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Abstract. This research paper proposes a novel approach for minimiz-
ing makespan and energy consumption in workflow scheduling for cloud
computing systems using particle swarm optimization (PSO). Workflow
scheduling is a critical task in cloud computing, where multiple tasks
are assigned to each available virtual machine to ensure the precedence
constraint of the workflow application. However, traditional scheduling
methods often lead to longer makespan and higher energy consumption,
which can negatively impact the overall efficiency and sustainability of
the cloud infrastructure. The proposed PSO-based approach optimizes
the task allocation and scheduling process by leveraging the swarm in-
telligence of particles to search for the optimal solution. The PSO algo-
rithm is adapted to consider both makespan and energy consumption as
objective functions, allowing for a more comprehensive and balanced op-
timization approach. The proposed approach is evaluated using a work-
flow application, and the results show that it outperforms traditional
scheduling algorithms such as HEFT in terms of makespan and energy
consumption.

Keywords: Workflow Scheduling· PSO·HEFT·Makespan· Energy Con-
sumption.

1 Introduction

A lot of interesting work is going on in the scientific application field, and these
applications are in need of high computation, broader bandwidth, and large
storage for running complex applications, analyzing huge datasets, performing
modeling tasks, and running complex simulations. Researchers are moving to
the cloud for these resources as the cloud satisfies all the requirements, like
allowing scientists to access large amounts of on-demand computation power,
store and analyze datasets for astronomy, bioinformatics, or climatic research
for collaboration, and provide a platform for easily sharing and grouping to
accelerate research [1, 2].
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In general, a scientific application generates a workflow in the form of a
directed acyclic graph (DAG), which consists of a huge number of dependent
and independent tasks with computation times and communication time. One
of the greatest obstacles for cloud computing is workflow scheduling such that the
dependency between tasks in the workflow is maintained [3–6]. A brief sketch of
the generation and processing of scientific workflow applications is shown in Fig
1. Task scheduling is the assignment and management of task execution in a cloud
environment. This can include scheduling the execution of individual tasks, as
well as coordinating and managing the dependencies and relationships between
tasks. For heterogeneous systems on the cloud, this difficulty is considered an
NP-complete problem [7], and considering multiple objectives like makespan,
energy, cost, reliability, throughput, and efficiency for heterogeneous systems is
not trivial.

Seismographic
Human behaviour

Satellite imagingRNA sequence
analysis

Applications

Work flow generation

Workflow processing

Fig. 1: An overview of generation of WAs

The motivation behind the minimization of makespan and energy consump-
tion in cloud computing is to improve the efficiency and sustainability of the
cloud computing infrastructure. Makespan refers to the time taken to com-
plete a set of tasks in a computing system. In cloud computing, minimizing
the makespan means reducing the time taken to complete a set of tasks, which
can lead to faster and more efficient processing of data [8–11]. This is important
for cloud computing applications such as real-time data processing and analy-
sis, where a shorter makespan can result in quicker decision-making and better
business outcomes.

On the other hand, energy consumption is a critical issue in cloud comput-
ing due to the massive amounts of energy required to power and cool the data
centers that host the cloud infrastructure. Minimizing energy consumption in
cloud computing can help reduce the environmental impact of cloud computing
and lower the operational costs of running data centers. Additionally, reduc-
ing energy consumption can also lead to increased reliability and availability of
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the cloud computing infrastructure, as energy usage is closely tied to the heat
generated by the data centers.

In summary, minimizing makespan and energy consumption in cloud com-
puting can lead to faster processing times, reduced environmental impact, lower
operational costs, and increased reliability and availability of the cloud infras-
tructure. Cloud providers are motivated to solve this problem, and much re-
search is going on in this field. Most studies take into account only one or two
objectives, such as single-objective [12], which minimizes only makespan, and
multi-objective [1, 3, 5, 9, 13, 14], which minimizes both cost and makespan.

The contributions of this paper are as:

– A novel workflow scheduling algorithm in a cloud computing environment
using particle swarm optimization (PSO) is designed.

– The representation of the particle ensures that it always creates a full solu-
tion while respecting dependence constraints. The updating process at each
iteration also ensures the precision of the updated particle locations.

– Using makespan and energy consumption, the designed fitness function is
generated.

The remaining sections of this document are as follows: Section 2 contains
related works. Section 3 concentrates on problem formulation and includes the
system model, workflow application model, and terminology used to computer
the objectives. An overview of PSO is shown in Section 4 with particle repre-
sentation and updation. Section 6 has results and analysis, and the last section
7 has a set of conclusions and future directions.

2 Related Works

Usually, for solving workflow scheduling problems, most research uses either a
heuristic or a meta-heuristic approach. This section is divided into two subsec-
tions: heuristic and meta-heuristic approaches.

