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Abstract.The evolution of sequential recommendation systems is marked by sig-

nificant advancements, particularly in capturing user preferences from sequential 

data. Transformer-based models, despite their success, grapple with efficiency in 

processing long sequences. This study conducts a thorough comparative analysis 

of these models, highlighting the tradeoffs between efficiency and effectiveness 

across various modeling approaches and techniques. Research is categorized into 

Transformer-based, RNN-based, and the nascent SSM paradigm, examining their 

capacity for modeling complex sequences and their computational demands. Se-

lective State Space Models receive special focus due to their potential in achiev-

ing a balance between performance and speed. The discussion progresses to spe-

cific sequential modeling techniques like attention mechanisms, memory archi-

tectures, and methods for managing long-term dependencies. The application of 

these techniques within different frameworks and their effects on performance 

and efficiency are analyzed. Additionally, the study evaluates how user data types 

(explicit and implicit) and recommendation tasks shape model development. It 

also considers dataset attributes like sequence length and sparsity, and their in-

fluence on the complexity and efficiency of models. 
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1 Introduction 

Recommender systems have become an indispensable part of modern online platforms, 

guiding users towards relevant products, content, and services amidst an overwhelming 

abundance of choices. Sequential recommendation systems form a specialized class of 

recommenders designed to model the evolution of user preferences based on their se-

quential interactions. These systems play a crucial role in numerous applications: 1) E-

commerce: Suggesting items that naturally complement past purchases or fit a user's 

evolving shopping patterns; 2) Streaming Platforms: Recommending movies, TV 

shows, or music tracks that align with a user's viewing or listening history; 3) News and 

Content Aggregation: Presenting news articles or social media posts that match a user's 

interests based on their past reading behaviors [1]. 
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Unlike traditional recommendation approaches that treat user interactions as inde-
pendent events, sequential recommendation systems explicitly consider the temporal
order of interactions [7]. By capturing patterns within these interaction sequences,
they can: 1) Uncover Dynamic Preferences: Identify shifting interests and short-term
trends that might be missed by static models; 2) Predict Future Actions: Anticipate the
next item a user is likely to interact with, given their recent activity; 3) Offer Contex-
tualized Suggestions: Generate recommendations tailored to the user's current session
or context.

The increasing complexity of sequential recommendation tasks poses a fundamen-
tal challenge: balancing effectiveness and efficiency. To achieve accurate and person-
alized recommendations, models must capture intricate long-range dependencies and
complex relationships within lengthy interaction sequences. However, this often leads
to computationally demanding models that struggle to provide real-time recommenda-
tions, especially in large-scale applications. Key Factors contributing to this tension
include: 1) Long Interaction Sequences. Modern users generate vast amounts of inter-
action data over time. Processing these long sequences strains the computational re-
sources of many modeling approaches; 2) Complex Sequential Patterns. User prefer-
ences are not static. Models must identify subtle shifts in interests, recurring patterns,
and the influence of context, requiring sophisticated representations; 3) The Need for
Real-time Recommendations.

The efficiency-effectiveness tradeoff has spurred active research towards develop-
ing new model paradigms and innovative techniques for sequential recommendation.
This comparative study provides a comprehensive analysis of the state-of-the-art in
sequential recommendation models, focusing on the tradeoffs between effectiveness
and efficiency.

2 Modeling Paradigms

The Transformer architecture, originally introduced for natural language processing,
has revolutionized sequential recommendation. At its core lies the self-attention
mechanism, which allows the model to directly relate different positions within an
input sequence, regardless of their distance. Self-attention helps pinpoint the most
relevant elements of a user's interaction history for predicting their next interaction by
calculating attention scores through the generation of query (Q), key (K), and value
(V) vectors, and then computing a weighted sum of the value vectors. The key bene-
fits include capturing long-range dependencies, enabling the model to establish con-
nections between distant items, and allowing for parallelizable computations, making
Transformers more efficient to train compared to RNNs. However, Transformer-
based models face challenges with computational complexity due to the quadratic
time complexity (O(n²)) of self-attention, especially for long sequences. To mitigate
this, research has developed strategies like sparse attention patterns, which restrict
computations to specific neighborhoods within the sequence [3], adaptive computa-
tion time, which adjusts the number of computation steps based on the input [2], and
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linearized attention, which approximates calculations using linear projections to lower
complexity.

