

## Study on the Planning of Shared Bicycle Parking Spots Based on Public Participation

Kunze Sha\*, Wei Chen

School of Earth System Science, Tianjin University, Tianjin, 300072, China

\*Corresponding author. Email: 13920063526@163.com

**Abstract.** The problem of indiscriminate parking of shared bicycles in major cities in China is becoming increasingly serious and needs to be solved urgently. This paper is based on public participation, through the social platform to issue a research questionnaire on the planning and layout of parking points, using the hierarchy analysis method (Analytic Hierarchy Process, AHP) for weighting analysis, the results show that the proximity to transportation hubs and districts of the distance, better visibility, away from the barrier-free access, such as the indexes of the weight is higher, and to provide references for the level of the parking point urban design, as a way to optimize the layout of parking spots. Finally, research on planning and programming and electronic fence management is carried out to provide solutions for the management of indiscriminate parking.

**Keywords:** Shared Bicycle; Parking Layout Planning; Public Participation; Analytical Hierarchy Process (AHP).

## 1 Introduction

In recent years, more and more cities both domestically and internationally have emerged with the emergence of shared bicycles as an emerging public transportation tool. The importance of shared bicycles in urban transportation has been increasing, solving the "last mile" problem of citizens' travel. However, shared bicycles have changed the way citizens travel, brought convenience to citizens, and also brought problems to urban development, especially the problem of shared bicycles being parked and misplaced indiscriminately, Occupying a large amount of public space in the city, blocking urban traffic, and bringing a lot of problems to urban governance, the main reason is that the parking spaces for shared bicycles have not been properly planned <sup>[1]</sup>. At this stage, only a few "no-parking zones" are delineated by the electronic fence in the software of the main bike-sharing operators, in other words, in addition to the "no-parking zones", as long as they are within the operating range of the city, all other areas are "permitted to park", which sows hidden dangers for the haphazard parking and discharging of shared bicycles. In addition, although some cities (Tianjin) have designated parking spaces for shared bicycles on the ground, the designation of the parking spaces is relatively unreasonable, such as the distance of the parking space

<sup>©</sup> The Author(s) 2024

B. Siuta-Tokarska et al. (eds.), Proceedings of the 2024 2nd International Conference on Management Innovation and Economy Development (MIED 2024), Advances in Economics, Business and Management Research 300, https://doi.org/10.2991/978-94-6463-542-3\_23

from the cyclist's destination is far away, the scale of some of the parking spaces is too small, which leads to the overflow of vehicles during peak hours, and the number of parking spaces is too small, and the layout is unreasonable, which leads to the spontaneous formation of a number of "parking lots", and even directly parked at random on the street <sup>[2]</sup>. In short, the parking problem of shared bicycle needs to be solved urgently, and there is an urgent need to strengthen the planning of shared bicycle parking, as well as the establishment of a corresponding system for the management of shared bicycle parking.

On the issues related to shared bicycles, scholars and experts have done a lot of research work in recent years. In terms of the selection of indicators for the impact analysis of shared bicycles, Xie Lingyan et al. conducted a weighted analysis based on demand points, road network density, accessibility and other factors [3-4]; Shi Xiaofa et al. determined the resident population in the study area by determining the demand for shared bicycles in the study area based on the previous citywide travel statistics, so as to equip parking spaces <sup>[1]</sup>. In terms of optimizing the parking of shared bicycles, Liang Mingwon crawls the peak time shared bicycle movement data according to the peak heat map of Chengdu shared bicycle, determines the scope of shared bicycle connection in metro stations of different scales, and carries out the layout planning for parking and surrounding elements from the perspective of urban design <sup>[5]</sup>; Chen Peichen crawls the Mobike displacement data in Xi'an to determine the locations of serious piling up of shared bicycles, areas of high frequency of use, and the locations of spontaneously formed "parking lots"<sup>[2]</sup>; Deng Lifan climbed Beijing shared bicycle data and Point of Interest (POI) data, at the same time, POI points delineated a buffer zone of different radii, according to the frequency of shared bicycles in the buffer zone within the end of the ride to determine the POI points and riding behavior of the connection tightness<sup>[6]</sup>; Guo Yanru and other scholars tried to determine the distribution of parking spaces by constructing algorithms [7-9].

