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Abstract In a 100-meter race, segmented data every 10 meters is crucial for 

studying an athlete's performance. Although there are currently two ways - 

official provision and video analysis - to obtain segmented data, both have 

significant drawbacks, making it very difficult to obtain segmented data at 

present. To address this issue, this study created a relevant dataset, defined the 

corresponding input sequences, and constructed a satisfactory prediction model 

based on Random Forests to predict these segmented data. Users only need to 

input data at any position and in any quantity within the sequence to obtain 

accurate segmented data every 10 meters. In addition, this paper also explored 

the model to a certain extent, and summarized the characteristics of input 

sequences that contribute to the generation of high-quality prediction results: the 

quantity of known data should be as large as possible; the distribution of known 

data should be as dispersed as possible; the positions of known data should be as 

close as possible to each 10-meter; and the positions of known data within the 

first 50 meters are more favorable than those in the latter 50 meters. Under these 

guidelines, users of the model can better utilize it to obtain satisfactory prediction 

results. 
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1 Introduction 

In a 100-meter race, the segmented data of athletes every 10 meters is crucial for 

studying the performance of 100-meter sprinters [1]. Analysts can obtain the speed 

variations of athletes during the race through these segmented data, thereby further 

analyzing the technical characteristics and issues of the athletes [2][3]. However, 

obtaining complete segmented data for every 10 meters is quite difficult, which results 

in a scarcity of existing data.  

There are currently two main measurement methods, both of which have significant 

drawbacks. The first method involves direct on-site measurements at the competition 

venue. However, due to the lack of necessary equipment and personnel at the majority 

of current venues, conducting these measurements would require procuring a large 

quantity of relevant measuring devices or training numerous personnel, which makes 

widespread implementation quite difficult. Throughout history, in most 100-meter  
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races, officials have rarely provided segmented data for every 10 meters. Even in top-

level events such as the Olympics and World Championships, only partial 10-meter 

segmented data is occasionally provided (Table 1 presents segmented data from the 

2009 Berlin World Championships provided by the IAAF) [4]. Besides, it's also 

impossible to obtain segmented data from past races using this method since it's 

impossible to go back to the past to deploy the measuring devices. 

 

Table 1 Segmented Data from the 2009 Berlin World Championships provided by the IAAF 

Name Round t-

20m 

t-

40m 

t-

60m 

t-

80m 

t-

100m 

Usain Bolt 

Final 2.88 4.64 6.31 7.92 9.58 

SF 2.89 4.68 6.41 8.11 9.89 

Ht 2.93 4.73 6.47 8.20 10.03 

Ht 2.94 4.77 6.55 8.33 10.20 

Tyson Gay 

Final 2.92 4.70 6.39 8.02 9.71 

SF 2.99 4.80 6.54 8.21 9.93 

Ht 2.97 4.79 6.53 8.22 9.98 

Ht 3.02 4.85 6.62 8.35 10.16 

Asafa Powell 

Final 2.91 4.71 6.42 8.10 9.84 

SF 2.92 4.73 6.47 8.17 9.95 

Ht 2.89 4.69 6.41 8.10 9.95 

Ht 2.90 4.72 6.56 8.44 10.38 

The second method involves obtaining segmented data by measuring from race 

videos. The principle of this method is to analyze the video frame by frame through the 

landmark lines on the track, and then infer the data of athletes at each 10 meter segment 

[5] (Although there are no markings specifically indicating the positions of every 10 

meters on the track, there are many other landmark lines in the running area of the 100-

meter race track  (Figure 1), including the 10 hurdle lines for men's hurdles, the 10 

hurdle lines for women's hurdles, the starting line for the one mile run, the boundary 

line of the 4x100-meter relay exchange zones, and the last two hurdle lines for the 400-

meter hurdles [6]. Theoretically, analysts can utilize a total of 24 landmark lines from 

the video to obtain data of athletes). However, in reality, not every track has all these 

landmark lines. Analysts usually only have access to some of these markings, which 

greatly increases the difficulty of our inference. Besides, this method is also influenced 

by subjective factors, as different individuals may have different analysis results from 

the same video. 

 

Figure 1 Landmark Lines in the Area of the 100-meter Race Track  
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Above all, the aim of this research is to find a method to address these current 

drawbacks, reduce the difficulty of obtaining segmented data, and obtain more 

objective and accurate analysis results. This paper regards the data of athletes at all 

landmark lines as a sequence. A prediction model based on random forest algorithm of 

machine learning will be trained by generating any number of missing values from the 

complete sequence. Through this model, analysts can predict the segmented data of 

every 10 meters of an athlete by inputting any number of the data in the sequence. 

