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Abstract. Traditional risk assessment methods at construction sites typically rely 

on manual inspections. These assessments are static and primarily conducted be-

fore construction, making it challenging to respond in real-time to the constantly 

changing environment during construction. This paper proposes a real-time risk 

assessment and dynamic visualization method for construction sites based on 

multi-source data fusion, combining data obtained through advanced technolo-

gies with data and expertise from traditional methods. By collecting and integrat-

ing various data sources such as drone images and fixed surveillance videos, the 

YOLOv8 model is used for target detection, and depth estimation technology is 

employed to determine the real-time distance between potential hazards and 

nearby objects. The method incorporates information from hazard source risk as-

sessment reports generated through manual inspections and utilizes an improved 

TOPSIS method for dynamic risk assessment of the detected results. Finally, the 

risk distribution is visually presented through heat maps and other visualization 

techniques. Experimental results demonstrate that this method can efficiently and 

accurately identify, assess, and warn of risks during the construction process, 

providing robust support for safety management at construction sites. 
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1 Introduction 

Construction sites are highly dynamic and complex environments with various poten-

tial safety hazards. Traditional risk assessment methods primarily rely on manual in-

spections, which are static and typically conducted before construction begins. These 

methods suffer from limited monitoring scope, poor real-time capabilities, and diffi-

culty in accurately identifying and assessing risks, making them inadequate for real-

time monitoring and dynamic risk assessment during construction. 
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As construction progresses, the site environment and risk factors continuously
change. Static risk assessment methods fail to provide timely warnings and effective
safety management, as they cannot respond in real time to on-site changes or offer on-
going safety assurance throughout the construction process [2, 6]. The advancement of
artificial intelligence technology provides an effective means for the real-time detection
and notification of hazards on construction sites. [5]. Despite extensive research in this
area, there remains a predominant focus on isolated safety risks, such as collisions and
hazardous actions, rather than on the comprehensive risk evaluation and decision-mak-
ing processes vital for robust safety management [3]. Moreover, numerous potential
risk factors are often ignored until they become manifestly unsafe behaviors.

To address these challenges, this study introduces an innovative approach for real-
time risk assessment and dynamic visualization at construction sites based on multi-
source data fusion. By applying advanced analytical techniques, this method aims to
provide a more accurate and timely identification of potential hazards, thus enhancing
safety management and reducing the occurrence of accidents on construction sites.

2 Methodology Framework

To achieve real-time risk assessment and dynamic visualization at construction sites,
this study proposes a comprehensive framework with three main components: risk iden-
tification, risk assessment, and risk visualization (Fig. 1).

Fig. 1. Real-Time Risk Assessment and Dynamic Visualization Framework

3 Model and Method

In this investigation, the YOLOv8 model is implemented for detecting construction-
related objects. After training, the model identifies hazards and related objects by log-
ging bounding box coordinates. For each hazard, positively and negatively associated
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objects are marked as ௜ܲ ,௝  and ௜ܰ,௞  respectively. Central coordinates of hazards and
nearby objects are recorded. Using MonoDepth2 [4], we estimate pixel depth to convert
2D coordinates into 3D space, adjusting for real-world scaling. Overlapping bounding
boxes are considered as having zero distance. This method enhances safety risk moni-
toring and management on construction sites.

This study gathered hazard identification and risk assessment checklists from over
40 construction projects. These checklists, typically issued before construction begins,
detail common accident causes and their potential safety impacts. By leveraging com-
puter vision technology, the study identified high-risk hazard sources from these check-
lists and calculated their potential accident risk levels using a specific formula:

௜ݎ = ∑ (݁௜,௭ ∗ ௘೔,೥)ூ௏ݍ
௭ୀூ ∕ ௘೔,೥ݍߑ (1)

Construction site safety regulations require a critical "safety distance" to reduce hazards
(Fig. 2). Two important distance thresholds have been identified by experts to under-
stand spatial interactions between risk factors:

Critical Distance (a): Interaction intensity between risk factors remains stable within
this threshold and can be seen as constant.

Critical Distance (b): Interaction intensity decreases between distances "a" and "b".
Beyond distance "b", changes in interaction intensity become negligible and can be
ignored.

Fig. 2. Optimal and Worst Influence Distances for Hazard Impact at Construction Sites

Assessing risk is challenging due to hazards interacting over space and time. The
TOPSIS method offers a solution by comparing real scenarios with the best and worst
possible cases. [1].

In practical engineering, multiple objects may be positively or negatively correlated
with varying numbers and distances. To address this complexity, the TOPSIS method
calculates the spatial coupling risk impact factor β based on the proximity of these ob-
jects. The influence coefficients ௣ߚ  and ௡ߚ  of risk-related factors, encompassing ob-
jects with both positive and negative correlations, are calculated using Eq. (2).

௣/௡ߚ =
ୢು/೙
ష

ௗ೛/೙
శ ାௗ೛/೙

ష (2)
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The total risk score for the hazard is computed using Equation (3):

ܴ௜=
௥೔
ଶ

(1− ௣ߚ + (௡ߚ (3)

Fig. 3 shows some examples of how the effects of different combinations of associated
objects vary with distance.

Fig. 3. Impact Utility Variation with Distance for Related Objects.

