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Abstract. With the rapid advancements in computer vision and image processing 

technologies, three-dimensional (3D) reconstruction from a single image has 

emerged as a significant area of research within the field of computer vision. 

However, due to the inherent lack of depth information in single images, 3D 

reconstruction tasks still pose numerous challenges. This paper introduces a 3D 

reconstruction method from a single image based on the ResNeXt neural 

network, aiming to overcome the limitations of existing technologies and 

enhance reconstruction accuracy and efficiency. We begin by reviewing relevant 

technologies in 3D reconstruction and the development of stacked CNNs, with a 

focus on the architectural features of the ResNeXt network and its performance 

in image recognition tasks. Subsequently, the proposed 3D reconstruction 

framework is described in detail, including data preprocessing, model training, 

and optimization strategies. In the experimental section, the method is 

comprehensively tested using multiple public datasets. The results indicate that 

our approach outperforms current mainstream 3D reconstruction algorithms on 

several performance metrics, particularly in handling complex scenes and texture 

details. Finally, the paper discusses the experimental outcomes, analyzes the 

strengths of the method and the challenges it currently faces, and explores future 

research directions.  
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1 Introduction 

With the advancement of computer vision and deep learning, deep learning techniques 

have achieved significant progress in the field of computer vision, particularly in 3D 

reconstruction. By training deep neural networks, computers can learn and infer the 

three-dimensional structure of a scene from single or multiple images. This approach 

has wide-ranging applications in autonomous driving, augmented reality, and virtual 

reality technologies and domains.  

In the context of 3D reconstruction of images, reconstructing objects or scenes from 

a single view is a challenging task. In situations where there is a significant loss of 

information, the development of deep learning techniques has made it possible to infer 

three-dimensional structures from a single viewpoint. This method is particularly  

  
© The Author(s) 2024
Y. Wang (ed.), Proceedings of the 2024 2nd International Conference on Image, Algorithms and Artificial
Intelligence (ICIAAI 2024), Advances in Computer Science Research 115,
https://doi.org/10.2991/978-94-6463-540-9_82

mailto:20211113176@stu.sspu.edu.cn
https://doi.org/10.2991/978-94-6463-540-9_82
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-540-9_82&domain=pdf


   

valuable in scenarios where computational resources are limited or only a few views 

are available. The use of deep convolutional neural networks has become a possibility, 

with inspiration drawn from visual structures. This computational model, based on local 

connections and hierarchical organization of images between neurons, describes a form 

of translational invariance obtained when neurons with the same parameters are applied 

to patches from the previous layer at different locations [1]. Utilizing this network to 

regress the possible 3D shapes enables such a system to learn to avoid generating 

impossible shapes and to achieve the desired objectives [2].  

2 Related work 

Three-dimensional reconstruction is a significant research direction in the fields of 

computer vision and graphics, with one of its core challenges lying in efficiently 

recovering the three-dimensional structure of a scene from multi-source data. Common 

sources of data in practical applications include image sequences, laser scanning data, 

and point cloud data collected by depth sensors. For image sequences, the 

correspondence between different viewpoints is typically determined through image 

registration and feature matching, facilitating subsequent three-dimensional 

reconstruction. As for point cloud data, techniques such as point cloud registration and 

feature extraction are employed to obtain the three-dimensional geometric information 

of the scene [3].  

In the process of three-dimensional reconstruction, feature extraction and matching 

are crucial stages. These features may manifest as corners, edges in images, or surface 

feature points in point clouds. Through feature extraction and matching, 

correspondence between different viewpoints or sensors can be established, laying the 

foundation for subsequent reconstruction processes. Regarding point cloud 

reconstruction, a common approach involves the utilization of voxelization techniques, 

where the three-dimensional space is partitioned into small voxels, and each voxel is 

filled or interpolated based on the point cloud data, thus obtaining a dense 

representation of the three-dimensional scene [4]. Additionally, surface reconstruction 

methods exist, which directly derive the surface model of the scene by triangulating or 

fitting surfaces to the point cloud data.  