To summarize, firstly, the relevant studies only effectively delineate the parking area for a certain area, and their delineation methods are not generalizable, such as the campus has certain special characteristics, and their delineation methods are not enough to be used for the layout of parking spots in the social surface. Secondly, the modeling of some of the studies is too complicated and highly abstracted from the actual problem, and only individual time sections are used for analysis, so the results are more accidental. Furthermore, some indicators are less convincing in terms of indicator selection. Therefore, the principle of shared bicycle parking spot layout is still not clarified, and there is still a certain gap in the research. In this paper, we firstly issue a research questionnaire through social platform based on public participation, and then construct a decision-making model influencing the location of parking spots through hierarchical analysis method (AHP), analyze the weight index of each influencing factor, and conduct cluster analysis for each influencing factor to screen the key influencing elements and non-key influencing elements, and finally provide a basis for the planning of parking spots and the guidance of urban design (Figure 1). Selecting factors which indicate safety and convenience Investigating and surveying (DBased on the social media, conducting questionnaires (DReliability and validity text (3)Accounting the averge score of each factor  Conducting AHP to identify the weight of each index
 Conducting duster analysis to divide the factors into different influence levels
 Summarizing the factors

Making suggestions of urban planning and managment



## 2 Analysis of the Decision-Making Model of Shared Bicycle Site Selection Based on Public Participation

#### 2.1 Selection of Indicators

Decision-making model construction and indicator selection is an important step in the late parking planning and urban design guidance, so the selection of indicators should meet the following conditions <sup>[10]</sup>: (1) the independence of the factors affecting the indicators should be avoided as much as possible to interfere with each other; (2) the objective comprehensiveness of the text to establish the decision-making layer and the indicator layer, through the two-layer multifactor decision-making process is not only objective and comprehensive, but also focus on the main direction of planning; (3) easy to perceive and quantify, this paper is based on the expert scoring method, to strengthen public participation, the use of questionnaires and research, through the network of social media platforms, the interviewees through the corresponding indicators of the importance of the recognition of the judgments, the scoring range of 1-10 points, 1 is the lowest degree of recognition, and 10 points is the highest; (4) Universality, because the urban environment is extremely complex, the selection of the corresponding indicators should be adapted to the universal evaluation requirements.

This study is based on the AHP to construct the decision-making model affecting the location of parking spots, analyze the weight of each indicator, and the indicator selection is firstly divided into two parts, which are the decision-level indicators and the indicator-level indicators. Decision-making indicators focus on the principles and direction of the layout of the parking spot, shared bicycle as a means of transportation for travel, first of all, safety, must ensure the safety of the user, followed by convenience, the invention of the shared bicycle is to solve the last kilometer, to facilitate the travel of the public. Indicator layer indicators, to explore the public's perception of the possible impacts of pedestrian and vehicular traffic on riders and the related sources of hazards that may bring harm to riders; in the convenience-related indicators, to explore the urgency of the public's request for parking points close to destinations and places with a high demand for shared bicycles.

Combined with the results of related research <sup>[6]</sup>, the evaluation model and indicator selection were finalized, and the comprehensive evaluation indicator A was divided into 2 B-level decision-making levels and 29 C-level decision-making levels (Table 1).