A heuristic approach study often splits the research into stages. In the first
phase, algorithms are used to rank the tasks in order of importance, and virtual
machines are allocated to the tasks in the second phase depending on their
importance [3, 5, 12, 13]. Topcuoglu et al. [12] introduced the heuristic known
as the heterogeneous earliest completion time (HEFT) for process scheduling in
diverse domains; it is still used as the foundation algorithm for new heuristic
algorithms. It takes that into account, but it only minimizes makespan. Rizvi et
al. [3] created the HBDCWS scheduling algorithm, which minimizes time and
cost while meeting deadlines and budgets. This distributes the global budget
to each task using a very simple budget distribution method. However, it is not
energy-efficient. Fair budget-constrained workflow scheduling (FBCWS) by Rizvi
et al. [13] minimizes delays when budget is a constraint. FBCWS functions in two
stages: first, it categorizes then prioritizes the task, and then, in the second phase,
VMs get chosen. This algorithm, however, considers only one QoS parameter at
a time and either a deadline or a budget at a time. Zohu et al. [5] suggest a cloud
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environment’s budget and deadline-constrained workflow scheduling (BDCWS).
By taking the time frame and budget into account as limitations, the execution
cost is kept to a minimum. However, the algorithm uses static virtual machine
assignments.

When it comes to meta-heuristic approaches, most researchers optimize the
output of heuristic algorithms [1, 9, 14]. Rizvi et al. [1] proposed the hybrid
spider monkey optimization (HSMO) algorithm, which directs HSMO using a
budget-deadline constrained algorithm. It reduces time and costs while staying
within the deadline and budget. However, it failed to satisfy the QoS constraints.
Aziza et al. [9] a hybrid genetic algorithm (HGA) was suggested that minimizes
makespan within the time and budget constraints. It is a HEFT-GA hybrid that
uses two-fold crossover and mutation to improve performance. However, it is not
energy-effective. Middha et al. [14] propose a hybrid algorithm that combines
particle search optimization (PSO) and PEFT to optimize the PEFT schedule
result. It saves time, money, and energy while meeting a deadline and budget.
However, its fitness function is not efficient.

3 System Models and Problem Formulation

3.1 System Model

Assume cloud computing consists of computing resources. These resources are
allocated to cloud servers i.e., R={CS1, CS2, . . .CSk}. Each cloud server con-
sists of m number of virtual machines, i.e., CS={VM1,VM2, . . .VMm}. There is
one dedicated cloud manager who takes care of provisioning virtual machines on
the cloud server. We also consider that all the VMs running on the cloud server
can be heterogeneous in nature. Each cloud server consists of one resource man-
ager, its responsibility is to store the information of VMs as well as for creation,
allocation, and deletion of the VMs.

3.2 Workflow Application Model

Here, scheduling with dependency constraint or the tasks with a partial-order ≺
is considered. If tasks ti and tj , ti ≺ tj then task tj cannot start execution on any
machine until the task ti finishes its execution. Also, ≺ is a transitive relation.
Generally, this dependency is represented by a directed acyclic graph also called
the task dependency graph (TDG), in which nodes represent individual tasks,
and a directed edge from ti to tj represents the partial-order ≺ in the graph. Here
there is a cost associated with every partial order ≺ there is a cost associated with
the communication of data between two tasks. This cost can be represented by
a communication matrix. Where CT (i, j) will be the amount of communication
delay which will be needed for the data to reach the task tj from task ti, also
task tj cannot start execution until it gets this data, and if both ti and tj are
allocated on the same machine then the communication cost will be zero because
the data will remain with the same machine. Multiple tasks can be depended
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on the same task in the TDG. The dependency between tasks is represented in
the TDG, where edges are labeled with the communication costs. These types of
problems are real-world problems and are used in various scientific and industrial
applications. Let tsize be the size of a specific task ti and pj is the virtual
machine’s processing speed. The same is mentioned below in equation (1).

rt(i,j) =
tsize
pj

(1)

RT represents the run time matrix, which consists of the runtime of different
VMs on different tasks. D(i,j) is the length of data that has to be transferred
from task ti to tj and B(i,j) be the communication channel bandwidth between
two cloud servers. It is considered that B(i,j) is constant throughout the execu-
tion [15, 16]. The communication time depends on the size of the data and the
bandwidth of the communication channel.

ct(i,j) =

{
0 if vi = vj
Di,j

B if vj 6= vj
(2)

The RT and CT matrices are known at the beginning of the execution. How-
ever, RT and CT may be created through uniform distribution or can be acquired
from real-world applications as log files [15–17]. During task execution, the com-
putation speed is also considered constant.