Furthermore, this article will also do some exploration on the model, discuss what kind 

of input sequence would be more conducive to the model generating better prediction 

results. 

2 Method 

In this research, the author first defined the form of the sequence and created the 

corresponding raw dataset. Then the author preprocessed the dataset to construct an 

input-output training set suitable for model training. Then, the author trained the 

training set based on RF (random forest), obtained a prediction model. Finally, the 

author explored the characteristics of ideal input sequences when using the model for 

prediction. The author discussed the impact of the quantity of known data in the input 

sequence on accuracy during the prediction phase, as well as which positions and 

distributions of data within the input sequence are conducive to achieving better 

prediction results. Figure 2 shows the workflow of the research in this paper. 

 

Figure 2 Research Workflow  

2.1 Definition of the sequence and raw dataset creating 

In the first place, the author defined the sequence that is going to be processed. The 

length of the sequence is 30, which includes the data at every 10 meters, and the data 

on the 24 landmark lines on the track mentioned in the introduction. This is because in 

practice, any of these 30 data points could potentially be obtained by analysts (the data 

on certain landmark lines measured through video, and the data at certain 10-meter 

intervals possibly provided by official sources such as the Olympics or World 

Championships). Based on this definition, the raw dataset was created (Figure 3), which 

was obtained by analysts through years of measurement. 
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Figure 3 The Raw Dataset 

2.2 Preprocessing 

The aim of the trained model is to predict the segmented data of every 10 meters of an 

athlete by inputting any number of the data in the sequence. Therefore, the training data 

for the model must contain missing values of any quantity or position, enabling the 

model to handle arbitrary missing sequence inputs. The author used a loop to generate 

all possible quantities of missing values in the input sequence. Then, within the loop, 

the author used a random function to generate random missing positions corresponding 

to the quantity. Since the last column of the sequence is the athlete's competition result, 

which is always available, it was not included in the range for generating missing 

values. Next, the sequence containing missing values were used as input sequences X, 

and the segmented data for every 10 meters was extracted as the prediction results y. 

Table 2 illustrates the preprocessing process. 

Table 2 Preprocessing training dataset 

Algorithm 1 Preprocessing training dataset 

Input: 

samples: samples from the raw dataset 

Output: 

X: Input sequences for training 

y: Output prediction results for training 

 

1 for each sample in samples do 

2 for missing number from 1 to 29 do 

3         Randomly select non-repeating missing positions with the quantity of missing 

number 

4         Set the values at the missing positions of the sample to -1 

5         Append the sample with missing values to X 

6         Select the segmented data in every 10 meters from the sample 

7         Append the segmented data to y 

8     end for 

9 end for 

10 return X and y 
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Finally, apply the aforementioned process to 80% of the data from the raw dataset. 

Integrate all X and y as the training dataset for the model, and the other 20% data from 

the raw dataset was kept as the testing dataset. 

2.3 Training with Random Forest Model 

Random Forest (RF) is an ensemble learning method. It predicts by constructing 

multiple decision trees and combining them together. From a technical standpoint, its 

concept can be represented by the following formula: 

𝐼𝑚𝑝(𝑋𝑗) =
1

𝑀
∑ ∑

𝑝(𝑡)

𝑝(𝑡𝑡𝑜𝑡𝑎𝑙)
𝑡

𝑀

𝑚=1

⋅ ⅈ𝑚𝑝(𝑋𝑗 , 𝑡) (1) 

where 𝐼𝑚𝑝(𝑋𝑗) represents the importance of variable 𝑋𝑗, 𝑀 is the total number of 

trees in the random forest, 𝑡 is the node index in tree 𝑚, 𝑝(𝑡) is the proportion of 

samples contained in node 𝑡, and ⅈ𝑚𝑝(𝑋𝑗 , 𝑡) is typically defined as the decrease in node 

impurity [7].  

Random Forest improves the prediction accuracy of individual decision trees by 

majority voting or averaging, and demonstrates high accuracy in handling high-

dimensional data and sequences. In addition, it can enhance model diversity through 

random feature selection and bootstrapping sampling. By averaging multiple trees, it 

reduces the correlation between individual decision trees, thereby reducing the 

likelihood of overfitting [8]. Therefore, the author chose the Random Forest model for 

predicting sequences. 