Risk visualization diagrams are valuable tools for illustrating the outcomes of risk
assessments and conveying potential hazards to workers. These diagrams, created by
computers, visually represent risks on construction sites to aid in risk reduction. They
employ colors to denote different risk levels, taking into account comprehensive risk
values near hazard sources. The process involves: (1) Storing the hazard source's center
of mass and risk value in a three-dimensional array. (2) Creating a coordinate matrix,
computing distances between data and grid points, and using a Gaussian function to
determine weight values. (3) Generating an elevation map and assigning colors based
on weight values. (4) Aligning the map with the original 2D image and refining colors
and parameters.

4 Experiments and Results

This study collected data from two main sources: drone aerial photography and fixed
monitoring videos. Drones captured 28,240 images across various construction sites in
Changsha, China, featuring 38 different object types. Additionally, 60 video segments,
each 180 seconds long, documented major construction phases over a week. Traditional
risk assessment reports were also incorporated, providing detailed hazard information.

After extracting key frames from the video data of the experimental scene, target
recognition and depth estimation were performed. The results are shown in the middle
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part of Fig. 4. The hazard source in both images is identified as the same excavator.
Detection also revealed that the negatively correlated object, a car, changes its distance
from the moving excavator over time. Specifically, when the distance between the car
and the excavator is 5.12 m at time t1, the average comprehensive risk value of the
excavator is 59. When the distance decreases to 3.61 m at time t2, the average compre-
hensive risk value increases to 67. These risk values at different times are used to gen-
erate a heat map, displayed in Fig. 4.

Fig. 4. Risk heat map for scenario

5 Conclusion

Since traditional safety risk identification methods cannot achieve real-time risk man-
agement during construction, this study proposes a real-time risk assessment and dy-
namic visualization method for construction sites based on multi-source data fusion,
combining data obtained from advanced technologies with those from traditional meth-
ods and experiences. This study achieves the automation of quantifying and visualizing
safety risks in construction by integrating computer vision techniques with quantitative
risk assessment methods. It focuses on monitoring potential risk factors, evaluating
risks through real-time monitoring of changes in the quantity and distance of hazard
sources, thereby enhancing traditional risk identification and prediction methods. Ex-
perimental results demonstrate a high consistency rate of 95% between the proposed
model and expert assessments. Future research aims to optimize the model further, im-
prove its robustness in complex environments, and explore additional application sce-
narios.

Despite the effectiveness of our approach, it has limitations primarily due to inherent
challenges in computer vision, such as occlusion, difficulty in identifying small objects,
and insufficient lighting during nighttime or adverse weather conditions. Future re-
search will aim to address these issues by integrating additional data sources, enhancing
image processing algorithms, and employing advanced AI techniques to improve ro-
bustness and accuracy in diverse and challenging environments.

718             C. Li et al.



Acknowledgement

This research received support from (1) the National Natural Science Foundation of
China (Grant No. 72201095, 72101275), (2) Foundation items: National Key Research
and Development Program of China (No.2023YFC3806800), and (3) Hunan Provincial
Natural Science Foundation (Grant No. 2023JJ40189, 2022JJ40645).

References

1. Behzadian, M., Otaghsara, S. K., Yazdani, M., and Ignatius, J., "A state-of the-art survey of
TOPSIS applications," Expert Systems with Applications, vol. 39, no. 17, pp. 13051-13069,
2012, doi: https://doi.org/10.1016/j.eswa.2012.05.056.

2. Chen,  H.,  Luo,  X.,  Zheng,  Z.,  and  Ke,  J.,  "A  proactive  workers'  safety  risk  evaluation
framework based on position and posture data fusion," Automation in Construction, vol. 98,
pp. 275-288, 2019, doi: https://doi.org/10.1016/j.autcon.2018.11.026.

3. Fang, W., Zhong, B., Zhao, N., Love, P. E., Luo, H., Xue, J., and Xu, S., "A deep learning-
based approach for mitigating falls from height with computer vision: Convolutional neural
network," Advanced Engineering Informatics, vol. 39, pp. 170-177, 2019, doi:
https://doi.org/10.1016/j.aei.2018.12.005.

4. Godard, C., Mac Aodha, O., Firman, M., and Brostow, G. J., "Digging into self-supervised
monocular depth estimation," presented at the The IEEE/CVF International Conference on
Computer Vision, 2019.

5. Xiao,  B.,  Lin,  Q.,  and  Chen,  Y.,  "A  vision-based  method  for  automatic  tracking  of
construction machines at nighttime based on deep learning illumination enhancement,"
Automation in Construction, vol. 127, p. 103721, 2021, doi: https://doi.org/10.1016/
j.autcon.2021.103721.

6. Zhang, S., Boukamp, F., and Teizer, J., "Ontology-based semantic modeling of construction
safety knowledge: Towards automated safety planning for job hazard analysis (JHA),"
Automation in Construction, vol. 52, pp. 29-41, 2015, doi: https://doi.org/10.1016/
j.autcon.2015.02.005.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
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medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Enhancing Construction Site Safety: A Risk Modeling Approach             719

http://creativecommons.org/licenses/by-nc/4.0/

	Enhancing Construction Site Safety: A Risk Modeling Approach

