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Abstract. In order to improve the efficiency and safety of air traffic control sys-

tems, a deep learning based optimization strategy is adopted, integrating data col-

lection, processing, and decision support modules. By improving the ant colony 

optimization algorithm and neural network model, route scheduling and flight 

safety management are optimized. The results indicate that the system signifi-

cantly improves decision-making accuracy and enhances the ability to respond to 

emergencies in various aviation control scenarios. 
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1 Introduction 

With the rapid development of the aviation industry, global air traffic has shown un-

precedented growth. According to data from the International Civil Aviation Organiza-

tion (ICAO), the number of global flights has significantly increased every year in re-

cent years. This growth poses significant challenges to the operational efficiency and 

flight safety management of air traffic control systems. Traditional air traffic control 

methods are inadequate in dealing with intensive flight scheduling needs, especially 

during peak hours when flight delays occur frequently, seriously affecting the overall 

efficiency and safety of the aviation system. As Kirwan (2024) stated, the future avia-

tion safety culture will be driven by artificial intelligence technology, demonstrating 

the necessity of technological progress. Peiyuan et al. (2024) provided a new method-

ological perspective for extracting key information from aviation control directives by 

studying small sample learning frameworks. In this context, exploring data-driven avi-

ation control optimization models using advanced deep learning techniques has become 

a hot research topic. This study utilizes deep learning algorithms to efficiently integrate 

and process complex aviation data, optimize flight scheduling and safety management, 

with the aim of improving the system's response speed and decision accuracy.  

2 Framework of Air Traffic Control Optimization System 

One of the key components of the aviation control optimization system framework is  
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the data acquisition module. This module is responsible for collecting and prepro-
cessing aviation data from different sources to support subsequent deep learning pro-
cessing and decision-making. This module ensures the comprehensiveness and real-
time nature of information by integrating data from radar systems, flight data recorders,
and other aviation monitoring equipment. The data collection module performs prelim-
inary cleaning and format standardization on the data, providing a foundation for effi-
cient data analysis. In addition to the data collection module, the system also includes
a data processing module, a learning module, and a decision support module. The data
processing module is responsible for further processing the preprocessed data, includ-
ing feature extraction and data denoising, to provide accurate input for deep learning
algorithms. The learning module uses deep learning algorithms to perform pattern
recognition and trend analysis on processed data, in order to predict and optimize air
traffic control operations [1]. The decision support module provides real-time decision
support based on the output of the learning module, helping regulatory personnel make
more accurate and efficient control decisions, as shown in Figure 1:

Fig. 1. Framework of Air Traffic Control Optimization System

3 Local Optimization Algorithms and Neural Network Models

3.1 Improving Ant Colony Optimization Algorithm

Local optimization algorithms and neural network models play a crucial role. Espe-
cially the improved ant colony optimization algorithm, as shown in Figure 2, is a heu-
ristic algorithm that mimics ants in finding food paths. During the process of searching
for food, ants leave pheromones on their path, while other ants determine their path
based on the concentration of pheromones, thus finding the shortest path. Utilize this
principle in air traffic control optimization to find the optimal route. Specifically, the
algorithm guides the search direction and optimizes the decision-making process by
updating pheromones. The pheromone update rule reflects the quality of the path, and
the pheromone concentration of high-quality paths is higher, which attracts more ants
(i.e. search agents). Heuristic information is also introduced to improve the search abil-
ity and convergence speed of the algorithm, avoiding premature convergence to local
optimal solutions.
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Fig. 2. Principle of Ant Colony Optimization Algorithm

This algorithm mainly guides search direction and optimization decisions by updat-
ing pheromones, and is suitable for handling complex route scheduling problems. The
improved ant colony optimization algorithm introduces heuristic information to en-
hance the search ability and convergence speed of the algorithm. In the algorithm, the
pheromone update rules on each path can be expressed as:

∋ ( ∋ ( ijijij tpt σσσ Χ∗√,<∗ )1(1 (1)

Among them, ∋ (tijσ  Representing time t Time from node i To node j The concentration

of pheromones, p It is the volatility coefficient of pheromones, ijσΧ It is the increased
amount of pheromones caused by ants walking along this path. The improved algorithm
also incorporates a local search mechanism, which explores by randomly selecting the
optimal path around it to avoid the algorithm from converging to the local optimal so-
lution in the early stages [2].

