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Abstract

Image quality enhancement via impulse noise reduction is a critical phase in
image preprocessing. Faults in the acquisition, storage, and transmission devices
often corrupt the images by introducing noise that further hinders image analysis
and processing tasks. This paper focuses on high-density salt and pepper noise
removal from images using statistical image enhancement techniques. We present
two enhancement algorithms targeted at noise removal achieved through pixel
regeneration. The first approach uses two-stage filtration based on an adaptive
substructure; the noise is primarily eliminated using the non-noisy neighbors in an
adaptive window, followed by fine-tuning the pixel intensity to remove artifacts.
The second approach uses a quasi-adaptive substructure where the neighbors in
primary directions contribute to the decision-making process of pixel regeneration
based on their information relevance. Performance evaluation based on the infer-
ences made from different experiments on multiple images verifies the efficiency
of the presented techniques. The observed reliability and robustness reflected in
the results suggest the superiority of the algorithms over their existing peers.
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1 Introduction

Degradation of image quality often stems from the presence of corrupted image pix-
els. Relevant image details are lost when image pixels are replaced by noisy intensity
values. The presence of noise hinders the performance of analysis and processing
techniques including detection, classification, and segmentation among many oth-
ers. Salt and pepper noise (SPN) is a common aberration category that corrupts an
image by replacing pixel values with intensities at extreme ends of the spectrum. The
major causes behind SP noise corruption are malfunctioning devices (sensors, capture
devices, storage devices) and faulty transmission media.

Image enhancement achieved via noise reduction is a crucial preprocessing step
often incorporated in image analysis pipelines to maintain relevant image details. The
domain is fairly explored and various techniques have been designed to tackle the
degradation problem induced by the presence of noise. Initial statistical approaches
include the standard median filters(SMF) [1] and the fuzzy logic incorporated modified
median filter FIDT [2]. Notable successors to these approaches are the selective adap-
tive median filter (SAMF) [4], sequentially combined mean-median filter (SCMMF) [3],
and the modified median filter (MDMF) [5]. Several other algorithms have been pub-
lished over the decades [9],[10],[8],[11],[12],[14],[13],[6]. These algorithms work fairly
well for medium noise densities, but their resiliency drops at higher corruption levels.
Recent advancements in the domain[15],[7],[16] effectively reduce noise from images,
but for high corruption levels, the output image is induced with artifacts.

To tackle the drawbacks in literature and to improve upon the performance of the
cutting edge methods, we propose two statistical enhancement approaches targeted
at high-density salt and pepper noise removal from images. The first algorithm incor-
porates two-stage noise adaptive filtration where initially an intermediate image is
formed using the available input image details and is further fine-tuned to get rid of the
artifacts. The second method uses an quasi-adaptive paragon and incorporates data
points in pixel regeneration based on their spatial relevance. The performance of the
existing algorithms along with the presented techniques are evaluated using multiple
images. Qualitative and quantitative inferences confirm the reliability and resiliency
of the proposed algorithms.

The main contributions of the paper are:

1. A statistical two stage noise adaptive filter (STSNAF) is proposed.
2. A quasi-adaptive distance based weighted average filter (QADWAF) is proposed.
3. Quantitative inferences are analyzed to study the performances of the existing

techniques compared with the presented algorithms.

The rest of the paper structure is organized as follows: Section 2 discusses the
related work in literature. The proposed techniques are detailed in Section 3, Section
4 analyzes the experimental results, and finally conclusion is derived in Section 5.
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2 Related Work

The domain of pixel regeneration, noise reduction, and image enhancement is quite
popular in the field of image processing. Over the years, researchers have presented
different methods and filtering techniques focused on noise elimination from images.

