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Abstract. This paper presents a simple number theoretic method for
creating digital concentric and circular objects like potteries based on
some effective digital geometric approaches. This paper introduces a
novel algorithm to create digital 3D surface using certain simple but
efficient digital geometric techniques. The aim of the work is to gener-
ate a 3D surface with the given a generatrix and an axis of revolution.
The created digital surface is digitally connected and irreducible when
the generatrix is an irreducible digital curve segment, which ensures no
missing voxels in the generated surface. Many kinds of three dimensional
surface can be generated successfully and efficiently using different gen-
eratrix. Our aim is to design an algorithm to generate points of a 3D
surface, give a realistic image which include missing voxels to have final
product ultimately as a smooth and real life like surface of an object.

Keywords: 3D Surface, Digital Circle, 3D objects

1 Introduction

The technique of representing any surface of a real 3D object mathematically
using some specialized software is known as 3D surface generation. The outcome
of the process is better known as a 3D model. 3D models generally depict a real
life structure by the means of connected voxels, splines, Non-Uniform Rational
B-Splines etc. Another way of creating such models is 3D printing [1]. 3D surface
generation [2] gives us the opportunity to visually represent the exterior parts
and contoures of an object. This objects can be components of a car engine,
teeth, skin, bone structures etc. The prerequisite for developing a 3D surface is
to define the shape and and exterior curve of the desired object. The most mind
intriguing fact is that it provides the designer the ability to change the model
accordingly, but the solid modeling is not capable of giving such relaxation. The
wide range of interdisciplinary applications in real life has make us compelling
to contribute in this area. Some of them are as follows:

– An algorithm for generation of a complete sphere that is both efficient and
effective is expected to find numerous applications in 3D imaging, graphics
and rapid prototyping.

– Improved quality of geometric primitives give rise to quality 3D models and
improved quality of 3D printouts, even in situations where bitmap represen-
tation of voxel space is not feasible or is expensive. Presently, manufacturing
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hollow spheres with conventional machining and rapid prototyping is quite
difficult.

– However, an improved sphere discretization algorithm would make this pro-
cess convenient and this would greatly impact manufacturing. For instance,
magnetic ball valves are used in aeroplanes and automobiles, if these ball
bearings can be made hollow, this would enable the valve to react quickly,
which would translate to the vehicle becoming more fuel-efficient

2 Preliminaries

As mentioned earlier the geometric primitive used in this paper is the digital
circle. There are several definitions of a digital circle available in the literature
based on the fact that whether the center and radius of the circle have real or
integer values. Here we are considering Bresenham’s digital circle having integer
values for center and radius and its construction is as proposed in [1]. If Z de-
note the set of non negative integers and Z+ denote the set of positive integers
such that radius r ∈ Z+ and the center S = O(0, 0), then the first octant of the
corresponding digital circle is given by eqn. 1

Mz
1 (O, r) =

{
(p, q) ∈ Z2|0 ≤ i ≤ j ≤ r ∧ |j −

√
r2 − l2| < 1

2

}
(1)

Hence, octant 1 of an arbitrary digital circleMz(P, r) having center at P (iP , jP ) ∈
Z2 and radius r ∈ Z+ can be obtained by the following equation (2):

MZ(P, r) = {(p+ pP , q + qP )|(p, q) ∈ MZ(O, r)}. (2)

The digital circle possesses 8-octant symmetry [1], thus generating the set of
points of one octant of the circle is sufficient to generate the complete circle by
reflection about the respective axes of symmetry.

3 Related Works

The idea of mathematically representing a surface of any object whether inani-
mate or living, as well as replicating real life objects as 3D objects in the digital
space has always proven to be a challenging task. The most important task of
the process is to create as realistically accurate model as possible. By recreating
the object it is meant that the object is replaced by a discrete set of its points
using digital geometry [2]. Our problem statement of concern is as follows: find-
ing a closed digital surface defined by a set of points in digital space such that
they optimally approximate a real sphere with integer radius. Several works ex-
ist in the literature for sphere voxelation, however, they suffer from either the
problem of theoretical discrepancies of underlying algorithms or are associated
with high computational complexities in correcting the discrepancies in different
applications. Even though voxelation techniques based on integer operations are
comparatively faster and more efficient than the others, some of them do not
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ensure completeness of the voxel set, giving rise to absentee voxels - this happens
because they have been designed by extending the principle of Bresenham’s circle
drawing algorithm. Even though not much work has been done in the generation
of Andres arithmetical circles [3] in the recent years, the circle’s definition can
be extended to to generate hole-free sphere covering all the points of the discrete
space which is not possible with a digital circle [1] (the arithmetical sphere -
which is free of 6-connected holes, is an immediate 3D extension of an arithmeti-
cal circle, however a sphere made using conventional digital circle has absentee
voxels). But unlike the digital circle generation algorithm there are no such run
length based efficient algorithms for arithmetic circle generation. In [4], the dis-
crete sphere generation algorithm resorts to performing complex operations in
real space. An algorithm to fill up the absentee voxels that arise on rotating a
generatrix about its diameter has been proposed in [5] but a closed-form solution
still remains unavailable and also, the discrepancy rectification here results in an
increase in computational complexity. In [6], a wall-distance search algorithm
based on voxelized marching spheres has recently been proposed. However, a
sphere produced by this technique is not always mathematically accurate as it
contains voxels with isothetic distance greater than ½ from the real sphere Also,
the algorithm does not make full use of the 48-symmetry property of a sphere.
In [7], two number-theoretic approaches for sphere generation have been pro-
posed, but voxels are generated in radii bands and the sphere obtained is not a
thin sphere.