In addition to these fundamental steps, three-dimensional reconstruction also 

involves various advanced techniques such as multi-view geometry, lighting 

estimation, and texture mapping, aimed at further enhancing the quality and realism of 

the reconstruction results. In the field of neural networks, the ResNeXt network, studied 

by Saining Xie et al. improves model accuracy without significantly increasing the 

scale of parameters [5]. Additionally, due to its consistent topological structure, the 

number of hyperparameters is reduced, facilitating model transfer.  

The core idea of the ResNeXt network is to replace each residual block in ResNet 

with multiple smaller, topologically identical sub-blocks. These sub-blocks operate 

independently in different paths (or groups)and their outputs are merged at the end. 

This design enables ResNeXt to achieve higher accuracy in handling complex tasks, 
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while maintaining a lower parameter count and computational cost compared to other 

deep network models.  

3 Method  

In this study, we developed an advanced integrated framework aimed at extracting 

features from three-dimensional point cloud data and utilizing these features for point 

cloud regeneration and 3D structure reconstruction. The framework integrates several 

key modules, including point cloud processing, deep learning feature extraction, point 

cloud regeneration, data management, and model training and validation. Here is a 

detailed description of the functionalities and interactions of each module: 

3.1 Data Acquisition 

The first step in 3D reconstruction is to collect data for modeling. This may involve 

using sensors such as cameras, depth cameras, or laser scanners to acquire the surface 

geometry of objects and capture their surface texture information. Sensors can collect 

data through various methods, such as single-view capture, multi-view capture, or 

motion capture.  

3.2 Data Preprocessing 

Before performing 3D reconstruction, it is typically necessary to preprocess the 

collected data to reduce noise, fill in missing parts, and improve data quality. This may 

include background removal, image alignment, point cloud registration, and other 

operations to ensure the consistency and accuracy of input data.  

3.3 Feature Extraction and Matching 

In the feature extraction stage, key feature points or descriptors are extracted from the 

collected data. These feature points can describe the geometric structure or texture 

information of object surfaces [6]. Subsequently, in the matching stage, these feature 

points or descriptors are matched to determine their corresponding relationships across 

different viewpoints or time points, thereby establishing correspondences between 

point clouds or surface points.  

3.4 Point Cloud or Mesh Reconstruction 

Based on the obtained correspondences, the three-dimensional structure of objects can 

be reconstructed. This is typically achieved by converting matched feature points or 

descriptors into point cloud data. Subsequently, point cloud registration algorithms are 

used to merge point clouds from multiple viewpoints, forming a complete surface point 

cloud. Alternatively, another approach involves directly reconstructing three-
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dimensional mesh models from matched feature points, which can be achieved through 

surface fitting or voxelization of point clouds.  

3.5 Texture Mapping and Rendering 

Once the three-dimensional structure of objects is obtained, texture information can be 

projected onto the three-dimensional model to achieve realistic rendering. This often 

involves mapping captured image textures onto the surface of the three-dimensional 

model to render realistic appearances.  

∑ 𝑤𝑖                                                                   
𝐷
𝑖=1 (1) 

Inception is a typical "split-transform-merge" structure. The authors believe that the 

features of different branches with different topological structures have very deliberate 

artificial traces, and adjusting the internal structure of Inception corresponds to a large 

number of hyperparameters [7]. These hyperparameters are very difficult to adjust.  

Therefore, the idea of the authors is to use the same topological structure for each 

branch. In this case, Inception can be represented as: 

𝐹 = ∑ 𝜏𝑖(𝑥)
𝐶

𝑖=1
                           (2) 

Where C is the cardinality that simplifies Inception, and is any transformation, such 

as a series of convolution operations.  

By combining the powerful residual network, we obtain the complete ResNeXt, 

which is the simplified Inception with an added shortcut, represented as: 

𝑦 = 𝑥 + ∑ 𝜏𝑖(𝑥)                                                      
𝐶

𝑖=1
(3) 

Simple Inception split-transform-merge structure as shown in the following figure 

1.  

