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Abstract. Stroke is a quick loss of brain activity due to the disrup-
tion in the blood supply system. Among stroke survivors, losing hand
function and finger spasticity are the main ailment. The purpose of this
study is to investigate the electromyography (EMG) features in time do-
main and frequency domain during the shoulder complex and upper arm
movement of stroke-affected and healthy muscles, and build a classifica-
tion model using machine learning algorithm. An online database named
”Mendeley” is used in this paper that contains EMG signals of twelve
healthy subjects and thirteen stroke survivors from their six muscles
(biceps brachii, triceps brachii, anterior deltoid, medial deltoid, poste-
rior deltoid, infraspinatus) of the upper arm and shoulder complex. In
this analysis, four time-domain features, namely mean absolute value,
variance, root mean square, zero crossing, and three frequency-domain
features, namely mean frequency, median frequency, and power spectrum
ratio are extracted. A machine learning-based model is developed, which
uses those extracted features to classify healthy and stroke groups. Hence,
EMG features of upper limb muscles are trained by deploying linear sup-
port vector machine (SVM) classifier. Acceptable classification accuracy
is noticed while generating the model. For the six muscles listed above,
the achieved accuracy percentages are 81.2, 79.8, 77.8, 82.7, 79.4, and
80.6, respectively.

Keywords: Stroke · Electromyography · Feature extraction · Classifi-
cation · Linear SVM.

1 Introduction

Stroke is a leading reason of death and disability in many countries. After a
stroke, brain tissue gets damaged and motor units stop working properly, result-
ing in difficulties with muscular control and activation that cause the loss of hand
function and finger stiffness. In this scenario, EMG signals are extensively used
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as a control input in many human-machine interfaces and are also incorporated
in various therapeutic applications [1]. EMG signal provides information on the
timing of muscle activation to estimate the force generated by the muscle con-
traction irrespective of healthy or damaged condition. The present study aims
at the disability outcome of stroke survivors during hand reaching movements
which involves voluntary upper limb muscle activities using surface EMG signal
analysis and compare the same with healthy groups.

The majority of surface EMG signal analysis are carried out under a static
environment because it is considered that an EMG signal’s frequency analysis
is accurate if the signal is practically stationary [2]. Researchers have shown
that the methods used for assessing stationary EMG data may be successfully
employed in dynamic task-oriented activities [3] and also development of EMG
based exoskeleton control for upper limb rehabilitation [4]. The current work
undertakes a thorough investigation of changes in numerous time domain and
frequency domain EMG features during shoulder complex and upper arm mus-
cle movement to distinguish the difference between the healthy and post-stroke
individuals. And this study also intends to build a machine learning based clas-
sification model to classify the different groups.

2 Methodology

2.1 Data Acquisition

In this work, the ”Mendeley” database [5] was used which includes data acquired
from twelve healthy subjects and thirteen stroke survivors. Here, participants
used a surface EMG device with six electrodes attached to six muscles in the
shoulder and upper arm while performing hand reaching activities for various
target directions. The investigated muscles were: (1) Biceps brachii, (2) Triceps
brachii, (3) Anterior deltoid, (4) Medial deltoid, (5) Posterior deltoid, (6) In-
fraspinatus. All participants from both groups were targeted in the same general
direction.

2.2 Signal Processing

The database was recorded in a .csv file format which was used as an input to
a customized script written in MATLAB software. After computing the power
spectral density of raw EMG signal it was seen that the usable energy of captur-
ing EMG signal mostly lies in between (30-300)Hz. So, the signals were filtered
between 30Hz to 300Hz using a fourth order Butterworth bandpass filter to re-
move noise and artifacts. Then the muscle signals were rectified to cancel out the
negative side of the spectrum and integrated to accumulate the absolute value.
Now the root mean square (RMS) calculation was assumed to give the most
information about the EMG signal’s amplitude because it provides a measure
of the signal’s strength. and the envelope means boundary which contained the
information of the signal. Thus the EMG envelope extraction was done for stroke
patients and healthy groups which is seen in Fig. 1.
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Fig. 1. EMG envelope extraction for healthy groups and stroke patients.

