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Abstract. Intelligent ships face the problem of accurate and real-time perception 

of the surrounding environment during the berthing and de-berthing. This paper 

proposes a Poly YOLO detector based on the YOLOv3 network. Firstly, the 

detection rate and efficiency of the Poly-YOLO structure is enhanced by intro-

ducing the dilated convolution and self-attention module into it; secondly, the 

LIDAR point cloud data is projected onto the 2D plane, the information of the 2D 

sparse depth map is enriched to generate the dense depth map using the depth 

up-sampling method, the data is fed back to the Poly-YOLO detection and 

recognition network, and the detection is accomplished by using the detection 

head. The experimental results show that this method can effectively improve the 

accuracy of the detection of point clouds and ensure real-time performance. 
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1 Introduction 

With the rapid development of deep learning, automation and intelligent technology are 

continuously driving the progress of waterway traffic control, and automatic berthing 

and de-berthing technology is receiving more and more attention. It is not only nec-

essary to achieve high detection accuracy, but also to have efficiency requirements for 

real-time detection speed. Deep learning based methods have stronger generalization 

performance and accuracy, and are gradually replacing traditional algorithms as the 

mainstream ship target detection algorithm. 

And in recent years, at present, target detection algorithms based on 

two-dimensional images have made great progress, but detection algorithms for 

three-dimensional detection are still under intensive research, and the main sensors 

used for three-dimensional detection are LiDAR, millimeter-wave radar and depth 

camera. Among them, the data captured by LIDAR is different from the image, which 

is a three-dimensional point cloud rather than a two-dimensional image, and according 

to the different point cloud processing methods, the detection methods can be divided 

into: target detection methods based on the original point cloud, based on the voxeli-

zation of the point cloud, based on the point cloud projection. 
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(1) Typical algorithms based on the original point cloud are PointNet by QI et al [1],
Center-Poin6 by YIN et al [2], and 3DSSD by YANG et al [3]. These algorithms have
large arithmetic capacity and slow operation speed, with the advantage of being able to
maximize the retention of the object's positional information in the three-dimensional
space, which is more suitable for instance segmentation-type tasks.

(2) Typical algorithms based on point cloud voxelization are VoxeINet proposed by
ZHOU et al [4], Pointpilars proposed by LANG et al [5], and Voxelr cnn proposed by
DING et al [6]. These algorithms organize disordered point cloud data into ordered
voxel expressions, which effectively improves the speed of network processing com-
pared to the direct processing of the point cloud, but in the face of the uneven distri-
bution of the point cloud, a large number of null voxels are generated, which increase
the additional computational effort.

(3) Typical projection-based algorithms include MV3D proposed by CHEN et al
[7]. and BirdNet+ proposed by BARREARA et al [8]. Such methods complete target
detection by projecting the point cloud into two-dimensional views with different
angles, and then utilize the mature two-dimensional target detection network to com-
plete the target detection, which has less computation, faster speed and higher accuracy.
Among the projection-based pedestrian detection methods, they can generally be cat-
egorized into front-view (FV) projection and bird's eye-view (BEV) projection, etc [9].
In the unmanned field, BEV projection is used because front-view projection has the
problem of object occlusion and driving is prone to danger. Complex-YOLO proposed
by SIMONY et al [10]. Fewer dimensions mean fewer computations, faster detection
speed, but the reduced dimension data is more sparse, the feature extraction network of
the original algorithm can't meet the learning enough features.

To address the above problems, an improved Poly-YOLO detector method based on
YOLOv3 is proposed, and by introducing dilated convolution and Self-Attention
Module (SAM) in the Poly-YOLO structure. The 3D point cloud of LIDAR scans is
then projected onto a 2D pixel plane; the sparse depth map obtained from the projection
contains insufficient information, so a dense depth map is generated using a depth
upsampling method. A new SE-Darknet-53 backbone network in the detector is used to
enhance the detection performance of the network and reduce the number of parame-
ters. Finally the results are output through the detection header.

2 Methodology

2.1 Poly-YOLO

In order to investigate a fast and accurate target detector for automated park-and-drive
systems, this paper focuses on a single-stage approach and tries to explore its perfor-
mance enhancement potential. Based on the efficient YOLOv3, Poly-YOLO is pro-
posed and eliminates two weaknesses of YOLOv3: rewritten labels and inefficient
distribution of anchors.

For the label rewriting problem, it can only be realized by either increasing the input
image resolution size; or increasing the output feature map size. The approach in this
paper is to increase the output feature map size. Improvements to the Anchor distribu-
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tion problem-The problem posed by k-mean clustering has the following two solutions:
(1) The k-mean clustering process remains unchanged, but to avoid the problem of

small objects being assigned to train on top of small output feature maps and large
objects being assigned to train on top of large output feature maps, it is specific that
firstly, based on the sense field of the output layer of the network, three approximate
ranges of scales are defined, and then two thresholds are set to forcibly discretize the
three scales to separate them; and then the bboxes are clustered individually three
times, and each time the clustering is carried out in the previously specified range is
performed by selecting a specific bbox, rather than acting on the entire dataset.

(2) Just one output layer, all objects are predicted in this layer. The k-mean clus-
tering problem can be avoided, but in order to prevent label rewriting, so the output
resolution is adjusted upwards, which is perfect at this point. The authors actually use a
1/4 scale output, which is a high resolution output with a very low rewrite probability.