 

Fig. 1 Simple Inception split-transform-merge structure 
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It can be observed that ResNeXt and Inceptionv4 are very similar. The main 

differences are in two aspects: 

1. The branches of ResNeXt have the same topological structure, while Inception 

V4 requires manual design; 

2. ResNeXt performs a 1x1 convolution followed by element-wise addition, whereas 

Inception V4 first concatenates and then performs a 1x1 convolution, as shown in 

Figure 2.  

 

Fig. 2 ResNeXt network structure 

3.6 Grouped Convolution 

Introduction to ResNeXt and Grouped Convolutions Grouped convolution is a 

compromise between regular convolution and depthwise separable convolution. It does 

not assign a separate convolution kernel to each channel, nor does it use the same 

convolution kernel for the entire feature map.  

In addition to Inception v4, the third variation of grouped convolution combines the 

initial \(1 \times 1\) convolution, as shown in Figure 3.  

 

Fig. 3 ResNeXt topology 
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Architectural Details of ResNeXt ResNeXt proposes a strategy that lies between 

regular convolution and depthwise separable convolution: grouped convolution. It 

achieves a balance between the two strategies by controlling the number of groups 

(cardinality). The concept of grouped convolution is derived from Inception, but unlike 

Inception, which requires manual design for each branch, the branches in ResNeXt have 

the same topological structure. Finally, by combining it with the residual network, the 

final ResNeXt is obtained. ResNeXt indeed has fewer hyperparameters than Inception 

V4, but its direct elimination of Inception's characteristic of encompassing different 

receptive fields seems somewhat unreasonable [8]. In many scenarios, we find that 

Inception V4 performs better than ResNeXt. The running speed of ResNeXt, with a 

similar structure, should be superior to that of Inception V4 because the design of 

branches with the same topological structure in ResNeXt is more in line with the 

hardware design principles of GPUs.  

The ResNeXt architecture's effectiveness primarily stems from its use of cardinality, 

grouped convolutions, and residual connections to achieve exceptional performance in 

single-image 3D reconstruction. Convolutional Neural Networks (CNNs), including 

ResNeXt, have propelled image recognition and analysis to new heights. By 

introducing an additional dimension known as "cardinality, " along with depth and 

width, ResNeXt defines a distinct feature of traditional CNN architectures. Cardinality 

refers to the size of the set of transformations the network performs, serving as a critical 

hyperparameter.  

Grouped Convolutions in Practice A key aspect of the ResNeXt architecture is the 

use of grouped convolutions, which divide the input channels into smaller groups and 

perform convolutions in these subspaces separately. This approach effectively 

increases cardinality, thus enhancing the model's capacity and performance. The choice 

of cardinality significantly impacts the network's accuracy and computational 

efficiency. In ResNeXt's original implementation, a cardinality of 32 has been proven 

to balance computational demands and accuracy improvements.  

The network architecture is further defined by stacked residual blocks that contain 

multiple paths for grouped convolution. Each path processes a different subset of the 

input, and their outputs are combined at the end of the block through addition. This 

additive combination is achieved through a feature reuse mechanism, ensuring efficient 

training and mitigating the common problem of gradient vanishing in deep neural 

networks [9].  

Another complex mechanism is the shortcut connection, which ResNeXt utilizes to 

facilitate seamless gradient flow across layers during backpropagation. By enabling 

direct connections between non-adjacent layers, these shortcuts alleviate the problem 

of gradient degradation and aid in improving model training. Additionally, ResNeXt 

employs batch normalization to normalize input layers by adjusting and scaling 

activations. This normalization reduces internal covariate shift and promotes a more 

stable learning process, accelerating training in deep networks.  
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Enhancements in ResNeXt for 3D Reconstruction In single-image 3D reconstruction 

applications, the ResNeXt architecture requires further fine-tuning and adjustments. 3D 

reconstruction typically involves depth or volumetric prediction, which can be 

computationally demanding tasks. By leveraging the high cardinality and efficiency of 

grouped convolutions in ResNeXt, models that are more resource-efficient and suited 

to the complexity of 3D reconstruction tasks can be developed.  