2.3 Feature Extraction

Feature extraction and selection is an important strategy to bring out the valid
information unseen in the surface EMG signals. It also eliminates the interference
and redundant part of the signals. Three major types of features namely time
domain, frequency domain, and time-frequency domain are commonly used to
analyse EMG signals [6]. This study examined the time domain and frequency
domain features of the EMG signal.

Time domain features Time-domain features, which are calculated using raw
EMG time series, are typically rapid and simple to construct because they don’t
require any manipulation [7]. A large variety of time domain features are dis-
cussed in the previous literature [1]. In this paper a comprehensive investigation
was done on mean absolute value (MAV), variance (VAR), root mean square
(RMS), and zero crossing (ZC) features of EMG signal. These features were
calculated using the formula below.

MAV =
1

N

N∑
i=1

|ei| (1)

V AR =
1

N − 1

N∑
i=1

e2i (2)

RMS =
1

N

√√√√ N∑
i=1

e2i (3)
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ZC =
N∑
i=1

sgn(−eiei+1) (4)

where ei denotes the ith sample of EMG signal and N indicates the length of
the signal. MAV is one of the most often utilized techniques for analysing EMG
signals [7]. It is close to the IEMG feature, particularly when sensing the surface
EMG signal for the control of prosthetic limb. VAR is another power indicator
[8]. The variance of a variable is often described as the average of its square
values of deviation. Another widely used tool for analysing the EMG signal is
RMS [9]. It is described as a constant force, non-fatiguing contraction amplitude
modulated Gaussian random process. ZC is a time-domain specification of the
EMG signal’s frequency information [7]. It measures how many times the EMG
signal’s amplitude values cross the zero level, which signifies the activation of
muscles. Table I illustrates and compares the four time domain features (MAV,
VAR, RMS, and ZC) of EMG signals between healthy groups and stroke patients
during the movement of different muscles.

Table 1. Comparison of four time domain features between healthy and stroke subjects

Muscle name Healthy groups Stroke subjects

MAV(Volt) VAR(Volt) RMS(Volt)
Zero

Crossing
MAV(Volt) VAR(Volt) RMS(Volt)

