovative, they also have some limitations. For 

example, deep learning models generally require extensive data for training and have 

lengthy processing times. The feature selection method may be limited by the validity 

of the selected features, which will affect the generalization ability and practicability of 

the final model. 

Deep learning technologies have markedly improved crop disease and pest 

recognition. Alqahtani (2023) [7] introduced an improved method for accurately 

identifying plant leaf diseases, illustrating deep learning's potential to boost detection 

precision and efficiency. Transitioning to a more specific application, Amin (2022) [4] 

created A holistic model for the categorization of maize foliar pathologies, further 

showcasing deep learning's effectiveness and precision. Building on the advancements 

in deep learning, Farhanah and Al Maki (2022) [5] shifted the focus towards a machine 

learning-based solution for targeted disease detection. They employed a feature 

selection-based BPSO-SVM approach for diagnosing hops plant diseases, aiming to 

enhance accuracy while simplifying the process.  This method exemplifies the benefits 

of adapting machine learning techniques to meet distinct agricultural needs, suggesting 

a trend towards more tailored and efficient detection strategies. 

These innovations reflect the evolving landscape of agricultural technology, 

highlighting a move towards precision and customization.  However, the reliance on 

extensive and varied datasets for training, along with challenges in generalizing models 

across different conditions, remains a crucial consideration for future research and 

application in this field. 

These studies collectively illustrate the rapid advancements and widespread 

application of deep learning and computer vision technologies in the field of 

agricultural disease and pest detection. By automating the classification of diseases and 

pests, these methods aim not only to enhance crop management and productivity but 

also to contribute to the sustainable development of agricultural practices.  

3 Methodologies 

In this research, we first optimize the image data quality through image preprocessing 

techniques. Then, geometric transformations and depth estimation are applied to extract 

richer spatial information from the images. After the feature extraction phase, a variety 

of models including SVM, RF, CNN and ensemble learning methods (such as 

XGBoost) are trained to perform precise pest and disease classification tasks. Figure 1 

illustrates the workflow of our research in this paper. 
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Fig. 1. Research Workflow 

3.1 Image Preprocessing 

Images of crop pests and diseases are collected from large public datasets. Ensure data 

diversity, including different crops and disease types. 

Before extracting the feature values, the image needs to be preprocessed. Aiming at 

the problem of low definition of many crop images in the data set, in order to enhance 

the image details and reduce the noise, so as to improve the image processing effect, 

Gaussian filtering method is used to reduce the random noise of the image. Gaussian 

filtering achieves image smoothing by convoluting with Gaussian kernel, which 

improves the accuracy and robustness of the model (Chowdhury,2019) [8]. 

Then begin the geometric transformation of the image, adjusting the shape and size 

of the image, so that the different shooting angles of the image can be aligned. In this 

article, these operations are implemented by affine transformations, which are 

implemented by the following mathematical expressions: 

(
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Then the depth estimation is used to recover the information of the three-dimensional 

scene from the two-dimensional image, and the depth information is calculated by 

comparing the parallax of the two images. 

𝐷𝑒𝑝𝑡ℎ =
𝑓 × 𝐵

𝑑
                   (2) 

3.2 Feature Extraction 

In this paper, effective features are extracted from crop pest free images by using deep 

learning and traditional image processing techniques. After preprocessing the image, 

we first extract color features using color space transformation. Specifically, we output 

the RGB color space as the HSB (Hue, Saturation, Brightness) color representation and 

the color histogram of each channel is calculated to capture the color distribution 

characteristics in the image. This method will be applied to the three models of SVM, 

RF and Ensemble learning in the following. 
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In addition, CNNs are utilized to autonomously derive advanced image 

characteristics from visual data and the details and texture information of images are 

captured through the multi-layer convolution structure. Combining these features 

extracted by deep learning and traditional image processing techniques, This paper 

seeks to compare the advantages and disadvantages of these techniques in the 

classification of crop pests and diseases. 

The first is traditional image processing techniques. We convert the RGB color space 

into HSB color representation, work out the color histogram for each channel (H,S,V), 

and extract the color distribution features: 

𝐻𝐶(ⅈ) = 𝛴𝑥=1
𝑤 𝛴𝑦=1

𝐻 1(𝐼𝐶(𝑥, 𝑦) = ⅈ)             (3) 

Where Hc(i) is the number of pixels of the color channel c in the i-th histogram 

interval, Ic(x,y) is the value of the image at the position (x, y) of the channel c, l is the 

indicator function, W is the width of the image and H is the height. 

CNN is subsequently employed to autonomously distill intricate patterns from the 

visual data. Within each stratum of convolutional operations in the CNN, a Feature Map 

is generated through the convolutional filter to capture specific patterns in the image. 

The mathematical expression is: 

𝐹𝑘 = 𝑅𝑒𝐿𝑈(𝑤𝑘 ∗ 𝐼 + 𝑏𝑘)             (4) 

Where Fk is the KTH feature graph, wk is the corresponding convolution kernel, I 

is the input image or a shallower feature graph, bk is the bias term, * is the convolution 

operation, and ReLU is the activation function, which is used to increase the 

nonlinearity. 