Standard median filter (SMF) [1] is one of the initial filtering techniques incor-
porated for SP noise removal. The incorporation of fuzzy logic with median filtering
resulted in the FIDT [2] algorithm where a linear combination of fuzziness factor
and neighborhood median is used to replace noisy pixels. Other algorithms such as a
sequentially combined mean median filter (SCMMF) [3], selective adaptive median fil-
ter (SAMF) [4], total variation inpainting filter (TVIF) [19], and modified median filter
(MDMF) [5] also laid foundation stones in the domain. The use of information sets in
pixel regeneration came into picture with the proposal of noise adaptive information
set based switching median (NAISM) [15] filtering approach. These techniques are effi-
cient for mid-range noise densities but their performance drops significantly for higher
density noise corruptions. Noise removal based on the use of directional weighted fil-
ters [18] and compressed sensing [20] have pushed the knowledge boundary in the
domain of image enhancement. In 2015, Pilevar proposed a filtration technique for
noise removal in color images [21] incorporating laplacian operators and thresholding
criterion.

Recent developments in the field include an improved pixel density based filtra-
tion (IBPDF) [6], adaptive switching modified decision-based unsymmetric trimmed
median filter (ASMDBUTMF) [7], modified decision based unsymmetric adaptive
neighborhood trimmed mean filter (MDBUANTMF) [16], asymmetric trimmed tri-
mean filter [24], feedback median filter [25], and statistical detail aware based filter [26].
These algorithms perform better than their peers but the regenerated images succumb
to artifacts and loss of fine details is observed for high density noise reduction. Also,
some of the mentioned approaches come with a huge time complexity trade off which
raises issues in real time integration.

3 Proposed Methodology

In this section, we present two statistical enhancement techniques targeted at salt and
pepper noise removal from images. The first approach uses two-stage filtration where
an intermediate image is generated based on available image details and is further
fine-tuned to remove unwanted aberrations. The second algorithm is based on a quasi-
adaptive substructure where decision-making for pixel regeneration is based on the
pixel relevance of non-noisy neighbors.

Prior to image enhancement, appropriate padding is applied on each side of the
image (I). The noisy pixels are at extreme ends of the intensity spectrum (Pepper
Noise: INTmin = 0 and Salt Noise: INTmax = 255) in a salt and pepper noise
corrupted image. For denoting the noisy and noise-free pixels, a binary map G is con-
structed having the same dimensions as the image. The mapping is governed by the
function defined in Eqn. 1. The binary map is then used in the presented enhancement
algorithms for locating noisy pixels.
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Gi,j =

{
0, if Ii,j = 0 or 255.
1, otherwise.

(1)

Once the mapping is complete, i.e. the corrupted pixels in the image are detected,
the algorithms are ready to be executed.

3.1 Proposed Algorithm 1: Statistical Two Stage Noise
Adaptive Filter (STSNAF)

This subsection details a statistical two-stage noise adaptive filtration technique
focused at restoring images corrupted by salt and pepper noise. Stage 1 incorporates
adaptive median filtering for each noisy pixel Ii,j (corresponding Gi,j = 0). Initially, a
3×3 window around the pixel (i, j) is selected. The window size is adaptively increased
till non-noisy neighbors are found, or the maximum window size (Wmax) is reached.
If relevant pixels are found, the corrupted pixel is replaced by the median of its non-
noisy neighbors. If not then the pixel is not updated. Stage 1 ensures that there is
relevant image detail in the intermediate image before passing it to the next stage.

Stage 2 focuses on fine-tuning the pixels replaced in Stage 1. Initially, for each pixel
at co-ordinate (i, j) [corresponding Gi,j = 0], a pixel relevance measure(ξ) (presented
in the paper) of its immediate relevant neighbors are calculated using Eqn. 2.

ξm,n =
e(−(m2+n2)

ϕ )

8π
(2)

where m,n are the spatial co-ordinates of the immediate neighbors around the

image pixel (i, j) and ϕ is a control parameter. Finally, the output pixel (I
/
(i,j)) is

computed using Eqn. 3 (incorporating the idea of weighted average).

I
/
(i,j) =

∑p=i+1,q=j+1
p=i−1,q=j−1 Ip,q ∗ ξp,q∑p=i+1,q=j+1

p=i−1,q=j−1 ξp,q
(3)

The proposed STSNAF algorithm is summarized in Algorithm 1.