3.2 Algorithm Optimization Methods

Learning rate is a key hyperparameter in deep learning, which controls the step size of
model weight updates. An appropriate learning rate can help the model converge faster
while avoiding excessive oscillation or premature falling into local minima. The
method of dynamically adjusting the learning rate was adopted in the study, which ad-
justs the learning rate based on the performance of the model during the training pro-
cess. Dynamically adjusting the learning rate typically relies on variations of gradient
descent methods, such as the Adam algorithm, which is an adaptive learning rate opti-
mization algorithm that can calculate the adaptive learning rate for each parameter. The
Adam algorithm combines the advantages of momentum and RMSprop algorithms, ad-
justing the learning rate by calculating the first-order and second-order moment esti-
mates of gradients:

∋ (tttt L πγππ ∠,<∗1 (2)

Among them,π is the model parameter, tγ is the learning rate at time t , L is the loss

function, and ∋ (tL π∠ is the gradient of the loss function with respect to the parameter

722             K. Song and N. Yang



π . Introducing regularization techniques, such as L2 regularization, can effectively
prevent the model from becoming overly complex, thereby avoiding overfitting. By
adding a regularization term to the loss function, the modified loss function is expressed
as:

2)()( πκππ ∗<ϒ LL (3)

Here, )(πLϒ The loss function after adding regularization terms, κ It is the regulariza-

tion coefficient, which controls the degree of influence of the regularization term,
2π

It is a parameterL2Norm.

3.3 Neural Network Model Construction

A neural network model is a set of algorithms designed to simulate the workings of the
human brain, suitable for identifying complex patterns and relationships in data. Deep
neural networks are used in research to process and analyze aviation data, optimize
route scheduling and flight safety management. The network model mainly consists of
multiple layers, each layer consisting of multiple neurons, including input layer, multi-
ple hidden layers, and output layer [3]. The output of each neuron is converted through
an activation function, commonly used as ReLU (Corrected Linear Unit), whose for-
mula is:
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Here, ∋ (l
ijf Indicates the number of l Layer in position ∋ (ji, Feature mapping, ∋ (l

pqw It is

a convolutional kernel parameter, ∋ (1
,

,
∗∗

l
qjpix It is the input from the previous layer,ρ It

is an activation function, ∋ (lb It is a bias term. Next, the selection of activation functions
is crucial for constructing neural networks, as it determines the network's non-linear
expression ability. The commonly used activation function, such as ReLU (Corrected
Linear Unit), is defined as ∋ ( ∋ (xx ,0max<ρ  Due to its simplicity and efficiency, it is
widely used in deep learning models. The choice of loss function directly affects the
effectiveness of model training. For the optimization problem of air traffic control, the
mean square error loss function is usually used, defined as:
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Among them, iy It is the true value, ∋ (2ˆ πiy It is the predicted value of the model, n It

is the number of samples,π Represents model parameters. Through such a structure
and parameter design, the Shen Ru dimensional network model can effectively perform
feature extraction and pattern recognition, providing strong data analysis and decision
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support capabilities for air traffic control systems [4].

4 Local Optimization Pattern Recognition for Air Traffic
Control

4.1 Local Optimization Mode Feature Extraction

The task of feature extraction is to identify key information for decision-making and
prediction from aviation data, such as flight trajectories and weather conditions. This is
achieved through advanced neural network technologies such as convolutional neural
networks and recurrent neural networks. Convolutional networks are suitable for pro-
cessing image data and recognizing spatial features; Recurrent networks are superior to
parsing time series data and capturing time dependent features. After data cleaning and
normalization, important features are automatically learned and extracted through a
multi-layer network structure to optimize model performance [5].