| Comprehensive Evaluation | Decision Level | Indicator Layer                   | Interpretation of Indicators                                     |
|--------------------------|----------------|-----------------------------------|------------------------------------------------------------------|
| Indicators               |                |                                   |                                                                  |
| Shared Bicycle           | Security B1    | Intersection Location C1          | Parking spots should be located away from intersections for      |
| Comprehensive evaluation |                | Motorway distance C2              | safety                                                           |
| of site selection A      |                | Motorized and non-motorized       | Keep away from motorways to prevent traffic disruption           |
|                          |                | separation zone C3                | Avoid layout in the separation zone between motorized and        |
|                          |                |                                   | non-motorized lanes                                              |
|                          |                | Sidewalk Flow C4                  | Parking spots should be far away from roads with high            |
|                          |                | Line-of-motion visibility C5      | pedestrian flow                                                  |
|                          |                |                                   | Parking spots should meet the requirements of better             |
|                          |                |                                   | visibility for pedestrians, motorized vehicles, non-motorized    |
|                          |                | Barrier-free access C6            | vehicles and other traffic flows that may have an impact on      |
|                          |                | Greening C7                       | parking, to prevent traffic accidents caused by parking          |
|                          |                |                                   | Away from blind or barrier-free access                           |
|                          |                |                                   | Away from plants that need to be sprayed with pesticides or      |
|                          |                | Hazardous Facilities C8           | poisonous plants to prevent damage to bicycles and health        |
|                          |                |                                   | hazards to cyclists.                                             |
|                          |                | Billboards C9                     | Keep away from dangerous facilities, such as high-voltage        |
|                          |                |                                   | power poles                                                      |
|                          |                | Dangerous Trees C10               | Keep away from hanging billboards to avoid falling in windy      |
|                          |                |                                   | weather.                                                         |
|                          |                | Utility Wells C11                 | Keep away from poorly grown trees to prevent them from           |
|                          |                |                                   | breaking and causing harm to the parking spot.                   |
|                          |                | Street Frontage Buildings C12     | Keep away from utility wells to prevent damage to or loss of     |
|                          |                | Protected Buildings C13           | their covers.                                                    |
|                          |                | Construction Site C14             | Keep away from buildings facing the street to prevent falling    |
|                          |                | Slow-moving road C15              | objects.                                                         |
|                          |                |                                   | Keep away from protected buildings or old trees                  |
|                          |                |                                   | Away from building sites or construction zones                   |
|                          |                |                                   | Layout on both sides of side streets or roads with               |
|                          |                |                                   | slow-moving cars                                                 |
|                          | Convenience B2 | Destination C16                   | Stay close to your destination, within 100 meters if possible    |
|                          |                | Road crossing C17                 | Avoid crossing the road from the nearest parking spot to the     |
|                          |                |                                   | destination                                                      |
|                          |                | Transportation Interchange C18    | Prioritize parking spots at transportation access points.        |
|                          |                |                                   | Priority should be given to the entrances and exits of           |
|                          |                | Residential neighborhoodsC19      | neighborhoods                                                    |
|                          |                | Shopping CenterC20                | Priority should be given to shopping malls or large shopping     |
|                          |                | Small Shops C21                   | centers                                                          |
|                          |                | Park C22                          | Priority should be given to small restaurants and daily          |
|                          |                | Hospital C23                      | necessities stores.                                              |
|                          |                | Secondary SchoolsC24              | Priority is given to parks or riverfront green spaces.           |
|                          |                | Elementary Schools and Kindergar- | Priority should be given to hospital entrances and exits         |
|                          |                | tensC25                           | Priority should be given to secondary school entrances           |
|                          |                | Sports VenuesC26                  | Priority should be given to elementary school and kinder-        |
|                          |                | Rainproof C27                     | gartens                                                          |
|                          |                | <b>r</b> · · · · ·                | Priority should be given to gymnasiums                           |
|                          |                | Environmental HarmonyC28          | Try to locate in places with rain-proof facilities (a g equas    |
|                          |                | Shade C29                         | ing to rocate in places with falli-proof facilities (e.g. eaves, |
|                          |                | Shade C27                         | Darking spots should be in harmony with the sumeror direction    |
|                          |                |                                   | a arring spots should be in narmony with the surrounding         |
|                          |                |                                   | environment                                                      |
|                          |                |                                   | Prioritize parking spots in areas covered by shade trees         |

#### Table 1. Evaluation indicators for shared bicycle parking spots

#### 2.2 Model Construction and Weighting Analysis

In line with the principle of public participation, research on the public's perception of the importance of the factors affecting the layout of shared bicycle parking points, through the social platform for network questionnaire distribution, a total of 96 copies of the questionnaire received, received 92 valid answers, accounting for 95.83%. Most of the respondents fill out the questionnaire seriously, the information reflected is real and effective, overall the questionnaire is issued in large quantities and filled out in high quality, with strong persuasive power, which can be used for subsequent analysis. To calculate the average score of each indicator, the score of each question is shown in Table 2.

| Decision Level | Average<br>Score | Indicator Layer                                | Average Scores |
|----------------|------------------|------------------------------------------------|----------------|
| Security B1    | 8.39             | Intersection Location C1                       | 7.05           |
|                |                  | Motorway distance C2                           | 7.82           |
|                |                  | Motorized and non-motorized separation zone C3 | 7.42           |
|                |                  | Sidewalk flow C4                               | 4.93           |
|                |                  | Line-of-sight visibility C5                    | 8.17           |
|                |                  | Barrier-free access C6                         | 8.16           |
|                |                  | Greening C7                                    | 7.24           |
|                |                  | Hazardous facilities C8                        | 8.00           |
|                |                  | Billboards C9                                  | 7.79           |
|                |                  | Dangerous Trees C10                            | 7.03           |
|                |                  | Utility Wells C11                              | 7.37           |
|                |                  | Street Frontage Buildings C12                  | 7.20           |
|                |                  | Protected Buildings C13                        | 6.62           |
|                |                  | Construction Site C14                          | 7.37           |
|                |                  | Slow-moving Roads C15                          | 7.17           |
| Convenience B2 | 8.59             | Destination C16                                | 7.74           |
|                |                  | Road crossing C17                              | 7.45           |
|                |                  | Transportation Interchange C18                 | 8.46           |
|                |                  | Residential neighborhoods C19                  | 8.17           |
|                |                  | Shopping Center C20                            | 7.99           |
|                |                  | Small Shops C21                                | 7.16           |
|                |                  | Park C22                                       | 7.40           |
|                |                  | Hospital C23                                   | 7.62           |
|                |                  | Secondary SchoolsC24                           | 7.80           |
|                |                  | Elementary Schools and KindergartensC25        | 5.79           |
|                |                  | Sports VenuesC26                               | 6.87           |
|                |                  | Rainproof C27                                  | 7.57           |
|                |                  | Environmental HarmonyC28                       | 7.12           |
|                |                  | Shade C29                                      | 6.54           |