3.2 Proposed Algorithm 2: Quasi-Adaptive Distance based
Weighted Average Filter (QADWAF)

A novel quasi adaptive distance relevant weighted average filtering technique is detailed
in this section. The algorithm parses the image sequentially and on finding a noisy pixel
(corresponding G(i, j) = 0), it looks for non-noisy neighboring pixels in every primary
direction (left, right, up, down). Each direction is independent of the others, enabling
locating pixels easier than using an adaptive window to find credible neighbors with
local information. Next, the taxicab distance between the central pixel and the located
neighbors are calculated. The distance metric is inversed and is used as a distance
relevant weight as shown in Eqn. 4 which defines the considerable degree of information
to be considered from each located neighbor. The idea reduces artifacts in the image
as a far off pixel is assigned a much lesser weight than a closer one, also assuring that

10              A. Bhowmick et al.



the regenerated pixel will be computed using relevant local spatial information, and
image structure (Eqn. 4).

R(i, j, i′, j′) =
K

|i− i′|+ |j − j′|
(4)

where (i′, j′) represent the neighborhood pixel coordinate, and K is a scaling factor.
After locating the pixels in each direction and assigning weights to each of them based
on their distance, a weighted average is calculated corresponding to the central pixel
using Eqn. 5. Next, the output image pixel intensity value is generated governed by
Eqn. 6. The proposed technique is summarized in Algorithm 2.

ϕi,j =

∑
Ii,j ∗R(i, j, i′, j′)∑

R(i, j, i′, j′)
(5)

I
/
(i,j) =

{
ϕi,j , if G(i, j) = 0 and

∑
R(i, j, i′, j′) > 0.

Ii,j , otherwise.
(6)
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Algorithm 1: Statistical Two Stage Noise Adaptive Filter
(STSNAF)

Input: Corrupted Image I of dimension M ×N
Output: Noise Reduced Enhanced Image I/

1 Map the image to a binary matrix G where corrupted and noise free pixels are
represented as 0 and 1 respectively.
Stage I filtration:
for i = 1..M do

2 for j = 1..N do
3 if Gi,j = 0 then
4 Initialize w = 1, i.e. Window (W ) = (2w + 1)× (2w + 1)

Compute the sum of elements in the window (W) centered at Gi,j

if sum = 0 then
5 Increase w by 1 and recompute the sum till sum > 0 or

W < Wmax.
6 else
7 Replace Ii,j by the median of all non-noisy pixels in the window.

8 Stage II filtration: for i = 1..M do
9 for j = 1..N do

10 if Gi,j = 0 then
11 Calculate relevance measure (ξ) for immediate neighbors using

Eqn. 2.

Compute the value of the output pixel I
/
(i,j) using Eqn. 3.



4 Experimental Result Analysis

This section analyzes the results obtained across various experiments in the context
of the manuscript. First, the data source and the experimental setup are highlighted.
Next, the performance metrics used for algorithmic evaluation is summarized. Finally,
the performances are analyzed and the inferences are reported.

4.1 Data and Experimental Setup

For performance comparison, high quality standard gray scale images (Airplane, Bar-
bara, Boat, Cameraman, House, Kiel, Mandril, Pepper, Zelda) [27] [28] are obtained.
Each of these images are corrupted with SP noise with densities varying from as low
as 40% to as high as 95%.

For all experiments, the maximum window size is set to 13 × 13. All experiments
are performed under a Windows 10 Operating System with Intel i5 8th generation
processor and 8GB RAM. Dev C++ served as the implementation platform.