3.3  Model Construction 

In this study, we used four model training methods: SVM, RF, CNN, and XGBoost to 

improve the accuracy and efficiency of crop pest classification. We exploit the 

respective advantages of these methods, aiming to find the best model to solve a specific 

detection problem. 

SVM The aim of this method is to find an optimal hyperplane to maximize the spacing 

between positive and negative samples. For linearly separable data sets, SVM looks for 

hyperplanes that satisfy the following conditions: 

minimize:
1

2
‖𝑤‖2 

subject to:𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1, ∀ⅈ          (5) 

Where w represents the normal vector of the hyperplane, b is the offset term, and 

xi and yiare the sample points and their corresponding class labels, respectively (Figure 

2). 

In addressing nonlinear issues, SVM utilizes kernel methods to project the dataset 

into an expanded, higher-dimensional realm. Within this augmented space, SVMs aim 
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to identify hyperplanes that serve to efficiently partition the data. Among the prevalent 

kernel functions are the Radial Basis Function (RBF) kernels: 

K(𝑥𝑖 , 𝑥𝑗)=exp(−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
)  `             (6) 

In the context of kernel functions, the parameter γ is the key in modulating the 

dispersion of the transformed feature space, thereby influencing the model's 

classification performance. 

 
Fig. 2. SVM find the optimal hyperplane in two-dimensional space 

RF The method improves prediction accuracy with its ability to construct multiple 

decision trees and integrate their prediction results. Its core is to randomly extract 

multiple subsamples from the original data set as the training data of different decision 

trees through self-sampling, and adopt random feature selection in the tree construction 

process, which not only increases the diversity of the model, but also effectively 

reduces the risk of overfitting (Figure 3). In the prediction phase, the random forest gets 

a final prediction by voting on the predicted results of all trees (for classification 

problems) or averaging them (for regression problems). This strategy of integrating 

multiple decision trees significantly improves the model's ability to generalize over a 

variety of data sets, making it ideal for solving complex problems such as crop pest 

detection. The success of RF is due in part to its ability to reduce model variance while 

maintaining a low level of bias, ensuring high accuracy and robustness suitable for the 

challenges of high-dimensional data and complex data structures. As He and Wang 

(2024)[9] show, this strategy of integrating multiple decision trees can significantly 

improve the model's ability to generalize over multiple datasets, making it ideal for 

solving complex problems such as crop pest detection. 
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Fig. 3.Random Forest Process 

CNN. The CNN model utilized in this research encompasses a series of successive 

convolutional stages, within each of which a ReLU activation function and a pooling 

operation are integrated to efficiently isolate image features and minimize the 

parameter count. The model starts with a preprocessing layer for resizing and 

normalizing the image. Following this sequence, The architecture consists of five 

sequential convolutional stages, with each stage succeeded by a pooling operation. 

Subsequently, the data undergoes a flattening process before being fed into a dense 

layer, complemented by an integrated Dropout mechanism to mitigate the risk of 

overfitting. Finally, the full connection layer of the Softmax function is used to output 

predictions for 38 categories. 

Each convolutional layer uses a different number of 3x3 filters, and each layer is 

followed by a ReLU activation function and a 2x2 maximum pooling layer. The number 

of filters in the first layer and the second layer is 32, the third layer and the fourth layer 

are 64, and the fifth layer is 128. 

Ensemble Learning. In the application of ensemble learning, the XGBoost algorithm 

operates by incrementally introducing additional tree structures, aiming to optimize the 

objective function. The objective function of the algorithm consists of two parts: the 

initial element represents a standard loss function, which measures the discrepancy 

between the forecasted outcomes and the true data points. The second is a regularization 

term, which is used to control model complexity and prevent overfitting. In contrast, 

the RF model builds multiple decision trees and synthesizes their results to bolster the 

accuracy of the robustness and prediction of the model. Kiangala and Wang (2021)[10] 

compare the performance of these two algorithms in dealing with nonlinear data 

regression problems and show that XGBoost has significant advantages in accuracy and 

processing speed, while random forest performs better in model stability and 

generalization ability. The objective function can be expressed as: 

Obj=∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑ 𝛺(𝑓𝑘)𝐾
𝑘=1

𝑛

𝑖=1
                     (7) 
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The l is the loss function, ŷi is the predicted value of the model for the i-th sample, 

yi is the actual value, K is the number of trees in the model, Ω is the regularization 

term, andfk is the KTH tree. 

The regularization term usually consists of the number of leaf nodes of the tree and 

the square of the leaf node value, as follows: 

Ω(f)= 𝛾T+
1

2
𝜆 ∑ 𝑤𝑗

2
𝑇

𝑗=1
                     (8) 

Where T is the number of leaf nodes in the tree, wj is the value of the JTH leaf node, 

and γ and λ are regularized parameters. 

4 Experimental Setup and Results  

4.1 Dataset Overview 

The central focus of this study lies in the application of deep learning technology to 

automatically identify and classify rice leaf diseases. As shown in Figure 1, our dataset 

contains images from ten different leaf diseases, as well as healthy plant leaves as a 

reference. These categories include "Normal", "Explosion", "hispa", etc. Among them, 

the number of "normal" samples is the highest and the number of 

"bacterial_leaf_streak" samples is the lowest (Figure 4).  