Table 2. Table of mean scores for each question of the questionnaire

The results of the questionnaire were analyzed for reliability and validity through SPSSAU software, in which the Cronbach  $\alpha$  coefficient was 0.964, which was greater than 0.8, and the questionnaire was highly reliable; The KOM value was 0.888, which was greater than 0.8, corresponding to a p-value of 0.000, which was less than 0.05, and the validity was very high through the Bartlett's test, so the questionnaire had a very high degree of reliability and validity (Tables 3 and 4). Hierarchical analysis method (AHP) for site selection decision through yaahp platform, the results were obtained as shown in figure 2, table 5 and table 6.

| Number of items                                                            | Sample size        | Cronbach αcoefficient |  |  |  |  |  |
|----------------------------------------------------------------------------|--------------------|-----------------------|--|--|--|--|--|
| 31                                                                         | 31 92              |                       |  |  |  |  |  |
| Table 4. Questionnaire validity test table         KMO and Bartlatt's Test |                    |                       |  |  |  |  |  |
|                                                                            | KMO value          | 0.888                 |  |  |  |  |  |
|                                                                            | Approximate cardin | ality 2866.542        |  |  |  |  |  |
| Bartlett Sphericity Check                                                  | k <i>df</i>        | 465                   |  |  |  |  |  |
| 1 5                                                                        | <i>p</i> value     | 0.000                 |  |  |  |  |  |
|                                                                            |                    | C14:0.0333            |  |  |  |  |  |
| C 2 6: 0.0336                                                              |                    | C 1 7:0.0364          |  |  |  |  |  |
| C 1 1:0.0333                                                               |                    | C 2:0.0353            |  |  |  |  |  |
| C 1 6: 0.0378                                                              |                    | C 2 1:0.0350          |  |  |  |  |  |
| C 6:0.0369                                                                 |                    | C 4: 0.0223           |  |  |  |  |  |
| C 1 9:0.0399                                                               |                    | C 2 7 : 0.0370        |  |  |  |  |  |
| 612 AND                                                                    |                    | -C 7:0.0327           |  |  |  |  |  |
| C 1 2:0.0325-                                                              |                    |                       |  |  |  |  |  |
| C 1 5:0.0324                                                               |                    | -C 2 9:0.0320         |  |  |  |  |  |
| C20: 0.0381                                                                |                    | - C 1: 0.0319         |  |  |  |  |  |
| 220.0.0301                                                                 |                    | -C 2 8:0.0348         |  |  |  |  |  |
| C 9:0.0352                                                                 |                    | C 1 3:0.0299          |  |  |  |  |  |
| C 2 5:0.0283                                                               |                    | C 2 4:0.0381          |  |  |  |  |  |
| C 3: 0.0335                                                                |                    | C10:00212             |  |  |  |  |  |
| C 2 2:0.0362                                                               |                    | C 1 8:00414           |  |  |  |  |  |
| C 5:0.0369                                                                 |                    | C 1 8:0.0414          |  |  |  |  |  |
| C 2 3:0.0373-                                                              |                    | 0.0.0002              |  |  |  |  |  |

 Table 3. Questionnaire reliability test table

 Cronbach's Reliability Analysis

Fig. 2. Weighting analysis of indicator layer based on yaahp platform

| Indicator level | Weights | Indicator level | Weights |
|-----------------|---------|-----------------|---------|
| C18             | 0.0414  | C28             | 0.0348  |
| C19             | 0.0399  | C26             | 0.0336  |
| C24             | 0.0381  | C3              | 0.0335  |
| C 2 0           | 0.0381  | C11             | 0.0333  |
| C16             | 0.0378  | C14             | 0.0333  |
| C23             | 0.0373  | C7              | 0.0327  |
| C27             | 0.0370  | C12             | 0.0325  |
| C5              | 0.0369  | C15             | 0.0324  |
| C6              | 0.0369  | C29             | 0.0320  |
| C17             | 0.0364  | C1              | 0.0319  |
| C22             | 0.0362  | C10             | 0.0318  |
| C8              | 0.0362  | C13             | 0.0299  |
| C2              | 0.0353  | C25             | 0.0283  |
| С9              | 0.0352  | C4              | 0.0223  |
| C21             | 0.0350  |                 |         |

Table 5. Ranking of indicator layer weighting analysis

Table 6. Decision-making weighting analysis ranking table

| Decision-making | Weights |
|-----------------|---------|
| B2              | 0.5059  |
| B1              | 0.4941  |

#### 2.3 Analysis of Statistical Results Based on Hierarchical Analysis Method (AHP)

For the decision-making level, the degree of influence of convenience is slightly greater than that of safety, the consistency ratio (CR) is less than 0.1, and its consistency is acceptable, the factor weights and consistency test are shown in Table 7.