3.1 Motivation of the work

From the existing literature it can be concluded that, almost all existing meth-
ods for generating 3D surfaces gives user a straight control over the geometry
of the 3D objects to be constructed, which is not a good practice as it becomes
very difficult to represent the surface mathematically. Few major existing meth-
ods of representing 3D surfaces [8] are: Polyhedra representation, finite element
method, cylindrical element method and circular sector element method. On the
other hand, using our method one can represent the complete 3D surface in
terms of a finite number of control points and the axis of rotation. In this paper,
authors have used digital geometric approach which does not involve complex
calculation like trigonometric functions which are costly in terms of time com-
plexity.

4 Proposed Algorithm

In this section, the authors have proposed the algorithm that we have used to
generate a 3D surface. The whole algorithm is divided into 2 sections:

4.1 Generation of a generatrix in 2D plane.

We are generating a cubic B-spline curve. The user provides the control points
in an ordered sequence [9]. A cubic segment of the curve is generated taking four
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consecutive points at a time. Suppose L = L1, L2, L3.....Ln is the set of control
points. Four consecutive points, Si = Li, Li + 1, Li + 2, Li + 3 , where (1 ≤ i ≤
n-3) and a parameter u is passed to the algorithm where (0 ≤ u ≤ 1). Now, the
points will be calculated according to the following equation 3:

f(x, y) = 1/6[(1− 3u− 3u2 − u3)Li + (3u3 − 6u2 + 4)Li+1

(1 + 3u+ 3u2 − 3u3)Li+2 + (u3Li+3)]
(3)

The value of u is incremented by 0.01 and we get a point in 2D plane for each
value of u. The points are approximated to fit the discrete nature of digital space.

4.2 Generation of 3D Surface without any missing voxels

In this step the authors have used the above generated points of a curve to
generate all the points which will lie on the 3D surface after the curve is revolved
around the axis of revolution [10]. To generate the points we can pick each point
from the above set and revolve it around the axis of revolution such that the
axis is perpendicular to the plane of the circle formed by revolving the point
around the axis of revolution. In order to generate points of this circle we have
used modified digital circle algorithm(DCS), which generates all the points of
this circle using number theoretic properties and digital symmetry of circle.
Repeating the above method for each point in the set, we get all the points lying
on the 3D surface. But this digital circle construction algorithm [1] suffers some
problem. As we construct digital circles of consecutive radii, starting with radius
r = 1, we face the problem of missing pixel generation. To cover these points the
authors have given an algorithm in their paper that covers these points once the
circle has been constructed, but in our case it would lead to complex calculations
to handle and ultimately the execution time will also be increased. So we have
to fill those missing pixels while constructing the digital circle itself so that
an additional step for detection of missing voxels and then covering them with
extra voxels could be avoided. Moreover it leads to lower the execution time.
The occurence of those missing pixels follows a particular pattern, some certain
observations are listed below:

– A missing pixel having coordinates (x, y) is generated between digital circles
of two consecutive radius in octant 1, if and only if for the given ordinate
value y + 1 for the digital circle with radius r + 1 the abscissa value x is
maximum (i.e., the pixel (x, y+1) is the last pixel in the run of pixel having
the same ordinate value, y+1, in octant 1) and the pixel (x−1, y) is the last
pixel in the run of pixel having the same ordinate value, y, for the digital
circle of radius r in octant 1.

– Also, it is evident that the 4-neighborhood of an missing pixel are either
points from the digital circle of radius r+1, namely, (x, y+1) and (x+1, y)
or from the digital circle of radius r for the same generating points, namely,
(x− 1, y) and (x, y − 1).
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Now, from the digital circle construction algorithm in [1]. As mentioned in
Lemma 2, it is mathematically proven that SZ(P, r) with ordinate value r −m
always lies between [Um, Vm] = Um + Vm − 1]. DCS was designed using the con-
cept of square numbers of Vm(m > 0). It is clear that the points in the digital
circle of a given radius r are included for a particular ordinate value only if the
square of the abscissa falls in the range given by Lemma 1. Hence we perform a
lookahead in each step of run generation for ordinate value j (corresponding to
the m-th run) in the construction of the digital circle of radius r using the DCS
algorithm for the first octant. We check by looking ahead whether the maximum
abscissa value i for the ordinate value (j+1) [corresponding to the (m−1) th run]
for the circle of radius r+1, about the same point as center, is one greater than
the maximum abscissa value for the ordinate value j (corresponding to the m-th
run) for the circle of radius r which we are presently constructing. Our approach
guarentees that there would not be a single missing voxel in the generated 3D
surface.