Zero
Crossing

Biceps brachii
9.97x10ˆ-5

±2.21x10ˆ-5*
7.53x10ˆ-9

±4.45x10ˆ-9
1.32x10ˆ-6

±2.88x10ˆ-7
1934±500.05

8.61x10ˆ-5
±3.37x10ˆ-5

7.25xx10ˆ-9
±3.92x10ˆ-9

9.51x10ˆ-7
±2.79x10ˆ-7

2075±522.03

Triceps brachii
6.52x10ˆ-5

±2.44x10ˆ-5
5.31x10ˆ-9

±4.96x10ˆ-9
9.03x10ˆ-7

±3.49x10ˆ-7
1730±551.37

2.79x10ˆ-5
±2.37x10ˆ-5

6.03x10ˆ-10
±3.21x10ˆ-10

2.9x10ˆ-7
±2.1x10ˆ-7

1159±469.44

Anterior deltoid
8x10ˆ-5

±2.63x10ˆ-5
1.61x10ˆ-8

±5.41x10ˆ-9
7.2x10ˆ-7

±3.66x10ˆ-7
2907±580.05

4.78x10ˆ-5
±3.64x10ˆ-5

2.9x10ˆ-9
±1.26x10ˆ-9

6.06x10ˆ-7
±2.2x10ˆ-7

1518±532.61

Medial deltoid
9.28x10ˆ-5

±3.19x10ˆ-5
9.24x10ˆ-9

±3.15x10ˆ-9
5.97x10ˆ-7

±4.04x10ˆ-7
2259±454.46

3.75x10ˆ-5
±2.15x10ˆ-5

1.13x10ˆ-9
±0.87x10ˆ-9

5.57x10ˆ-7
±2.51x10ˆ-7

1242±538.46

Posterior deltoid
1.15x10ˆ-4

±4.45x10ˆ-5
7.36x10ˆ-9

±3.01x10ˆ-9
1.12x10ˆ-6

±3.39x10ˆ-7
2296±569.22

1.07x10ˆ-4
±5.82x10ˆ-5

9.71x10ˆ-9
±6.62x10ˆ-9

6.17x10ˆ-7
±3.26x10ˆ-7

1965±500.15

Infraspinatus
5.21x10ˆ-5

±2.42x10ˆ-5
3.1x10ˆ-9

±1.21x10ˆ-9
6.39x10ˆ-7

±2.84x10ˆ-7
1491±482.57

2.47x10ˆ-5
±2.42x10ˆ-5

3.42x10ˆ-10
±2.31x10ˆ-10

1.56x10ˆ-7
±7x10ˆ-8

692±191.62

*indicates (mean±SD)

Frequency domain features Frequency domain features are significantly stud-
ied for analysing the fatigue of the muscle. In this context, power spectral density
(PSD) plays a significant role in the frequency domain. PSD is referred to as a
Fourier transform of the autocorrelation function of the EMG signal. This is
computed using the periodogram method. In this study, three frequency-domain
features, namely mean frequency (MNF), median frequency (MDF), and power
spectrum ratio (PSR), were extracted. Each feature was computed by using the
statistical parameters of the signal’s PSD. These features were calculated as
follows.

MNF =

∑N
i=1 fiPi∑N
i=1 Pi

(5)

MDF =
1

2

N∑
i=1

Pi (6)
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PSR =

∑f0+n
i=f0−n Pi∑∞
i=−∞ Pi

(7)

where fi and Pi are the frequency and PSD at frequency bin i respectively, and
N is the frequency bin’s length. MNF is determined by summing the products
of the EMG power spectrum and the frequency divided by total sum of the
spectrum intensity [10]. MDF is a frequency where the spectrum is split into
two equally amplitude areas [10]. PSR is referred to as the ratio of the EMG
power spectrum’s energy close to its maximal value to its total energy [11]. Table
II compares and demonstrates the three frequency domain features (MNF, MDF,
and PSR) of EMG signals between healthy groups and stroke patients.

Table 2. Comparison of three frequency domain features between healthy and stroke
subjects

Muscle name Healthy groups Stroke subjects
MNF (Hz) MDF (Hz) PSR MNF (Hz) MDF (Hz) PSR

Biceps brachii 60.2±1.67* 52.53±2.06
6.51x10ˆ-4
±8.16x10ˆ-6

58.45±1.2 54.79±2.04
0.65x10ˆ-3
±6.32x10ˆ-6

Triceps brachii 61±1.85 55.57±2.22
6.41x10ˆ-4
±9.13x10ˆ-6

61.02±1.31 52.69±1.75
0.64x10ˆ-3
±5.55x10ˆ-6

Anterior deltoid 61.12±2.13 52.97±2.31
6.52x10ˆ-4
±7.42x10ˆ-6

57.89±0.86 50.66±1.89
0.65x10ˆ-3
±6.22x10ˆ-6

Medial deltoid 60.15±2.58 53.09±2.81
6.63x10ˆ-4
±9x10ˆ-6

59.22±0.88 53.02±2.26
0.662x10ˆ-3
±7.57x10ˆ-6

Posterior deltoid 63.25±3.36 56.61±3.2
6.54x10ˆ-4
±6.36x10ˆ-6

59.45±2.37 52.65±1.38
0.652x10ˆ-3
±9.9x10ˆ-6

Infraspinatus 58.13±2.8 51.06±2.48
6.45x10ˆ-4
±6.12x10ˆ-6

57.83±2.58 48.94±1.26
0.644x10ˆ-3
±7.89x10ˆ-6

*indicates (mean±SD)