Table 7. Consistency test table of factor weights at the decision level

| Α  | B1     | B2     | Wi     |
|----|--------|--------|--------|
| B1 | 1      | 0.9767 | 0.4941 |
| B2 | 1.0238 | 1      | 0.5059 |

Note: Consistency ratio: 0.0000; Weight on A: 1.0000; \u03c4max: 2.0000

For the safety indicator layer, the overall weight of this group of indicators is low, the consistency ratio (CR) of this discriminant matrix is less than 0.1, and its consistency is acceptable, and the factor weights and consistency test are shown in Fig. 3. For the convenience indicator layer, the consistency ratio (CR) of this discriminant matrix is less than 0.1, and its consistency is acceptable, and the factor weights and consistency ratio (CR) of this discriminant matrix is less than 0.1, and its consistency is acceptable, and the factor weights and consistency test are shown in Figure 4.

171

| В1    | C 1    | С7     | C 1 3  | C 4    | C 1 0  | C 2    | C 8    | C 1 4 | C 5    | C 1 1  | С3     | C 6    | С9     | C 1 2  | C 1 5  | Wi     |
|-------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| C 1   | 1      | 0.9738 | 1.065  | 1.43   | 1.0028 | 0.9015 | 0.8813 | 0.957 | 0.8629 | 0.9566 | 0.9501 | 0.864  | 0.905  | 0.9792 | 0.9833 | 0.0645 |
| C 7   | 1.027  | 1      | 1.0937 | 1.4686 | 1.0299 | 0.9258 | 0.905  | 0.982 | 0.8862 | 0.9824 | 0.9757 | 0.8873 | 0.9294 | 1.0056 | 1.0098 | 0.0662 |
| C 1 3 | 0.939  | 0.9144 | 1      | 1.3428 | 0.9417 | 0.8465 | 0.8275 | 0.898 | 0.8103 | 0.8982 | 0.8922 | 0.8113 | 0.8498 | 0.9194 | 0.9233 | 0.0605 |
| C 4   | 0.6993 | 0.6809 | 0.7447 | 1      | 0.7013 | 0.6304 | 0.6163 | 0.669 | 0.6034 | 0.6689 | 0.6644 | 0.6042 | 0.6329 | 0.6847 | 0.6876 | 0.0451 |
| C 1 0 | 0.9972 | 0.971  | 1.0619 | 1.426  | 1      | 0.899  | 0.8788 | 0.954 | 0.8605 | 0.9539 | 0.9474 | 0.8615 | 0.9024 | 0.9764 | 0.9805 | 0.0643 |
| C 2   | 1.1092 | 1.0801 | 1.1813 | 1.5862 | 1.1124 | 1      | 0.9775 | 1.061 | 0.9572 | 1.0611 | 1.0539 | 0.9583 | 1.0039 | 1.0861 | 1.0907 | 0.0715 |
| C 8   | 1.1348 | 1.105  | 1.2085 | 1.6227 | 1.138  | 1.023  | 1      | 1.086 | 0.9792 | 1.0855 | 1.0782 | 0.9804 | 1.027  | 1.1111 | 1.1158 | 0.0732 |
| C14   | 1.0454 | 1.018  | 1.1133 | 1.4949 | 1.0484 | 0.9425 | 0.9213 | 1     | 0.9021 | 1      | 0.9933 | 0.9032 | 0.9461 | 1.0236 | 1.0279 | 0.0674 |
| C 5   | 1.1589 | 1.1285 | 1.2341 | 1.6572 | 1.1622 | 1.0448 | 1.0213 | 1.109 | 1      | 1.1085 | 1.1011 | 1.0012 | 1.0488 | 1.1347 | 1.1395 | 0.0747 |
| C 1 1 | 1.0454 | 1.018  | 1.1133 | 1.4949 | 1.0484 | 0.9425 | 0.9213 | 1     | 0.9021 | 1      | 0.9933 | 0.9032 | 0.9461 | 1.0236 | 1.0279 | 0.0674 |
| С3    | 1.0525 | 1.0249 | 1.1208 | 1.5051 | 1.0555 | 0.9488 | 0.9275 | 1.007 | 0.9082 | 1.0068 | 1      | 0.9093 | 0.9525 | 1.0306 | 1.0349 | 0.0679 |
| C 6   | 1.1574 | 1.1271 | 1.2326 | 1.6552 | 1.1607 | 1.0435 | 1.02   | 1.107 | 0.9988 | 1.1072 | 1.0997 | 1      | 1.0475 | 1.1333 | 1.1381 | 0.0746 |
| С9    | 1.105  | 1.076  | 1.1767 | 1.5801 | 1.1081 | 0.9962 | 0.9738 | 1.057 | 0.9535 | 1.057  | 1.0499 | 0.9547 | 1      | 1.0819 | 1.0865 | 0.0712 |
| C 1 2 | 1.0213 | 0.9945 | 1.0876 | 1.4604 | 1.0242 | 0.9207 | 0.9    | 0.977 | 0.8813 | 0.9769 | 0.9704 | 0.8824 | 0.9243 | 1      | 1.0042 | 0.0658 |
| C 1 5 | 1.017  | 0.9903 | 1.0831 | 1.4544 | 1.0199 | 0.9169 | 0.8963 | 0.973 | 0.8776 | 0.9729 | 0.9663 | 0.8787 | 0.9204 | 0.9958 | 1      | 0.0656 |
|       |        |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |

Fig. 3. Consistency test table for factor weights in the safety indicator layer

Note: Consistency ratio: 0.0000; Weight on A: 0.4914; \u03c0max: 15.0000

| В2    | C 2 0  | C 1 9  | C 2 5  | C 1 6  | C 2 2  | C 2 6  | C 2 3  | C 1 7 | C 1 8  | C 2 1  | C 2 4  | C 2 7  | C 2 8  | C 2 9  | Wi     |
|-------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|
| C 2 0 | 1      | 0.9535 | 1.3454 | 1.0065 | 1.0527 | 1.1339 | 1.0223 | 1.046 | 0.9208 | 1.088  | 0.9987 | 1.0291 | 1.0941 | 1.1911 | 0.0753 |
| C19   | 1.0488 | 1      | 1.4111 | 1.0556 | 1.1041 | 1.1892 | 1.0722 | 1.097 | 0.9657 | 1.1411 | 1.0474 | 1.0793 | 1.1475 | 1.2492 | 0.079  |
| C 2 5 | 0.7433 | 0.7087 | 1      | 0.7481 | 0.7824 | 0.8428 | 0.7598 | 0.777 | 0.6844 | 0.8087 | 0.7423 | 0.7649 | 0.8132 | 0.8853 | 0.056  |
| C16   | 0.9936 | 0.9474 | 1.3368 | 1      | 1.0459 | 1.1266 | 1.0157 | 1.039 | 0.9149 | 1.081  | 0.9923 | 1.0225 | 1.0871 | 1.1835 | 0.0748 |
| C 2 2 | 0.9499 | 0.9058 | 1.2781 | 0.9561 | 1      | 1.0771 | 0.9711 | 0.993 | 0.8747 | 1.0335 | 0.9487 | 0.9775 | 1.0393 | 1.1315 | 0.0715 |
| C 2 6 | 0.8819 | 0.8409 | 1.1865 | 0.8876 | 0.9284 | 1      | 0.9016 | 0.922 | 0.8121 | 0.9595 | 0.8808 | 0.9075 | 0.9649 | 1.0505 | 0.0664 |
| C 2 3 | 0.9782 | 0.9327 | 1.3161 | 0.9845 | 1.0297 | 1.1092 | 1      | 1.023 | 0.9007 | 1.0642 | 0.9769 | 1.0066 | 1.0702 | 1.1651 | 0.0736 |
| C 1 7 | 0.9564 | 0.9119 | 1.2867 | 0.9625 | 1.0068 | 1.0844 | 0.9777 | 1     | 0.8806 | 1.0405 | 0.9551 | 0.9841 | 1.0463 | 1.1391 | 0.072  |
| C 1 8 | 1.086  | 1.0355 | 1.4611 | 1.093  | 1.1432 | 1.2314 | 1.1102 | 1.136 | 1      | 1.1816 | 1.0846 | 1.1176 | 1.1882 | 1.2936 | 0.0818 |
| C 2 1 | 0.9191 | 0.8764 | 1.2366 | 0.9251 | 0.9676 | 1.0422 | 0.9396 | 0.961 | 0.8463 | 1      | 0.9179 | 0.9458 | 1.0056 | 1.0948 | 0.0692 |
| C 2 4 | 1.0013 | 0.9547 | 1.3472 | 1.0078 | 1.0541 | 1.1354 | 1.0236 | 1.047 | 0.922  | 1.0894 | 1      | 1.0304 | 1.0955 | 1.1927 | 0.0754 |
| C 2 7 | 0.9718 | 0.9266 | 1.3074 | 0.978  | 1.023  | 1.1019 | 0.9934 | 1.016 | 0.8948 | 1.0573 | 0.9705 | 1      | 1.0632 | 1.1575 | 0.0732 |
| C 2 8 | 0.914  | 0.8715 | 1.2297 | 0.9199 | 0.9622 | 1.0364 | 0.9344 | 0.956 | 0.8416 | 0.9944 | 0.9128 | 0.9406 | 1      | 1.0887 | 0.0688 |
| C 2 9 | 0.8395 | 0.8005 | 1.1295 | 0.845  | 0.8838 | 0.952  | 0.8583 | 0.878 | 0.773  | 0.9134 | 0.8385 | 0.8639 | 0.9185 | 1      | 0.0632 |