Recurrent Neural Networks (RNNs) have long been essential for sequential model-
ing due to their ability to maintain an evolving internal state that processes input se-
quences step-by-step, incorporating past interactions for predictions. Specialized ar-
chitectures like Long Short-Term Memory (LSTM) ([10]) and Gated Recurrent Units
(GRU) [9] address early RNNs' difficulties with long-term dependencies through
gating mechanisms. LSTMs use three gates: Forget Gate, Input Gate, and Output
Gate, to manage information flow, while GRUs use two: Reset Gate and Update Gate.
GRUs are computationally less expensive but both are effective for sequential data.
However, RNNs struggle with very long sequences due to vanishing/exploding gradi-
ents, where gradients become too small or too large during backpropagation, hinder-
ing learning. Mitigation techniques include gradient clipping, rescaling gradients to
prevent explosions, and regularization methods like L1 or L2 to reduce overfitting.
Additionally, skip connections, similar to residual connections in ResNets [8], allow
information to bypass layers, improving gradient flow.

State Space Models (SSMs) offer a unique framework for modeling sequential and
time-series data, gaining attention in sequential recommendation due to their efficien-
cy and expressiveness. SSMs have computational advantages over RNNs, especially
for long sequences. Linear SSMs, solvable analytically with methods like the Kalman
filter [6], offer speed and efficiency, while non-linear SSMs use approximate infer-
ence techniques or specialized algorithms [3, 5]. Hierarchical SSMs capture both
short-term and long-term dependencies within user preferences [4]. A recent ad-
vancement is selective SSMs, which update only relevant parts of the hidden state,
reducing computational needs [3]. This approach enhances efficiency for real-time
recommendations, with some models designed for optimization on specialized hard-
ware [3].

3 Sequential Modeling Techniques

Attention mechanisms have revolutionized sequential modeling by enabling models to
dynamically focus on the most relevant parts of an input sequence, a crucial capability
for sequential recommendation where future actions depend on specific historical
interactions. Common attention variants include: 1) Dot-product Attention: This
foundational method computes similarity scores between the query (Q) of one item
and the keys (K) of all items using dot products. The scores are normalized with a
softmax function to obtain attention weights, which are then used to calculate a
weighted sum of the value vectors (V); 2) Scaled Dot-product Attention: Introduced
in the original Transformer paper, this scales the dot products by the square root of
the key vector dimension to prevent softmax gradients from becoming too small in
high-dimensional spaces; 3) Multi-head Attention: This powerful extension uses mul-
tiple parallel attention heads, each with its own query, key, and value projections [11,
12, 13].
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Sequential models must efficiently store, recall, and update past information to un-
derstand evolving user preferences. Various memory architectures offer unique ad-
vantages and drawbacks. RNN-based memories, including traditional RNNs, LSTMs,
and GRUs, maintain an internal hidden state that evolves with input sequences. They
are computationally efficient for shorter sequences and allow dynamic state updates
but struggle with long-term storage due to limited capacity and gradient problems.
Conversely, models with external memory decouple information storage from compu-
tation, featuring a dedicated memory module for reading and writing. This increases
long-term storage capacity and mitigates gradient issues but can slow performance
due to overhead and complex read/write mechanisms. The choice of memory archi-
tecture significantly impacts a model’s ability to handle long-range dependencies [14,
15].

Modeling complex relationships between items separated by many steps in a user's
interaction history is crucial for accurate and personalized sequential recommenda-
tions. Transformers and State Space Models (SSMs) offer distinct strategies for this
purpose. For Transformers, self-attention enables direct connections between all items
in a sequence, making them adept at capturing long-range dependencies. To handle
extreme sequence lengths, strategies like imposing sparsity patterns on the attention
matrix reduce computations, approximating attention using linear projections to lower
time complexity from quadratic to linear, and dynamically adjusting attention steps to
focus on the most relevant parts of the input, saving computations.