The algorithm DCS without missing pixels() is almost the same as the
DCS algorithm mentioned in [1]. The only difference being that we declare in
the above mentioned procedure three additional variables psum , csum and k
with initial value 0, are required to keep track of the lookahead aspect for missing
pixel finding. For each of the ordinate value y in the first octant we check whether
the square number stored in s when it comes out of the inner while loop is ⩽ w.
If it is so then it signifies that (x, y) is an missing pixel. This pixel and its 8-
symmetric pixels are filled. At the end of the procedure in steps and psum ,
csum and k are updated and made ready for the next value of y.

LookAhead table is simple to integrate with the existing digital circle algo-
rithm. The algorithms shown above work together to generate 3D surface - a
surface which is continuous and irreducible and does not have any missing voxel.
After the generation of points all the points have been saved in a file.The points
are further plotted using matplotlib library of python.
It is clear from the algorithm that only 2 LookAhead tables are required at any
point of time. While generating points for circle CZ

r+1, only the LookAhead table
for circle CZ

r is required. The LookAhead table for the circle CZ
r+1 is generated

during the generation of the points for the circle CZ
r+1 itself. Searching for a

point (x, y) in the LookAhead table is processed in O(1) time, so it does not add
any major time quantum for execution of the algorithm.

5 Experiments and Results

The proposed algorithms are used to generate different 3D objects. A smooth
surface was achieved by using a smooth curve as generatrix. In order to achieve
a smooth surface, B-Spline curve is used to generate a smooth 2D curve. Few
control points are taken as input by the user. With the help of these control
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Y X

7 0
7 1
7 2
6 3
6 4
5 5

Table 1. Coordinates of a digital circle(Octant 1) having radius 7

Y X

6 0
6 1
6 2
5 3
4 4

Table 2. Coordinates of a digital circle(Octant 1) having radius 6

points, the points a 2D curve using B-Spline curve interpolation has been gener-
ated. The points of the 2D curve is stored to be used as generatrix. Now, at each
point of the 2D curve we draw a digital circle using digital circle algorithm. The
radius of this digital circle is the euclidean distance between the point on the
2D curve and the axis of rotation. This gives us our final 3D object. However,
it is found out that, this method produces some of the unwanted missing voxels
in our 3D surface In order to remove these missing voxels, we introduced the
concept of LookAhead table.

Analysis on the the pattern of positions has been done, where missing voxels
tend to appear and came up with an algorithm to overcome this problem of
missing voxels.

X Y

3 68
13 60
20 45
11 71
15 65
12 54
3 25
1 28
4 3
1 1
1 1

Table 3. Control Points for B-Spline curve generation
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Fig. 1. Concetric digital circles (a) With missing Voxels and (b) Without missing voxels

5.1 Generated 3D surface

Motion of a generatrix in 3D space gives us a surface [11]. This is the key idea
behind our implementation. If we revolve a curve in 2D plane along an axis of
revolution which is passing through the plane of curve and is parallel to the plane
then we get a connected 3D surface [12]. This idea has been used to generate a
3D surface from a generatrix.

Below the results of the various experiments we performed to generate dif-
ferent 3D shapes has been attached:

No. of control points No. of points in B-Spline Time taken(ms)

3 24 18

4 26 22

5 33 27

7 37 42

11 47 111

15 117 131
Table 4. Time for the generation of hole free 3D surface

6 Conclusions

This paper surveyed many algorithms [13] to generate and plot circles and 2D
curves, for the generation of 3D surfaces, from different literatures. It has been
observed that there are 2 different curves which can be used as generatrix namely
Bezier curve and B-Spline curve. It is concluded that Bezier curves can be used
to generate points of 3D surface but more smoothening can be achieved using
B-spline curves [14]. Moreover B-splines provide more flexibility. Thus, we have
used B-spline curves to generate a smooth 2D curve as generatrix which is further
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Fig. 2. Various views of a sample output object using our proposed methods

used to generate a smooth 3D surface. Different control points are taken as input
and 2D curves are generated with these control points using B-Spline curve
interpolation [15]. It has been analysed that the proposed algorithm integrated
with an additional LookAhead table succesfully generates different 3D surfaces
without any missing voxel. Some of the common shapes like frustum and bowling
pin has been generated using this algorithm. Other than that generation of
cubical, cuboidal and similar surfaces can be equally challenging topic.
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