Fig. 4. Consistency test table for factor weights of convenience indicator layerSPSS-Based Indicator Classification and Priority Indicator Extraction

Note: Consistency ratio: 0.0000; Weight on A: 0.5059; \u03c4max: 14.0000

As the indicator layer has more indicators and the weights are closer, in order to extract the main impact indicators, the author adopts the systematic clustering method based on SPSS 25, extracts the main indicators according to the spectral graph (Figure 5, Table 8), groups them according to the position of the red line through the graph, and according to the weight of the indicators sorted from the highest to the lowest, the indicator layer can be sequentially divided into 6 groups.



Fig. 5. Spectral map of cluster analysis at the indicator level

| Impact           | Factor                            | Factor Type Description                              |
|------------------|-----------------------------------|------------------------------------------------------|
| Very significant | C18 Transportation Interchange    | Places with very high foot traffic, which is a major |
|                  | C19 Residential neighborhoods     | consideration in the planning of parking spots and   |
|                  |                                   | determines the layout of the plan                    |
| More significant | C24 Secondary School              | Most of the indicators in the B2 convenience layer,  |
|                  | C20 Shopping Centers              | as well as those that have a significant impact on   |
|                  | C16 Destinations                  | security                                             |
|                  | C23 Hospitals                     |                                                      |
|                  | C27 Rain Protection               |                                                      |
|                  | C5 Mobility Visibility            |                                                      |
|                  | C6 Accessibility                  |                                                      |
|                  | C17 Road Crossing                 |                                                      |
|                  | C22 Parks                         |                                                      |
|                  | C8 Hazardous Facilities           |                                                      |
| Generally        | C2 Motorway distance              | Low-traffic locations and elements that do not       |
| significant      | C9 Billboards                     | have a prominent impact on convenience and           |
|                  | C21 Small stores                  | safety                                               |
|                  | C28 Environmental coherence       |                                                      |
| Less significant | C26 Sports Complex                | Sites that are less frequently visited by bicycle in |
|                  | C3 Mechanical non-separation zone | daily life are mostly irrelevant for elements that   |
|                  | C11 Water and electricity wells   | have a general impact on safety                      |
|                  | C14 Construction site             |                                                      |

Table 8. Indicator weighting hierarchy

|                 | C7 Greening                       |                                                     |
|-----------------|-----------------------------------|-----------------------------------------------------|
|                 | C12 Street Frontage Building      |                                                     |
|                 | C15 Slow-moving road              |                                                     |
|                 | C29 Shade                         |                                                     |
|                 | C1 Intersection Location          |                                                     |
|                 | C10 Hazardous Trees               |                                                     |
| Not significant | C13 Protection of buildings       | Indicators are unfamiliar to the respondents (C13), |
|                 | C25 Primary Schools and Nurseries | or the public has different opinions about them     |
|                 |                                   | (C25).                                              |
| Extremely       | C4 sidewalk flow                  | Public opinion on this is widely divided (C4)       |
| insignificant   |                                   |                                                     |

## **3** Preliminary Planning for Parking Spots

#### 3.1 Analysis of Key Elements of Shared Bike Parking Spots

Based on the weights of the factors at the decision level, the weight of convenience (0.5059) is higher than that of safety (0.4901), indicating that as an emerging transportation means to solve the last kilometer of urban transportation, convenience is the most fundamental, and the layout of the parking spot should satisfy the public's travel needs to the maximum extent. And on the basis of convenience, security is considered according to the specific environment around the parking spot to protect public life and property safety and road traffic safety.

Transportation transfer points and residential neighborhoods are the primary influence elements, is very significant, respectively, 0.0414 and 0.0399, higher than all other factors that determine the planning layout. Preliminary analysis of the reasons, bike sharing has a strong convenience-oriented these two are daily urban life in the largest flow of people in the place, especially in residential neighborhoods morning peak as the source of the flow of people, the evening peak for the sink, so these locations must be laid out parking points and capacity should meet the corresponding demand. In addition, most of the other indicators of convenience are located in the more significant group, indicating that priority should be given to convenience, as close as possible to destinations with high pedestrian flow, and bike sharing meets the daily travel needs of residents, which is consistent with the results of the previous research.