3.3 Makespan

Before computing the makespan of the workflow application, it is required to
compute the starting time of the tasks and the finishing time of the tasks. Start-
ing time and Finishing time can be represented as ST (ti, vj) and FT (ti, vj)
respectively. ST (ti, vj) and FT (ti, vj) computed as mentioned in the equation 3
and 4 respectively [18].

ST (ti, vj) = max

{
avail[j], max

tm∈pred(ti)
(FT (tm) + ctm,i)

}
(3)

FT (ti, vj) = wi,j + ST (ti, vj) (4)

The inner maximum block of the ST equation provides a time when all data
required by ti has been allocated to VM vj . FT of task texit after all tasks in
the graph are scheduled, the makespan will be the max of the finish time of the
task texit.

M = max {FT (texit )} (5)

3.4 Energy Consumption

The square of voltage supplied and frequency determines CMOS circuit energy
usage [19–21]. Our system saves energy via dynamic voltage and frequency scal-
ing, a potential energy-saving strategy. CMOS circuits use dynamic and static
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energy. Static energy consumption is ignored since dynamic power dissipation is
the most expensive and time-consuming [22]. Dynamic power (Pdynamic) dissi-
pation can be defined as (6).

Pdynamic = K × V 2
j × f (6)

Depending on the device’s capabilities, K is a dynamic power constant. Vj is the
voltage provide for the jth VM and f is the frequency at the Vj of same VM.
This allows us to define the energy consumption when computation is going on
as (7).

Ebusy =
m∑
j=1

K × V 2
j × f × tj =

m∑
j=1

Pdynamic × tj (7)

where tj is the time for which task is running on VM vj . f represents the
VMs vj frequency at Vj of voltage. When VM is not in use, the provided volt-
ages and frequencies cannot be reduced to zero, thus the voltage must be at its
lowest setting lowestvoltage i.e 70% of its capability, the equation for idle energy
consumption is in (8).

Eidle =
m∑
j=1

K × V 2
lowest × flowest × tidle =

m∑
j=1

Pidle × tidle (8)

where Vlowest and flowest is the lowest voltage and frequency of the VM vj at
Vlowest respectively, tidle represents the idle time of vj . Form the equations (6),
(8) and (7), the total energy consumption is calculated as (9):

Etotal = Ebusy + Eidle (9)

3.5 Problem Formulation

The major difficulty is to allocate the n number of dependent tasks, T =
{t1, t2, . . . tn} to m number of virtual machines (VMs), i.e., {vm1, vm2, . . . vmm}
with the objective is to minimize the makespan and energy consumption. The
fitness function is derived using the weighted sum method [23]. The entire range
of the ωk is from 0 to 1 and

∑2
0 ωk = 0. Let a be β Boolean variable described

as follows.

β(i,j) =

{
1, if ti is assigned to vmj

0, else
(10)

The problem can be stated as follows.

Minimize Fitness = ω1 ×
(

M

MaxM

)
+ ω2 ×

(
Etotal

MaxEtotal

)
(11)

Subject to
m∑
j=1

β(i,j) = 1, ∀i, 1 ≤ i ≤ n (12)

Obj∑
k=1

ωk = 1, 0 ≤ ωk ≤ 1, ∀k, 1 ≤ k ≤ Obj (13)
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Pre-emption is not allowed because of the Constraint (12). Constraint (13)
ensures the summation of taken weight values is equal to one.

4 An Overview of PSO

Particle Swarm Optimization (PSO) is one of the swarm-inspired meta-heuristic
optimization algorithms [24,25]. The population of the particle size is predefined.
Every particle in the population gives a complete solution. The ith particle of
tth iteration (1 < t < Mite) can be represented as follows.

P t
i = {pt(i,1), p

t
(i,2), p

t
(i,3) . . . p

t
(i,d) . . . p

t
(i,D)} (14)

A particle, P t
i has position value pt(i,d) and velocity vt(i,d). The fitness value is

used to evaluate each particle to decide its quality. Each particle has its personal
best, PBt

i for each iteration. The population has the global best (GBt) in each
iteration. Particles are compared with their fitness value. At each iteration, the
particle moves towards the destination position. The velocity is updated by using
the following equations.

v
(t+1)
(i,d) = ω × v(t)(i,d) + c1 × r1 × [pb

(t)
(i,d) − p

(t)
(i,d)] (15)

+ c2 × r2 × [gb
(t)
d − p

(t)
(i,d)]

where, inertia weight is ω, coefficients are c1 and c2. uniformly distributed ran-
dom numbers are r1 and r2. After the computation of the velocity, the new
position is updated as follows.

p
(t+1)
(i,d) = p

(t)
(i,d) + v

(t+1)
(i,d) (16)

The fitness value is calculated after the new position of the particles has been
successfully computed for a given iteration. Based on the fitness value, PBt

i and
GBt are also updated. In order to arrive at a more optimal solution, the position
and velocity of each and every particle are modified with each new iteration. The
process of updating is carried out in a loop that continues until the maximum
number of iterations has been reached. Finally, the global best is considered as
the final solution.