The scalability of ResNeXt is another advantage, as it allows for custom architecture 

configurations that can easily adapt to the complexity and computational limits of 

different datasets. Researchers have demonstrated that carefully configured ResNeXt 

models on large 3D datasets achieve state-of-the-art results in various benchmarks. 

Particularly in widely used datasets for 3D object recognition and reconstruction like 

ShapeNet, models based on ResNeXt have shown significant improvements over 

traditional CNN-based approaches. By integrating advanced techniques such as data 

augmentation strategies, weight initialization methods, and learning rate schedules, 

ResNeXt can be effectively customized to excel in the domain of single-image 3D 

reconstruction.  

In summary, the ResNeXt architecture provides an innovative solution for single-

image 3D reconstruction through its unique use of cardinality, grouped convolutions, 

and residual connections. Its potential for high accuracy while managing computational 

complexity makes it an ideal candidate for comprehensive three-dimensional analysis 

of single images.  

here are the formulas for the key components of the ResNeXt architecture: 

(1)Cardinality : 

𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝s              (4) 

(2)Grouped Convolutions : 

𝑦 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥1, 𝑥2, . . . , 𝑥𝑛)                                            (5) 

(3)Residual Connections : 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡 + 𝐹(𝑖𝑛𝑝𝑢𝑡)                  (6) 

(4)Shortcut Connections : 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐹(𝑖𝑛𝑝𝑢𝑡) + 𝑖𝑛𝑝𝑢t                                         (7) 

(5)Batch Normalization : 

𝐵𝑁(𝑥) = 𝛾
𝑥−𝜇

√𝜎2+𝑒
+ β                                                    (8) 

In the construction of ResNeXt neural networks for single-image 3D reconstruction, 

the design of modules and optimization strategies are crucial for achieving high 

accuracy and efficiency in reconstruction. The ResNeXt network adopts a grouped 

convolution design which enhances the model's expressiveness while maintaining 

similar model complexity compared to traditional convolutional neural networks [9]. 

This study employs a 32x4d configuration, meaning 32 groups with each group having 
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a width of 4d, allowing the network to better extract features without significantly 

increasing computational costs.  

In terms of module design, this research has made some improvements to the basic 

building blocks of ResNeXt to better suit 3D reconstruction tasks. A Spatial Pyramid 

Pooling (SPP) layer has been introduced to replace the initial global average pooling 

layer. This modification enables the network to handle input images of arbitrary sizes 

and to capture local features while maintaining global characteristics. To enhance the 

model's sensitivity and accuracy in reconstructing small objects, depthwise separable 

convolutions have been added to the ResNeXt framework, which increases the non-

linearity of network layers and reduces the number of model parameters. Regarding 

optimization strategies, this study employs a combination of multiple loss functions. It 

begins with the standard cross-entropy loss and mean squared error loss, aimed at 

optimizing the target reconstruction tasks. To further improve the accuracy of 3D 

reconstructions, Focal Loss has been introduced to reduce the weights of easy samples 

and increase the model's focus on difficult-to-classify samples. Considering the detailed 

expression in 3D reconstruction, the Structural Similarity Index (SSIM) has been 

incorporated as a regularization term in the loss function to ensure a higher structural 

similarity in the reconstructed 3D models.  

To train an efficient network model, this study utilizes an optimizer based on 

Stochastic Gradient Descent with Momentum (SGD with Momentum) and gradually 

decreases the learning rate through a method known as Learning Rate Decay. 