4.2 Quantitatve Evaluation Metrics

Quantitative metrics are relevant for evaluating the efficiency of a processing technique.
In this paper, we use four quantitative metrics, namely: Peak Signal to Noise Ratio
(PSNR), Structural Similarity Measure (SSIM), Root Mean Squared Error (RMSE),
and Image Enhancement Factor (IEF) (See Eqns. 7-10). RMSE measures the devia-
tion between the original and the reconstructed image, thus highlighting any flaws in
algorithmic resiliency. A low RMSE value signifies the efficiency of the enhancement
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Algorithm 2: Quasi-Adaptive Distance based Weighted Average
Filter (QADWAF)

Input: Salt and Pepper Corrupted Image (I); dimensions M ×N .
Output: Noise Reduced Image I ′.

1 Map the input image to the binary matrix G using Eqn. 1.
for i = 1..M do

2 for j = 1..N do
3 if Gi,j = 0 then
4 Initialize ϕ− numi,j = 0, ϕ− deni,j = 0

From the current pixel traverse upwards till boundary is reached,
i.e. i′ = 0 or till G(i′, j) = 1

5 if G(i′, j) = 1 and i′ > 0 then
6 ϕ− numi,j = ϕ− numi,j + Ii,j ∗R(i, j, i′, j)

ϕ− deni,j = ϕ− deni,j +R(i, j, i′, j)

7 Similarly, traverse the left, right, and downward directions.

8 Calculate ϕi,j and set the output pixel I
/
(i,j) using Eqn. 6.



technique. PSNR, IEF, and SSIM metrics evaluate the quality of the reconstructed

PSNR(E1, E2) = 20log10
255

RMSE
(7)

RMSE(E1, E2) =

√√√√(
1

P ×Q

P∑
p=1

Q∑
q=1

|E1(p, q)− E2(p, q)|2) (8)

IEF (E1, E2, E3) =

P∑
p=1

Q∑
q=1

[E1(p, q)− E3(p, q)]
2

P∑
p=1

Q∑
q=1

[E1(p, q)− E2(p, q)]2
(9)

SSIM =
(2vE1

vE2
+ b1) + (2νE1E2

+ b2)

(v2E1
+ v2E2

+ b1) + (ν2E1
+ ν2E2

+ b2)
(10)

Here E1 is the original, E2 is the enhanced and E3 represents the noisy image.
The dimension of the image is P × Q. vE1

, vE2
and νE1

, νE2
are the mean values

and standard deviations of image E1, E2, respectively. νE1E2
is the covariance of the

images E1 and E2, b1 and b2 are the constants, and the value of b1 = (0.001 × 255)2

and b2 = (0.03× 255)2.

4.3 Performance Evaluation

We compare the presented methods (STNAF and QADWAF) with the existing bench-
mark algorithms including SMF [1], SAMF[4], FIDT [2], SCMMF [3], MDMF [5],
NAISM[15], IBPDF[6], ASMDBUTMF[7], and MDBUANTMF[16].

Tables 1-4 present the PSNR, RMSE, SSIM, IEF metrics corresponding to the
Mandril image with noise densities varying from 40% to 95%. The RMSE values show
a steep increasing trend with the increase in noise densities, particularly on and after
60%. The quality metrics on the other hand show a decreasing trend as high density
corruption levels are reached. These observations demonstrate the flaws in algorithmic
performance for high-density SP noise removal. The proposed methods, however, main-
tain a steady gradient representing better performance than its peers. Fig. 1 presents
the enhanced Mandril output images corresponding to an 80% corrupted image. The
visual indications defend the inferences drawn from Tables 1-4.

Similar inferences are drawn from Tables 5-8 corresponding to Pepper images.
Visual results are presented in Fig. 2 and Fig. 3 for demonstrating the performance of
the algorithms on Pepper and Barbara images.

Furthermore, for an extensive performance evaluation, experimentations were con-
ducted on 25 different image sets, and the recorded average PSNR and SSIM values
are presented in Tables 9- 10. The results are inline with the earlier observations and
the metrics successfully defend the robustness of the proposed methods.
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technique. PSNR, IEF, and SSIM metrics evaluate the quality of the reconstructed
image with respect to the original sample (high values represent robust performance
of the processing technique).