5 Proposed Approach

5.1 Representation of Particles

We need to represent the particle in such a way that ensures it will always provide
a comprehensive solution to the problem of scheduling the workflow. This can
be fulfilled by ensuring that the dependency constraints are preserved. After we
have successfully generated a valid sequence of the tasks that WAs will carry
out, we will be able to schedule those tasks on the VMs. After the generation
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of a valid sequence, the particles are encoded according to the order in which
the tasks were generated to be carried out. Consider N number of particle (Pi)
∀i, 1 ≤ i ≤ N with position (p(i,j)) ∀j, 1 ≤ j ≤ D. In this case, the number of sub-
tasks for each WA is equal to the dimension. Each solution has position of p(i,j)
that is randomly generated, Rand[0,m], 0 < Rand[0,m] ≤ m. Representation of
the particle shown in the Fig. 2. Initialization of the population is given in the
Algorithm 1.

Algorithm 1 Population_Initialization
Input: No. of Particles(N),Dimension of Particle(D),
Upper Bound(UB)
Output: A population.

Population← [ ]
for x = 1 to N do

for y = 1 to D do
Population[x][y] = random(UB,LB)

end for
end for
return Population

t1 t2 t3 tD

1 2 1 3

Particle

Pi  (1 ≤ Random ≤ UB)

Fig. 2: Representation of a particle

In order to map the tasks to a VM, position p(i,j) is mapped to the vir-
tual machine vmindex, where m represents the total number of VMs that are
accessible from the cloud data center. Population initialization is written in the
Algorithm 1.

5.2 Derivation of Fitness Function

The quality of a solution can be evaluated using the fitness function. The fitness
function is derived from the objectives that have been mentioned earlier, such
as the makespan and the energy consumption. The fitness of the particle Pi is
computed as per eq. (11). The objective is to achieve the lowest possible fitness;
in other words, a lower fitness indicates an improved particle or solution. The
proposed PSO is shown in the Algorithm 2.
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Algorithm 2 Particle Swarm Optimization (PSO)
Input: No. of Particles(N),Dimension(D),Max iteration(T )
Output: Global best

Population = Population_Initialization(N, D, UB) . Algorithm 1
Calculate fit using equation (11)
Find personal and Global best.
while z < T do

for v = 1 to N do
Update V elocity[i] using equation (15)
Update Population[i] using equation (16)
Update fitnew using equation (11)
fit← [ ]
if fitnew[v] < fit[v] then

fit[v] = fitnew[v]
Gbest = min(fit)

end if
end for
z = z + 1

end while
Global Best = Gbest

6 Result and Analysis

Here, we have considered the above given DAG (Fig 3) for executing the PSO
and generating the best possible schedule. Table 1 represents the expected run-
time of tasks on different VMs. According to HEFT algorithm [12] the sequence
generated as follows (Task,VM) - [(0,2),(3,1), (2,2), (1,0), (4,2), (5,1), (8,1),(6,2),
(7,0), (9,1)] and the makespan is 80. With the help of PSO, we improved the
makespan and energy consumption over HEFT. We have executed PSO 10 times
and computed makespan and energy consumption, and we have taken the aver-
age of all 10 results to compare with the HEFT algorithm, the comparison is in
Table 2. Fig. 4 illustrates the results of an analysis of the system’s performance
in terms of its makespan and its energy consumption.

7 Conclusions

In this paper, we propose PSO to optimize the workflow scheduling in the cloud
computing environment. The proposed algorithm evaluated a variety of criteria,
including the makespan and the energy consumption. particle representation in
such a way that it always preserves dependency constraints. At each iteration, a
new position is restricted within the specified range. We have tested our approach
on various workflow applications and also presented one of them in the paper.
The method significantly outperforms HEFT in terms of makespan and energy
consumption. In the future, we may consider various other objectives while con-
sidering their conflicting nature. Here we have considered only non-preemptive
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Fig. 3: Sample DAG with 10 tasks

Table 1: Expected runtime of tasks
Tasks VM1 VM2 VM3

0 14 16 9
1 13 19 18
2 11 13 19
3 13 18 7
4 12 13 10
5 13 16 9
6 7 15 11
7 5 11 14
8 18 12 20
9 21 7 16

nature applications. In the future, pre-emptive applications with constraints like
deadlines and budgets of the workflow application may be considered.
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