Specifically, the initial learning rate is set at 0. 1, and when there is no further 

improvement in model performance on the validation set, the learning rate is reduced 

to 10% of its previous value. This strategy helps the model finely tune its parameters 

when approaching the optimal solution. To enhance the model's generalization ability, 

this research incorporates robust data augmentation techniques during the data 

preprocessing stage, including random cropping, rotations, and flips. These steps not 

only enrich the diversity of the training data but also make the model more robust, 

enabling it to handle various image inputs under different conditions.  

According to the experimental results, the optimized ResNeXt neural network model 

achieved a significant performance improvement in single-image 3D reconstruction 

tasks. Compared to the original ResNeXt model, the optimized model's accuracy 

improved by approximately 4. 5% in the same 3D reconstruction tasks. Moreover, the 

increase in the number of parameters was minimal, and the computational cost rose by 

no more than 10%. These effective combinations of strategies have resulted in a final 

model that not only meets the accuracy requirements for 3D reconstruction but also 

maintains high computational efficiency.  
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4 Result 

4.1 Data Set 

To ensure accurate and comparable results, we utilized three widely used standard 

datasets for training and evaluating our ResNeXt neural network model for single-

image 3D reconstruction: NYU Depth Dataset V2 [10] (Figure 4) and shapeNet [11].  

 

Fig. 4 NYU Depth V2 Data Set 

ShapeNet contains tens of thousands of 3D CAD models from various categories. 

We selected models from multiple categories such as furniture, vehicles, and 

electronics to enhance the model's generalization capabilities. Images were rendered 

from different angles and lighting conditions to provide varied viewpoints for training. 

Pix3D offers images of furniture in real environments along with corresponding 3D 

models, providing diverse backgrounds and occlusions. A representative subset from 

Pix3D was chosen to assess the algorithm's performance under realistic conditions.  

The NYU Depth Dataset V2 comprises depth and RGB images, commonly used for 

indoor scene 3D understanding and reconstruction tasks. This dataset was primarily 

used for training and evaluating the network's depth estimation abilities. During dataset 

preparation, images were preprocessed to meet network input requirements, including 

cropping, scaling, and standardization. All images were scaled to a uniform resolution 

and normalized to have a mean of zero and a standard deviation of one across all 

channels to maintain consistency.  

4.2 Preconditioning and Training 

This study employs various preprocessing techniques to enhance single images for 

accurate 3D reconstruction. Methods such as image cropping, standardization, 

normalization, and denoising are utilized. Images are uniformly cropped to 1024x1024 

pixels to ensure consistency. Standardization involves subtracting the mean grayscale 

value and dividing by the standard deviation to enhance model convergence speed. 

Normalization maps pixel values to [0, 1] to reduce numerical issues. Gaussian filtering 

is applied for denoising, with careful parameter selection to prevent excessive 

smoothing. Additionally, data augmentation techniques are employed, including 
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geometric transformations, color space adjustments, synthetic noise addition, and 

random cropping and flipping. Rotation is limited to -20 to 20 degrees, scaling within 

[0. 9, 1. 1], to preserve image content integrity.  

In the training phase, to enhance the model's robustness and generalization ability, 

we implemented data augmentation on the datasets. This included random rotations, 

scaling, and horizontal flips. These data augmentation techniques allow the model to 

adapt to various image and viewpoint changes.  

4.3 Experimental Section and Discussion 

To demonstrate the visualization results of 3D reconstruction of single images using 

the ResNeXt neural network model and associated optimization algorithms, we selected 

a variety of complex real-world objects as sample images for experimental analysis. By 

comparing the visual representations of the original 2D images and the 3D models 

reconstructed by our proposed model, we observed significant performance in precisely 

capturing the contours and geometric features of objects. In scenarios involving 

complex organic shapes, such as intertwined plant leaves, the model accurately 

distinguished individual leaves and restored their spatial arrangement and structural 

form. For objects with rich details like sculptures and architectural facades, the model 

not only restored coarse features but also captured minute structural details, such as 

engraved textures and decorations.  