Table 1 PSNR values corresponding to different algorithms on Mandril

Noise Density 40 50 60 70 80 90 95
SMF 20.65 19.58 17.84 15.67 12.35 8.86 7.08
FIDT 22.04 21.02 19.66 17.77 14.63 10.69 8.14
SCMMF 25.8 24.53 23.12 21.47 19.34 17.04 16.11
SAMF 23.89 22.47 21.13 19.99 18.78 17.33 15.7
MDMF 25.25 23.92 22.43 20.72 18.39 15.62 14.13
NAISM 25.06 23.71 22.5 21.33 20.09 18.24 15.76
IBPDF 25.26 24.02 22.78 21.67 20.46 18.52 14.13
ASMDBUTMF 25.03 23.69 22.43 21.27 20.1 18.56 16.74
MDBUANTMF 25.03 23.69 22.43 21.27 20.09 18.6 16.73
STNAF 25 23.71 22.59 21.35 19.97 18.93 18.56
QADWAF 26.33 25.01 23.76 22.69 21.54 20.33 19.51

Table 2 RMSE values corresponding to different algorithms on Mandril image.

Noise Density 40 50 60 70 80 90 95
SMF 23.67 26.75 32.69 41.96 61.5 91.96 112.87
FIDT 20.17 22.68 26.53 32.97 47.33 74.44 99.89
SCMMF 13.08 15.14 17.8 21.52 27.52 35.84 39.92
SAMF 16.3 19.18 22.39 25.52 29.35 34.66 41.82
MDMF 13.93 16.24 19.28 23.47 30.7 42.21 50.11
NAISM 14.25 16.63 19.13 21.88 25.25 31.24 41.53
IBPDF 13.92 16.06 18.52 21.04 24.19 30.25 50.11
ASMDBUTMF 14.28 16.67 19.27 22.03 25.22 30.09 37.13
MDBUANTMF 14.28 16.67 19.28 22.03 25.24 29.96 37.15
STNAF 12.32 14.35 16.63 18.93 21.84 25.6 28.86
QADWAF 12.3 14.32 16.55 18.72 21.36 24.54 26.97

Table 3 SSIM values corresponding to different algorithms on Mandril image.

Noise Density 40 50 60 70 80 90 95
SMF 0.8304 0.7873 0.7051 0.5737 0.3474 0.1404 0.0651
FIDT 0.888 0.8586 0.8107 0.7256 0.5323 0.2614 0.116
SCMMF 0.9509 0.9331 0.9055 0.8554 0.7389 0.4683 0.2577
SAMF 0.926 0.8974 0.8607 0.82 0.7622 0.678 0.5695
MDMF 0.9451 0.925 0.8942 0.8434 0.7337 0.5064 0.3087
NAISM 0.9421 0.92 0.8925 0.8564 0.8017 0.673 0.3634
IBPDF 0.9452 0.9267 0.9023 0.8738 0.833 0.7478 0.4987
ASMDBUTMF 0.9418 0.9196 0.8913 0.8554 0.8039 0.7021 0.4968
MDBUANTMF 0.9418 0.9196 0.8913 0.8554 0.8036 0.7047 0.5023
STNAF 0.9562 0.9397 0.9177 0.8914 0.8516 0.7894 0.7205
QADWAF 0.9563 0.9397 0.9181 0.8931 0.8566 0.8036 0.75in1

5 Conclusion

Two different statistical enhancement methods are presented in the manuscript.
Quantitative and qualitative inferences made from different experiments defend the
reliability of the approach and establish the robustness of the techniques over the
existing methods. The methods are simple to implement and can be easily integrated
with embedded systems for direct enhancement. The algorithms can be scaled to have
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Table 4 IEF values corresponding to different algorithms on Mandril image.