The author trained the random forest model using X and y obtained from 

preprocessing, and got a model. Through this model, analysts can predict an athlete’s 

segmented data of every 10 meters by inputting any number and any positions of the 

data in the sequence. And the author evaluated the model's prediction performance by 

the Mean Squared Error (MSE) between predicted and actual values [9]. The training 

results will be presented in the Result section. 

2.4 Exploration of Ideal Input Sequences for Prediction 

The quantity of known data in the input sequence. First, the author explored the 

impact of the quantity of known data in the input sequence on generating ideal 

prediction results, as shown in table 3. 

Table 3 Exploration of the quantity of known data 

Algorithm 2 Exploration of the quantity of known data 

Input: 

samples: samples from the testing dataset 

Output: 

MSE: Mean squared error of prediction under different known number 

 

1 for known number from 1 to 29 do 

2 for each sample in samples do 
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3         Randomly select non-repeating known positions with the quantity of known number 

4         Keep only the values at the known positions of the sample and set the rest to -1 

5         Append the sample with known values to X 

6         Select the segmented data in every 10 meters from the sample 

7         Append the segmented data to y 

8     end for 

9     Inputting X into the trained random forest model to obtain predicted results y' 

10     Calculate the mean squared error between y and y', and store it in an array MSE 

11 end for 

12 Plot the change of MSE with the known number 

The author varied the quantity of known data in the input sequence, and observed 

the changes in MSE. The output results will be presented in the Result section.  

The positions of known data in the input sequence.  Next, the author explored the 

importance of data at different positions in the sequence for generating ideal prediction 

results, as shown in table 4. 

Table 4 Exploration of the positions of known data 

Algorithm 3 Exploration of the positions of known data 

Input: 

samples: samples from the testing dataset 

Output: 

MSE list: The length of the list is equal to the length of the input sequence (29), where each 

position's value represents the sum of the predicted MSEs for all combinations involving that 

position in the input sequence. 

 

1 for known number from 1 to 29 do 

2     Generate all combinations of positions where known data is located under the known 

number 

3     for each combination in combinations do 

4 for each sample in samples do 

5             Keep the values at the positions in combination of the sample and set the rest to 

-1 

6             Append the sample with values at the positions in combination to X 

7             Select the segmented data in every 10 meters from the sample 

8             Append the segmented data to y 

9         end for 

10         Inputting X into the trained random forest model to obtain predicted results y' 

11         Calculate the MSE between y and y' 

12         Add the MSE value to the corresponding combination position in the MSE list 

13 end for 

14 end for 

15 Normalize and plot the MSE list 

The author traversed all input sequences and accumulated the MSE values for each 

case to the corresponding positions in the MSE list. Since each position is accumulated 

the same number of times, the smaller the accumulated value, the more important the 

position is for generating ideal prediction results. The output results will be presented 

in the Result section. 
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The distribution of known data in the input sequence. Finally, the author explored 

how the distribution of known data in the sequence is more favorable for the generation 

of ideal prediction results (e.g., discrete distribution, concentrated distribution.). The 

author defined an indicator - dMAE for evaluating distribution:  

𝑑𝑀𝐴𝐸 =
1

𝑛
∑(

28(𝑖 − 1)

𝑛 − 1
+ 1 − 𝑃𝑖)

𝑛

𝑖=1

(2) 

where 𝑛 represents the number of known data in the input sequence, 𝑃𝑖  represents 

the position index of the 𝑖-th known data in the input sequence. dMAE represents the 

dispersion degree of the known data distribution in the input sequence, where a smaller 

value indicates a greater dispersion. Table 5 is the exploration of the distribution of 

known data.  

Table 5 Illustrates the exploration process: 

Algorithm 4 Exploration of the distribution of known data 

Input: 

samples: samples from the testing dataset 

Output: 

dMAE-MSE_data: The data pair consisting of the dMAE of the input sequence and the MSE 

of the prediction result 

 

1 for known number from 1 to 29 do 

2     Generate all combinations of positions where known data is located under the known 

number 

3     for each combination in combinations do 

4 for each sample in samples do 

5             Keep the values at the positions in combination of the sample and set the rest to 

-1 

6             Append the sample with values at the positions in combination to X 

7             Select the segmented data in every 10 meters from the sample 

8             Append the segmented data to y 

9         end for 

10         Inputting X into the trained random forest model to obtain predicted results y' 

11         Calculate the dMAE of X and the MSE between y and y' 

12         Store dMAE and MSE as a dMAE-MSE_data 

13 end for 

14 end for 

15 Plot all dMAE-MSE_data 

The author traversed all input sequences, using the dMAE value of the input 

sequence as the horizontal axis and the MSE value of the prediction result as the vertical 

axis. After outputting, the relationship image between the prediction effect and the 

distribution of known data can be obtained. The output results will be presented in the 

Result section. 
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3 Result 

3.1 Training Result of the Prediction Model 

As shown in Figure 4, analysts can predict the segmented data at every 10 meters by 

inputting any number and any positions of data in the sequence to the model. The model 

will also show the MSE value to evaluate the model's prediction performance. 