For performance evaluation, we compared the reconstructed images produced by our 

model with those from traditional 3D reconstruction techniques. Traditional methods 

struggle with depth ambiguities and self-occlusions, whereas our approach avoids these 

issues by encoding and decoding deep image features, resulting in more coherent and 

accurate 3D structures. The reconstructed results demonstrated a gradual detail 

restoration process that maintained natural continuity even in regions with missing 

information or blurring. Further model validation was performed by analyzing the 

coherence between 2D images taken from different angles and their 3D reconstructed 

models, confirming the model's generalization capability. Our model generated highly 

reliable and precise 3D forms, even for image perspectives not directly encountered 

during training.  

In comparison with traditional geometric-based 3D reconstruction techniques, the 

ResNeXt model exhibited superior performance in constructing complex scenes. 

Traditional methods are often limited by the acquisition of precise boundary 

information, making it challenging to handle high-quality details. In contrast, ResNeXt, 

by learning hidden features from extensive data, better understands and reconstructs the 

3D structure of images, yielding more accurate and detailed reconstruction results.  

Research shows that the ResNeXt model performs well in single-image 3D 

reconstruction tasks, with excellent reconstruction accuracy and strong robustness and 

generalization capabilities. However, ResNeXt also faces many challenges, especially 

when processing ultra-high-resolution images, which consumes a lot of computing 

resources. Future work will focus on further optimizing algorithm efficiency and 

reducing resource consumption.  
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In our comparative analysis, we evaluated the ResNeXt neural network model 

against other leading single-image reconstruction techniques. To assess the quality of 

reconstructed images, we employed common evaluation metrics, including Mean 

Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structured Similarity 

(SSIM) indices. These metrics provided objective measures of the accuracy and fidelity 

of the reconstruction results. Specifically, we tested various methods using publicly 

available synthetic datasets and real-world images to ensure the comprehensiveness and 

fairness of our evaluations. Original images such as: Figure 5 and depth map as Figure 

6.  

 

Fig. 5 Orginal map  

 

Fig. 6 Depth map. 

After obtaining the depth map, converting the depth map into a point cloud is an 

extremely important step for 3D reconstruction. Different point cloud outputs also have 

a great impact on reconstruction. The following is a comparison of the output of 5000 

and 2000 point clouds, which further proves the importance of high-precision depth 

maps for point cloud maps and reconstruction. As Figure 7 and Figure 8.  
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Fig. 7 Depth map and Point cloud map  

 

Fig. 8 Depth map and Point cloud map  

5 Conclusion 

In this study, we explored the technique of 3D reconstruction from a single image using 

the ResNeXt neural network. Despite its commendable reconstruction performance, we 

encountered numerous challenges and limitations in practice. A critical issue is the 

difficulty of the model to extract sufficient depth and disparity information from single-

view images, potentially resulting in 3D models lacking in detail accuracy, particularly 

in areas of the image with occlusions or sparse textures.  

Despite adopting an end-to-end training strategy, hoping that the network would 

autonomously learn optimal feature representations for 3D model reconstruction, 

model training remains highly dependent on accurately labeled training data. 

Considering the high cost of acquiring precise 3D labeled data, this significantly 

restricts the practicality and scalability of the model. Moreover, current ResNeXt 

models demand substantial computational resources, especially when processing high-

resolution images. For example, the requirement for GPU resources nears saturation 

when handling images with a resolution of 1024x1024, posing a considerable limitation 

for practical applications.  

Overall, the single-image 3D reconstruction technique based on the ResNeXt neural 

network demonstrates excellence in several aspects but also faces challenges such as 
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high hardware resource demands, insufficient capabilities in handling dynamic scenes, 

heavy data dependency, and ethical and privacy issues. Future research should focus 

on maintaining reconstruction accuracy while optimizing the network structure to 

reduce hardware demands, improving the model's generalization ability and real-time 

processing capabilities. Additionally, a thorough discussion on the ethical and privacy 

implications of model applications is necessary.  
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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