Noise Density 40 50 60 70 80 90 95
SMF 12.9 12.68 10.15 7.19 3.82 1.92 1.35
FIDT 17.77 17.64 15.41 11.64 6.45 2.93 1.72
SCMMF 43.66 40.74 35.33 28.15 19.64 13.05 11.1
SAMF 27.19 24.68 21.62 19.43 16.78 13.52 9.81
MDMF 37.21 34.4 29.17 22.98 15.34 9.12 6.84
NAISM 35.6 32.83 29.63 26.43 22.68 16.64 9.95
IBPDF 37.28 35.19 31.63 28.58 24.71 17.76 6.83
ASMDBUTMF 35.41 32.65 29.19 26.07 22.73 17.94 12.45
MDBUANTMF 35.41 32.65 29.18 26.07 22.69 18.1 12.44
STNAF 47.62 44.09 39.19 35.31 30.3 24.8 20.61
QADWAF 47.75 44.24 39.6 36.12 31.69 26.99 23.6

Table 5 Comparing PSNR values of enhanced Pepper images using different
methods.

Noise Density 40 50 60 70 80 90 95
SMF 26.46 23.64 20.12 16.38 12.56 8.73 6.93
FIDT 27.3 25.78 23.51 20.05 15.59 10.89 8.3
SCMMF 34.79 32.87 29.67 24.42 19.43 15.53 14.23
SAMF 31.68 30.13 28.4 26.64 24.75 21.94 18.79
MDMF 33.69 31.44 28.33 24.06 19.54 15.32 13.35
NAISM 33.57 31.69 29.5 26.97 23.56 18.16 14.01
IBPDF 33.9 32.46 31.13 29.79 28.17 23.79 15.98
ASMDBUTMF 33.55 31.63 29.41 26.96 23.73 19 15.55
MDBUANTMF 33.55 31.62 29.4 26.96 23.73 19.03 15.56
STNAF 34.76 33.32 31.78 29.97 27.58 23.7 20.61
QADWAF 34.91 33.51 32.19 30.58 28.79 25.75 23.27

Table 6 Comparing RMSE values of enhanced Pepper images using different
methods.

Noise Density 40 50 60 70 80 90 95
SMF 12.11 16.76 25.13 38.66 60.01 93.29 114.74
FIDT 11 13.1 17.01 25.34 42.33 72.76 97.96
SCMMF 4.64 5.79 8.38 15.33 27.22 42.69 49.53
SAMF 6.64 7.95 9.69 11.87 14.75 20.4 29.31
MDMF 5.27 6.83 9.77 15.97 26.9 43.71 54.85
NAISM 5.35 6.64 8.54 11.43 16.93 31.52 50.8
IBPDF 5.15 6.07 7.08 8.26 9.95 16.48 40.51
ASMDBUTMF 5.36 6.69 8.63 11.44 16.59 28.61 42.58
MDBUANTMF 5.36 6.69 8.64 11.45 16.6 28.52 42.54
STNAF 4.66 5.5 6.57 8.09 10.66 16.66 23.78
QADWAF 4.58 5.38 6.26 7.54 9.27 13.15 17.5

applications in the medical domain where corrupted medical images owing to faults
in acquisition can be enhanced in real time.
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Table 7 Comparing SSIM values of enhanced Pepper images using different methods.

Noise Density 40 50 60 70 80 90 95
SMF 0.9746 0.9518 0.8948 0.7716 0.5482 0.2594 0.1203
FIDT 0.9793 0.9708 0.9516 0.8972 0.7463 0.4516 0.2441
SCMMF 0.9963 0.9942 0.9877 0.9574 0.8525 0.5471 0.2832
SAMF 0.9924 0.9892 0.9839 0.9758 0.9627 0.929 0.8592
MDMF 0.9952 0.992 0.9835 0.9557 0.8726 0.6491 0.4233
NAISM 0.9951 0.9924 0.9874 0.9773 0.9497 0.8155 0.4533
IBPDF 0.9954 0.9937 0.9914 0.9882 0.9829 0.9537 0.7634
ASMDBUTMF 0.9951 0.9923 0.9871 0.9773 0.9518 0.8486 0.618
MDBUANTMF 0.9951 0.9923 0.9871 0.9773 0.9518 0.8495 0.6197
STNAF 0.9962 0.9948 0.9925 0.9885 0.9799 0.9495 0.8925
QADWAF 0.9964 0.995 0.9932 0.99 0.9847 0.968 0.9405

Table 8 Comparing IEF values of enhanced Pepper images using different methods.