Safety of which C5 (line visibility, weight 0.0369), C6 (barrier-free access, weight 0.0369), C7 (dangerous facilities, weight 0.0327) is also more significant, indicating that the traffic flow within the city is large, with a good view, not only can make the parker easy to identify the parking space, reduce the phenomenon of indiscriminate parking, while allowing pedestrians, vehicles and other traffic flow Attention to the parking spot, is the key to avoid traffic accidents; In addition should also be away from the barrier-free access, pay attention to vulnerable groups, to avoid crossing the line of motion with the mobility-impaired people, which will be a lot of inconvenience; But also should be away from some dangerous facilities, to avoid the safety hazards in order to protect the cyclist's life and property safety. Although in the questionnaire

survey, the weight of the decision-making level security is lower than convenience, and the weight of security indicators is generally lower than convenience (the highest weight of security indicators C5 line visibility, C6 barrier-free access, the weight of 0.0369, ranked 8th). However, it does not mean that the public ignores security, let alone indicating that security does not need to be considered too much in the process of planning, but rather security should be considered on the basis of convenience, because convenience and security have different scales, and convenience emphasizes the layout of siting factors, which are larger in scale. In the specific delineation of the location of parking spots, security is an important factor, and the scale is smaller; therefore, on the basis of convenience, the above security indicators should be emphasized in the light of the surrounding environment of the parking spots.

#### 3.2 Urban Design Guidance

#### 3.2.1. Parking Spots Should be Prioritized in High-Traffic Locations.

The main function of shared bicycle is to solve the urban transportation problem, convenience is its most basic attribute, but the built-up areas of major cities are often tight land, the street can use less space, so on the basis of guaranteeing convenience, should be accurate, reasonable and effective layout of shared bicycle parking points, to ensure its efficient use, to avoid the waste of land. Therefore, priority should be given to the layout in places with large flow of people, especially transportation interchanges and residential areas, which are often the places with the largest flow of people in urban commuting, and are also the basic layout framework of shared bicycle parking points in various cities.

# **3.2.2** Parking Spots Away from Dangerous Facilities, Focusing on Road Traffic Safety.

Convenience as the basis of the layout of the parking point, on the basis of convenience to improve safety, pay particular attention to the visibility of the parking point, reduce the parking point visual blind spot, especially the parking point for the visual blind spot of the motor vehicle, as far as possible and the motor vehicle route separation, in addition to that, but also with the pedestrian line of motion to reduce the cross, away from the barrier-free facilities, to reduce the passage of the mutual interference, to avoid traffic accidents. Stay away from dangerous facilities, such as high-voltage lines and other areas that may cause harm to the personal safety of users of shared bicycles, to avoid potential safety hazards.

## 4 Conclusion

This paper analyzes the layout of shared bicycle parking spots, in line with the principle of public participation, with the help of online social platform questionnaire research, through the hierarchical analysis method (AHP), cluster analysis and other methods to analyze the influence of the layout of shared bicycle parking spots and the importance of each factor, to provide reference for the layout planning of shared bicycle parking

spots. The article found that: the influence of factors such as places with large flow of people, visibility and barrier-free access is significant. Therefore, the parking spots should be set up in places with large flow of people, emphasize on visibility, and avoid being close to barrier-free access and dangerous facilities.

#### References

- 1. Shi Xiaofa, Yang Wenhui. Design and Planning of Shared Bicycle Parking Area--The Case of South Pier Road Street [J]. Comprehensive Transportation, 2019, 2: 116-121.
- Chen Peichen, Dong Xin. Multi-party co-management: research on optimization strategy of shared bicycle parking in Xi'an -analysis based on Mobike web crawler data [J]. Modern Urban Research, 2019.6: 2-8.
- 3. Xie Lingyan. Exploration of Campus Shared Bicycle Parking Spot Setting -Taking South China Normal University Shipai Campus as an Example [J]. Technology and Innovation, 2019(11):56-60.
- Li Linfeng, Li Jinqiang, Geng Lian. GIS-based site selection planning for urban shared bicycle virtual station - taking Minjiang College campus as an example [J]. Smart City, 2019(20):4-8.
- Liang Mingyuan, Wang Guan. Research on shared bicycle parking space around rail transit stations in downtown Chengdu [J]. Planner, 2019(18):54-61.
- 6. Deng Lifan, Xie Yonghong, Huang Dingxi. Research on Shared Bicycle Facility Planning Based on Riding Spatio-Temporal Data [J]. Planner, 2017(10):82-88.
- Guo Yanru, Luo Zhixiong, Wang Jiachuan et al. Research on data-driven planning method of shared bicycle parking area [J]. Transportation Systems Engineering and Information, 2021(6):9-16
- Zuo Ni Na. Research on optimal distribution of urban shared bicycle based on cluster intelligent optimization algorithm [J]. Modern Electronic Technology, 2021, 44 (11):115-119.
- Shi Jiawei, Chen Guanlin, Xu Huang. Application of improved genetic algorithm in shared bicycle parking spot allocation [J]. Sensors and Microsystems, 2019 (38): 154-160.
- Li Faming. Research on value evaluation and protection of geologic relic landscape [D]. Tianjin: Tianjin University, 2019.

**Open Access** This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