4 The Influence of Data and Tasks

Fig. 1. Distribution of references in The Influence of Data and Tasks

Figure 1 shows the distribution of references across the different influence of data and
tasks. The type of user data available to a recommender system profoundly influences
model choices and strategies for capturing user preferences. Explicit behavior in-
cludes directly observable actions such as clicks, purchases, ratings, or reviews, which
provide clear signals of user interest and are often represented numerically or with
binary values. In contrast, implicit feedback involves indirect inferences like brows-
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ing history, time spent on an item, search queries, or mouse movements, which are
noisy and ambiguous, requiring nuanced interpretation and often transformation into
confidence scores or binary indicators of potential interest. The distinction between
explicit and implicit feedback significantly impacts the complexity of sequential rec-
ommendation.

Recommendation systems vary in design based on specific tasks, such as next-item
prediction, session-based recommendation, and sequence completion. For predicting
the next item a user will interact with, models typically leverage the entire interaction
history using approaches like Transformers or Sequential Sparse Models (SSMs),
optimizing for metrics such as accuracy or Mean Reciprocal Rank (MRR). In session-
based recommendation, where long-term user history may be less relevant, Recurrent
Neural Networks (RNNs), particularly GRUs, excel at capturing short-term dynamics
within sessions. Privacy-preserving techniques are crucial here when user identities
need to be anonymized. For sequence completion tasks like playlist generation or
future purchase prediction, generative models such as Transformers with autoregres-
sive decoding or specialized RNN architectures are employed to predict multiple fu-
ture items accurately. These models adapt to evolving user preferences by emphasiz-
ing recent interactions, reflecting the dynamic nature of user interests within a ses-
sion.

The effectiveness of a sequential recommendation model hinges not just on its ar-
chitecture but also on the specific characteristics of the dataset it is trained on. Se-
quence length plays a critical role: for short sequences, standard RNNs like LSTMs or
GRUs are effective, while Transformers excel with moderate to long sequences due to
their ability to capture complex dependencies. Sparsity in datasets, where users inter-
act with only a small fraction of available items, poses challenges in learning robust
representations. Domain-specific knowledge, such as hierarchical structures in e-
commerce taxonomies, informs model design choices. These dataset characteristics
interact synergistically, influencing model selection: handling long sequences amidst
sparsity requires efficient techniques like Selective State Space Models (SSMs), while
domain-specific tasks like session-based recommendations in music benefit from
models that integrate both sequential patterns and item features like audio data [3, 4].

5 Conclusion

This comparative study delved into the tradeoffs, techniques, and complexities inher-
ent in sequential recommendation, highlighting key insights: the challenge between
model expressiveness and computational efficiency, especially for long interaction
sequences; the evolution of modeling paradigms such as Transformers, RNNs, and
State Space Models (SSMs) with their unique strengths and limitations; and various
sequential modeling techniques like attention mechanisms and memory architectures.

A Comparative Analysis of Modeling Paradigms and Techniques             333



References

1. Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

2. Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018. Sigmoid-weighted linear
units for neural network function approximation in reinforcement learning. Neu-
ral networks 107 (2018), 3–11.

3. Albert Gu and Tri Dao. 2023.  Mamba: Linear-time sequence modeling with se-
lective state spaces. arXiv preprint arXiv:2312.00752 (2023).

4. Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. 2020. Hip-
po: Recurrent memory with optimal polynomial projections. Advances in neural
information processing systems 33 (2020), 1474–1487.

5. Albert Gu, Karan Goel, and Christopher Ré. 2021.  Efficiently modeling long se-
quences with structured state spaces. arXiv preprint arXiv:2111.00396 (2021).

6. Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and
Christopher Ré. 2021. Combining recurrent, convolutional, and continuous-time
models with linear state space layers. Advances in neural information processing
systems 34 (2021), 572–585.

7. F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

8. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition . 770–778.

9. Dan Hendrycks and Kevin Gimpel. 2016.  Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

10. Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv pre-
print arXiv:1511.06939 (2015).

11. Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM) .
IEEE, 197–206.

12. Diederik P Kingma and Jimmy Ba. 2014.  Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

13. James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al . 2017. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences 114, 13 (2017),
3521– 3526.

14. Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management. 1419–1428.

15. Jianghao Lin, Yanru Qu, Wei Guo, Xinyi Dai, Ruiming Tang, Yong Yu, and
Weinan Zhang. 2023. MAP: A Model-agnostic Pretraining Framework for Click-
through Rate Prediction. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 1384–1395.

334             Y. Jia



Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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