Noise Density 40 50 60 70 80 90 95
SMF 52.59 34.28 18.29 9.02 4.28 1.98 1.38
FIDT 63.73 56.14 39.9 20.99 8.6 3.26 1.89
SCMMF 308.74 246.92 141.9 49.39 17.89 8.18 6.41
SAMF 174.72 152.58 123.05 95.69 70.92 41.59 21.2
MDMF 277.55 206.55 121 52.9 21.33 9.06 6.05
NAISM 269.93 218.64 158.6 103.34 53.81 17.42 7.06
IBPDF 290.95 261.33 230.63 197.79 155.88 63.75 11.1
ASMDBUTMF 268.41 215.44 155.11 103.07 56.04 21.14 10.05
MDBUANTMF 268.43 215.34 154.95 103.01 55.98 21.27 10.06
STNAF 354.93 318.61 267.92 206.06 135.9 62.36 32.19
QADWAF 367.76 332.85 294.59 237.11 179.68 100.03 59.48

Table 9 Average PSNR values (obtained using 25 standard gray-scale images)
corresponding to different methods.

Noise Density 40 50 60 70 80 90 95
SMF 24.11 21.98 19.21 16.01 12.4 8.63 6.78
FIDT 25.07 23.85 22 19.16 15.31 10.75in 8.08
SCMMF 31.34 29.63 27.08 23.45 19.43 16 14.76
SAMF 28.45 26.92 25.4 23.9 22.31 19.99 17.3
MDMF 30.32 28.42 25.82 22.5 18.7 14.87 12.99
NAISM 30.14 28.37 26.61 24.58 22.24 18.15 14.68
IBPDF 30.47 29.03 27.7 26.35 24.93 21.62 15.16
ASMDBUTMF 30.13 28.35 26.57 24.6 22.41 18.84 15.97
MDBUANTMF 30.13 28.35 26.58 24.6 22.4 18.84 15.96
STNAF 31.62 30.08 28.54 26.89 25.08 22.31 20.08
QADWAF 31.69 30.2 28.77 27.28 25.77 23.58 21.83

References

[1] Gonzalez,R.C. and Woods, R.E.: Digital Image processing, Prentice Hall, (2002).

[2] Wenbin Luo: Efficient removal of impulse noise from digital images. IEEE
Transactions on Consumer Electronics, vol. 52, no. 2, pp. 523-527, (2006).

16              A. Bhowmick et al.

Table 7 Comparing SSIM values of enhanced Pepper images using different methods.



Table 10 Average SSIM values (obtained using 25 standard gray-scale images)

Noise Density 40 50 60 70 80 90 95
SMF 0.9364 0.9061 0.8411 0.7116 0.4884 0.2155 0.0913
FIDT 0.9535 0.9396 0.9123 0.8467 0.687 0.3903 0.1962
SCMMF 0.985 0.9788 0.9662 0.9316 0.825 0.5369 0.2891
SAMF 0.9748 0.9647 0.9512 0.9339 0.9081 0.8557 0.7608
MDMF 0.9823 0.9744 0.9585 0.9208 0.8218 0.5883 0.3688
NAISM 0.9816 0.9736 0.9624 0.9439 0.909 0.7767 0.4575
IBPDF 0.9826 0.9764 0.9683 0.958 0.9432 0.8957 0.6752
ASMDBUTMF 0.9815 0.9735 0.9621 0.944 0.9124 0.8093 0.5989
MDBUANTMF 0.9815 0.9735 0.9621 0.9441 0.9123 0.8095 0.5991
STNAF 0.9864 0.981 0.9734 0.963 0.9464 0.9068 0.8476
QADWAF 0.9864 0.9812 0.9741 0.9648 0.9514 0.9244 0.8894

Original Noisy SMF FIDT

SCMMF SAMF MDMF NIASM
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