4.2 Pattern Automation Recognition Process

The pattern automation recognition process is a key component that relies on precise
algorithms and advanced neural network models to achieve efficient and accurate
recognition. The goal of this process is to automatically identify specific optimization
patterns from massive aviation data, such as potential causes of flight delays, retention
strategies for optimizing air traffic flow, etc. The automated recognition process mainly
consists of the following core steps: data preprocessing, feature extraction, pattern
recognition, and result evaluation, as shown in Figure 3:

Fig. 3. Data processing flow of pattern recognition

In the feature extraction stage, convolutional neural networks (CNN) and recurrent neu-
ral networks (RNN) are used to deeply analyze data features. The key algorithm for-
mulas can be expressed as:

∋ ( ∋ ( ∋ ( ∋ ( )( 1 llll bhWfh ∗)< , (6)
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Among them, ∋ (lh Indicates the number of l The output characteristics of the layer, ∋ (lW
and ∋ (lb The weights and biases for this layer are respectively, )Representing convolu-
tion operations, f It is an activation function, usually using ReLU or its variants to
enhance the nonlinear expression ability of the model. The pattern recognition stage
mainly applies deep learning models to analyze features and identify specific patterns.
A commonly used deep learning structure here is the Long Short Term Memory Net-
work (LSTM), which is particularly suitable for processing and predicting events and
behavioral patterns in time series data. The core formula of LSTM is as follows:

Ζ ∴ ),( 1 fttft bxhWf ∗√< ,ρ (7)

Ζ ∴ ),( 1 ittit bxhWi ∗√< ,ρ (8)

Ζ ∴ ),tanh(~
1 cttct bxhWC ∗√< , (9)

ttttt CiCfC ~
1 )∗)< , (10)

Ζ ∴∋ (ottot bxhWo ∗√< , ,1ρ (11)

∋ (ttt Coh tanh)< (12)

Here, tx It's in time t Input, th and tC They are the hidden state and the cellular state,
respectively,W andb It is a network parameter,ρ yessigmoid The function is used to
control the opening and closing of the door structure, while tanh Provide non-linear
conversion [6].

4.3 Neural Network Training and Testing

In the training and testing phase of the neural network, we adopted advanced optimiza-
tion techniques to ensure the efficient learning and generalization ability of the model.
In order to improve training efficiency and prevent overfitting, we introduce the Adap-
tive Moment Estimation (Adam) algorithm, which combines the advantages of momen-
tum and RMSProp and can adjust the learning rate of each parameter. The core formula
of the Adam algorithm is:

ttt m̂
ˆ1

⊆∗
,<∗

τ
γππ (13)

Among them, tπ is the model parameter at iteration t ,γ is the learning rate, tm̂ and tτ(

represent the bias-corrected values of the first and second moment estimates, respec-
tively, and tτ( is a small constant added to increase numerical stability [7].
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5 Experiments and Result Analysis

5.1 Experimental Setup

The experiment was equipped with high-performance servers to support large-scale
data processing and complex model training, using real-time air traffic control data,
including flight records, weather monitoring, and flow management system infor-
mation. In the experiment, 70% of the data was used for model training, 15% was used
for verifying and adjusting parameters, and 15% was used as the test set to evaluate
performance. We tested the adaptability and accuracy of models by designing different
regulatory scenarios, and recorded key performance indicators. We used random seeds
to ensure experimental reproducibility [8].

5.2 System Performance Evaluation Indicators

The performance of deep learning based air traffic control optimization systems was
evaluated through a series of quantitative indicators, including accuracy, recall, F1
score, response time, and computational resource consumption. Accuracy measures the
proportion of correct predictions, recall focuses on the proportion of correctly identified
positive samples, and F1 score reflects the balance between the two. The response time
evaluates the decision processing speed, and the consumption of computing resources
takes into account CPU and memory usage, which affects system scalability and cost-
effectiveness. The results are presented in table form for comparison of different indi-
cators, as shown in Table 1:

Table 1. Performance indicators of air traffic control optimization model

performance index describe test result
Accuracy The proportion of correctly predicted models 94%

recall Positive sample recognition rate 92%
F1 score The harmonic average of accuracy and recall 93%

response time The time required for processing decision re-
quests 0.5second

CPU consumption CPU usage during model runtime 75%
Memory consumption Memory usage during model runtime 2GB
These indicators reflect the performance of our system in actual air traffic control

tasks, especially its efficiency and reliability in handling complex optimization scenar-
ios [9].