Fig. 1. Structure diagram of YOLOv3 and Poly-YOLO.

It can be found according to the Figure 1:
(1) For the network, in order to reduce the number of parameters, the number of

channels is firstly reduced, while in order to improve the performance, SE units are
introduced to enhance the features.

(2) The biggest difference from YOLOv3 is that the output layer is one, but also uses
multi-scale fusion.

(3) The neck section presents the hypercolumn+stairstep upsampling operation.

2.2 Dilated Convolution and Self-Attention Module (SAM)

Dilated Convolution.
In order to learn discriminative feature maps, we replaced the standard convolution

with dilated convolution in the SE-Darknet-53 backbone. Dilation convolution was
known in the past as convolution using dilated filters and plays a key role in the átrous
algorithm. Later, semantic segmentation was further used to aggregate multi-scale
contextual feature maps without loss of image resolution. Mathematically, the convo-
lution operation between two functions can be described as follows:
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Where f is a discrete function with kernel size of m, g is the filter with the size of n,
and r indicates the size of receptive field.

Besides, dilated convolution is formulated as follows:
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Where k denotes dilated rate.
As shown in the figure 2, there are at least two key advantages of using the dilated

convolution. First, it provides larger receptive field, and allows the model to focus on
local feature information. Second, the introduction of dilated convolution rarely incurs
additional computational cost, and thus ensures fast convolutional operation and effi-
cient inference.

Fig. 2. Overview of Dilated Convolution.

Self-Attention Module (SAM).
In order to highlight useful region and model feature relationships, we further in-

vestigate the self-attention mechanism that Transformer successfully employs in ma-
chine translation. In Transformer, the input is divided into three components of query
(Q),  key  (K)  and value  (V),  as  shown in  the  figure  3.  First  the  dot  products  all  key
queries is calculated and then softmax function is placed on matrix multiplication result
to obtain its weight on the value. It is known as self-attentive mechanism.

In this work, we design the Self-Attention Module (SAM) through Transformer and
formulate it as a unique attention mechanism for model feature relations. The above
figure (b) shows that the input is first divided into q, k and v branches. Subsequently 3 ×
3 convolutions with 1, 2 and 5 dilated rates are performed in parallel, and then the
activation probabilities are computed using the softmax function. The 1 × 1 convolu-
tion is the bottleneck for parameter reduction until the final shortcut is connected. With
the help of inflated convolution, SAM can capture global feature relations while fo-
cusing on local semantic information.
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Fig. 3. Architectural Overview of the Self-Attention Module (SAM).

3 Experimental Results and Analysis

3.1 Experimental Data Collection

(a)                                 (b)

(c)

Fig. 4. (a) is the real picture, (b) is the YOLOv3 output result, (c) is the Poly-YOLO output result.
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Figure 4 shows the results of the real scene pictures mapped by LIDAR scanning to
form a 3D point cloud and deepened by densification after being fed back by YOLOv3
and Poly-YOLO, respectively. Poly-YOLO clearly displays each target in the scene,
and the convolution layer of the detection module extracts the feature information at
different scales to accurately detect the target, especially our selected scene pictures in
the typical frames are clearly represented, such as the point cloud of the shoreline and
the target ship. The traditional target detector YOLOv3 usually outputs a rectangular
bounding box to describe the detected targets. Poly-YOLO, on the other hand, can more
accurately describe the shape of the target by introducing polygonal output, which is
especially suitable for irregularly shaped targets, such as ships, buildings, and so on.

(1) Improved clarity and accuracy of target detection: Poly-YOLO clearly shows
individual targets in the sea scene in the output, including point clouds of buildings near
the shoreline and target ships. This shows that Poly-YOLO's detection module is able to
extract feature information at different scales more accurately and recognize target
objects more precisely.

(2) Bounding box retention capability: Poly-YOLO has bounding polygons, which
help retain the accuracy of bounding box detection. This means that Poly-YOLO is able
to capture the shape and boundaries of the target object more accurately, thus im-
proving the quality of target detection.

(3) Effectiveness of SAM: The introduction of SAM enables Poly-YOLO to better
process contextual information and learn more discriminative features, which further
improves the performance. This shows that Poly-YOLO has better adaptability and
generalization ability to better adapt to different scenarios and environments.

4 Conclusion

In this paper, we propose an improved Poly-YOLO detector method based on
YOLOv3. In order to enhance the detection rate and efficiency, we introduce the ex-
pansion convolution and self-attention module in the Poly-YOLO structure; consid-
ering that the sparse depth map obtained from the projection of the 3D point cloud
scanned by LIDAR to the 2D pixel plane contains insufficient information, we utilize
the depth upsampling method to generate the dense depth map. Finally, the results are
output through the detection head. The experimental results show that compared with
YOLOv3, the Poly-YOLO proposed in this paper has significant advantages in target
detection during berthing, including high accuracy, faster speed, and better boundary
preservation capability. In the future, we can further extend our research in the fol-
lowing directions, e.g., by utilising a lighter weight detector, YOLO-lite, and secondly,
we can further exploit the performance of other deep learning models to obtain more
comprehensive experimental results.
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