 

Figure 4 Demonstration of the model 

The model's prediction accuracy is quite high, with MSE values consistently within 

0.002, and in the vast majority of cases, it is below 0.0005. Therefore, it can be 

concluded that the model can effectively achieve the purpose of predicting the 

segmented data of athletes every 10 meters. 

3.2 Results of the Exploration of Ideal Input Sequences for Prediction 

The quantity of known data in the input sequence. As shown in Figure 5, as the 

quantity of known data increases, the MSE value becomes smaller.  

 

Figure 5 Relationship diagram between known number and MSE 
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Therefore, it can be concluded that the more known data in the input sequence, the 

better it is for the model to generate good prediction results. 

The positions of known data in the input sequence. After normalizing the 

accumulated results, the importance of each data position is shown in Figure 6. 

 

Figure 6 The importance of each data position  

From this, it can be inferred that the data at the positions of each 10 meter is the 

most important for generating good prediction results, followed by the positions near 

each 10 meter location. Overall, the data positions within the first 50 meters are more 

important than those in the latter 50 meters, which is more conducive to the model 

generating good prediction results. 

The distribution of known data in the input sequence. The scatter plot of dMAE 

values of the input sequence and corresponding MSE values of the prediction results is 

shown in Figure 7: 

 

Figure 7 Scatter plot of the relationship between MSE and dMAE  

It can be observed that as the dMAE value of the input sequence increases, the MSE 

value of the prediction results also tends to become larger. From this, it can be inferred 
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that the more dispersed the distribution of known data in the input sequence, the better 

it is to the model generating good prediction results. 

3.3 Discussion 

In terms of model construction, the predictive performance of the model constructed in 

this article is very good. This indicates that the construction of the dataset in this paper 

is scientific, and the preprocessing of the dataset as well as the selection of the model 

(random forest model) are also commendable. 

In terms of model exploration, this article explored the ideal input sequence of the 

model from three perspectives: the quantity of known data in the input sequence, the 

positions of known data in the input sequence, the distribution of known data in the 

input sequence. After exploration, the following conclusions were drawn: the more 

known data in the input sequence and the more dispersed the distribution, the more 

conducive it is for the model to generate a good prediction result. In addition, when 

using the model, data should be input as much as possible for every 10 meters and 

nearby positions, and it is advisable to input data from positions within the first 50 

meters as much as possible. This will be more conducive to the model generating better 

prediction results. At the same time, this article also has certain limitations. Due to the 

small size of the dataset used in this article, and most of them are results of elite athletes 

within 10 seconds, the model may overfit within the range of elite athletes and may not 

be suitable for athletes at other levels, resulting in poor generalization [10]. 

4 Conclusion 

In this study, a model was constructed to predict segmented data for the 100-meter race 

and explored to a significant extent. In the construction phase, the author initially 

compiled a relevant raw dataset by aggregating available landmark lines on the track. 

Subsequently, the author generated a training dataset by introducing randomly 

generated missing data points and trained it using a random forest model, resulting in a 

notably effective prediction model. 

During the exploration phase, the author investigated three key aspects: the quantity, 

positions, and distribution of known data within the input sequence. It was deduced that 

input sequences conducive to producing accurate prediction results possess the 

following characteristics: a substantial quantity of known data, a dispersed distribution 

of known data, proximity of known data positions to each 10-meter interval, and a 

preference for known data within the initial 50 meters over the latter 50 meters. These 

guidelines empower users of the model to optimize its utility and obtain satisfactory 

prediction outcomes. 

This research addresses a significant gap in the field of predicting segmented data 

for 100-meter races by enabling the acquisition of complete segmented data from any 

known data position, thereby alleviating the prevailing challenge of data scarcity. 

However, as outlined in the Discussion section, potential overfitting issues necessitate 
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further refinement and exploration by future researchers employing larger and more 

diverse datasets. 
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