5.3 Comparison Algorithms

To comprehensively evaluate the performance of deep learning-based aviation control
optimization systems, we compare it with traditional genetic algorithms, particle swarm
optimization algorithms, and underlying convolutional neural networks. Under the
same experimental conditions, key performance indicators such as accuracy, recall, F1
score and processing time were selected to evaluate the efficacy and efficiency of each
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algorithm [10]. Through this comparison, the advantages and disadvantages of each
algorithm are clarified, so as to provide a basis for future algorithm selection and opti-
mization, Table 2 shows the performance of each algorithm on the same test set:

Table 2. Comparative performance of various optimization algorithms

Algorithm name Accuracy recall F1 score processingtime
Deep learning models 94% 92% 93% 0.5second

genetic algorithm 85% 83% 84% 1.2second
Particle Swarm Opti-

mization 88% 86% 87% 0.8second

Basic CNN model 90% 89% 89.5% 0.7second
From the table, it can be seen that the local optimization model for air traffic control

based on deep learning outperforms other algorithms in accuracy, recall, and F1 score,
and its processing time has also been significantly optimized. This proves the efficiency
and feasibility of deep learning in handling complex air traffic control tasks.

5.4 Experimental Results

The experimental design aims to evaluate the performance of the system in various
complex aviation control scenarios, including standard weather conditions, sudden me-
teorological events, and route optimization during peak flow periods. We used deep
learning models to process a large amount of real-time aviation data and calculated key
performance indicators such as accuracy, recall, F1 score, and processing time for dif-
ferent scenarios, as shown in Figure 4:

Fig. 4. Performance evaluation of air traffic control systems in different scenarios

Experiments have shown that the accuracy of the system can be maintained at over
90%, whether in normal weather, unexpected weather, or peak traffic hours, indicating
its high reliability and adaptability in complex dynamic environments. This is crucial
for air traffic control, as accurate route scheduling can significantly reduce delays and
improve air traffic safety. In all tests, the system response time was less than 1 second,
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which is crucial for quickly handling emergency situations such as severe weather or
air congestion. Although the performance has declined under extreme weather condi-
tions, it still shows high accuracy and recall (91% and 89%, respectively).

5.5 Potential Limitations and Challenges of Experiments

Although research has demonstrated the efficiency and accuracy of deep learning based
local optimization systems for air traffic control, there are some potential limitations
and challenges in the experimental process, which affect the robustness and applicabil-
ity of the methods in the real world. Experiments rely on high-quality datasets, and in
practical applications, the integrity and accuracy of data are often limited by device
performance and environmental factors, such as radar coverage limitations or interfer-
ence in data transmission. In addition, although the deep learning models used per-
formed well in experiments, the complexity of the models also led to higher computa-
tional costs, which may affect the response speed of decision-making when processing
real-time data. In addition, model optimization in research mainly focuses on improving
accuracy and reducing delays, without fully considering the performance of the model
under extreme meteorological conditions or non-standard operating conditions. These
factors are extremely common in the real aviation control environment and have a sig-
nificant impact on flight safety and scheduling efficiency. Therefore, future work needs
to further explore how to optimize the generalization ability and adaptability of models
to ensure efficient and accurate regulatory decisions can still be maintained under
changing environmental conditions.

6 Conclusion

We have conducted in-depth exploration on the local optimization system of air traffic
control through deep learning techniques, and verified its adaptability and efficiency in
various complex scenarios. Future work will focus on improving the robustness of the
model, especially its performance under extreme weather conditions. At the same time,
field testing will ensure the reliability of the model in practical environments, promot-
ing further improvements in aviation safety and efficiency.
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