 
Fig.4 Dataset distribution  
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In this test, the critical benchmarks for gauging the efficacy of the predictive model 

are the precision of its outcomes and the Kappa statistic. The precision metric, an 

inherently straightforward measure of performance, delineates the ratio of correctly 

identified instances by the model relative to the entire sample pool. Within the scope of 

this research, accuracy is defined as the proportion of disease imagery accurately 

categorized by the model in relation to the entire collection of images within the 

examination dataset. The Kappa coefficient compares the difference between the actual 

observed consistency and the accidental consistency. Kappa values generally extend 

across a spectrum from -1 to 1, where more elevated values are suggestive of a superior 

classification model performance. 

Before starting model training, we perform a series of pre-processing steps on the 

image data to optimize the input quality of the model. As shown in Figure 5, after 

processing, we obtained the pictures of various rice diseases with obvious 

characteristics. 

 
Fig.5. Image preprocessing  
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4.2 Model Tests Comparation 

In this paper, the performance of four models of SVM, RF, CNN and XGBoost in crop 

disease recognition task was carefully compared (Table 1). In the experiment, we found 

that the CNN model showed excellent performance with a high accuracy of 90.58% 

and a Kappa coefficient of 0.8956, which reflects its strong ability in processing image 

data. In this method, complex image features are extracted by multi-layer convolutional 

layers, model training is completed by 10 epoch iterations, and parameters are 

optimized. As shown in the figure 6, the training accuracy has increased from the initial 

approximately 18.73% to 88.48%, and the verification accuracy has increased from 

35.22% to 90.58%. This demonstrates the model's adeptness at identifying pathologies 

across the spectrum of rice leaf conditions. 

Table 1 The results of accuracy and kappa 

Model Accuracy Kappa 

SVM 72.81% 0.6851 

Random Forest 69.77% 0.6510 

CNN 90.58% 0.8956 

XGBoost 88.95% 0.8731 

 
Fig. 6. SVM Model Accuracy  

Compared to CNN, XGBoost's accuracy is slightly lower (88.95%), but it performs 

better in execution speed and takes about 70% of the time of the CNN model. This is 

mainly due to its gradient lifting mechanism. As shown in the table 2, XGBoost's 
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accuracy, recall, and F1 scores across all categories show strong performance, 

indicating a good balance between categories. 

Table 2 The result from different methods 

Classification Precision Recall F1-measure 

normal 0.90 0.90 0.90 

bacterial_leaf_blight 0.94 0.70 0.80 

bacterial_leaf_streak 0.88 0.90 0.89 

bacterial_panicle_blight 0.89 0.76 0.82 

blast 0.88 0.92 0.90 

brown_spot 0.92 0.86 0.89 

dead_heart 0.95 0.91 0.91 

downy_mildew 0.95 0.80 0.87 

hispa 0.83 0.93 0.88 

tungro 0.89 0.90 0.90 

In contrast, SVM and random forest obtained similar results and were weaker in 

classification performance. The accuracy of SVM model was 69.77% and the Kappa 

coefficient was 0.6510, indicating that SVM was not accurate in distinguishing disease 

categories with similar visual features. This shows that even though we employ kernel 

techniques to accommodate the nonlinear features of this case, SVM has limitations in 

handling complex image datasets. 

The accuracy and Kappa coefficient of random forest model in this experiment were 

low (72.81% and 0.6851, respectively). As shown in the figure 7, its confusion matrix 

shows some specific categories, such as "bacterial_leaf_streak" and "dead_heart", and 

the classification performance of the model is poor, which may be due to the highly 

similar image features between these categories. In addition, if a large number of dark 

squares appear in the non-diagonal part of the confusion matrix, it indicates that the 

model has more classification errors in this part. For example, the "dead_heart" 

category has deep squares in non-diagonal positions, which means that samples in this 

category are often misclassified as other diseases. 
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Fig. 7. Random Forest Confusion Matrix  

5 Conclusion 

This paper introduces a new application of computer vision in crop pest classification, 

aimed at addressing a major challenge in modern agriculture. Machine learning 

techniques are utilized to automatically identify and classify crop pests and diseases in 

the Rice leaf dataset. Empirical findings indicate that the CNN model's precision 

slightly outperforms alternative approaches, albeit with the most diminished 

operational efficiency. The superiority of CNN in deciphering complex patterns in 

agricultural images is rigorously tested and proven. When combined with other 

machine learning techniques, the CNN model can achieve high accuracy but requires 

optimization in terms of implementation efficiency. Furthermore, it is observed that 

image quality and the comprehensiveness of the dataset significantly impact the 

experiment, underscoring the need for rich and diverse data to train robust models. The 

convergence of computer vision and agriculture offers a promising pathway to 

sustainably meet the escalating demands of a growing population. Our research 

indicates that in the future, real-time automated detection systems could be directly 
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deployed in the agricultural sector to provide farmers with crucial information for 

prompt and effective response to threats, thereby ensuring crop health and food supply. 
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medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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