3 Results and Discussion

A sound increase in the amplitude of biceps brachii, triceps brachii, and posterior
deltoid muscles of healthy subjects was observed as compared to stroke affected
patients, which depicts that certain muscles were used more actively in hand
reaching movements than other muscles. Again it is observed that the mean ab-
solute value, variance, and zero crossing of healthy groups are more than the
stroke survivors. It signifies that the muscles of healthy subjects more actively
participated in the motor task than stroke patients. To differentiate EMG vari-
ability of the mentioned muscles, an RMS comparison was done among healthy
and stroke subjects’ data demonstrated in Fig. 2.

Fig. 3 compares the mean absolute value of EMG signal. It is observed that
MAV and RMS of EMG signal have a similar correlation with the contraction
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Fig. 2. RMS value (of EMG signal) comparison between healthy and stroke subjects.

of muscles. Mean values of healthy subjects are larger than stroke patients for
all of the muscles suggesting that the stiffness level of the muscles is higher for
stroke individuals.

Fig. 3. MAV value (of EMG signal) comparison between healthy and stroke subjects.

A categorical comparison is done on the calculated frequency domain. Fig. 4
illustrates two EMG signal’s features (MNF and MDF) in the frequency domain.
It is observed that the mean frequency (MNF) is significantly greater than the
median frequency (MDF) for healthy as well as stroke patients, and mean, me-
dian frequencies are also higher in healthy groups for most of the muscles. Fig.
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5 shows the EMG signal’s power spectrum ratio (PSR) of both the groups. The
calculated PSR were not found significant.

Fig. 4. Comparison of mean and median frequency between healthy and stroke sub-
jects.

Fig. 5. Power spectrum ratio of healthy and stroke subjects.

A binary classification was performed between healthy and stroke subjects
during the movement of six different muscles of the upper arm and shoulder
summarized in Table III. In this classification technique, RMS values of EMG
signals were considered as predictors and two groups (healthy and stroke) were
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categorized as response. Five fold cross-validation approach was used during the
training phase. In this work, a linear SVM classifier was used for classification
purpose. SVM is one type of supervised learning model, developed by Boser,
Gyon and Vapnik [12] that are utilised in machine learning for data classification
and regression analysis [13]. The objective of this SVM model was to create a
prediction model using the provided training samples and to identify specific
patterns in such samples. Post the training phase, this model was applied to a
testing dataset that was used to categorise unknown input data. In this study,
the used dataset was RMS features. However, from the classification results a
satisfactory performance accuracy was observed that distinguishes the difference
between the muscle activities of healthy and stroke subjects.

Table 3. Classification performance on EMG features of healthy and stroke subjects
using linear SVM

Binary Classification Linear SVM Classifier
(Healthy vs Stroke) Accuracy (%) Specificity (%) Sensitivity (%)

Biceps brachii 81.2 71.5 69.8
Triceps brachii 79.8 70.6 72.9
Anterior deltoid 77.8 75.3 70.7
Medial deltoid 82.7 77.3 74.6
Posterior deltoid 79.4 73.2 71.7
Infraspinatus 80.6 72.2 75.4

4 Conclusion

It was found that the activity of the biceps and triceps muscles had a close rela-
tion to the movement of the upper limb. When the shoulder complex moves, the
anterior deltoid, medial deltoid, and posterior deltoid muscles are more preva-
lent than the infraspinatus muscles. And those active muscles are less functional
for stroke-affected patients. The hand reaching movement tasks related to this
work engage various activities of daily living similar to real-life situations, and
also recover stroke survivors from their long-term motor disorder. To extend this
work, an alternative classification method can be deployed to improve accuracy
including the use of external devices can be considered in future as well.
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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