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Abstract. With the increasing demand for light-duty diesel trucks in urban and 

surrounding areas due to the growth in China's road freight and urban distribu-

tion, the issues of fuel consumption and environmental emissions have become 

more severe. This paper proposes a fuel consumption prediction optimization 

model that combines XGBoost for selecting key fuel consumption features and 

the DeepESN algorithm for prediction. By incorporating Tent Chaotic Mapping, 

Nonlinear Weight Factor, Cauchy Mutation Strategy, and Sparrow Alarming 

Strategy, the Improved Arithmetic Optimization Algorithm (IPOA) is employed 

to optimize the hyperparameters of DeepESN. The model is validated using T-

BOX data from 150 light trucks, and the results indicate that the XGBoost-IPOA-

DeepESN model outperforms other comparative models in terms of prediction 

accuracy, providing a reference for implementing efficient energy use strategies. 

Keywords: Vehicle Fuel Consumption Prediction; Light Trucks; DeepESN; 

IPOA 

1 Introduction 

With the rapid development of the social economy, the volume of road freight trans-

portation in China has been increasing annually. By 2022, the road freight volume 

reached 37.12 billion tons, and the transportation turnover soared to 22,612.18 billion 

ton-kilometers [1]. This trend signifies greater energy consumption and environmental 

emissions, posing challenges to sustainable development. The rapid growth of e-com-

merce has further increased urban freight distribution. From 2013 to 2022, the volume  
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of postal delivery services in China grew from 9.18 billion to 139.1 billion pieces [2,3].
This has led to a rising demand for freight vehicles, especially light-duty diesel trucks
used for urban transportation, becoming a major component of road traffic in many
cities.

Sustainable development is now a prerequisite for industrial operations worldwide,
especially in transportation. Most vehicles still rely on non-renewable energy sources
like petroleum, producing greenhouse gases and other harmful emissions. With the de-
pletion of petroleum resources and deteriorating environmental quality, reducing vehi-
cle fuel consumption is urgent. Detailed analysis and accurate prediction of fuel con-
sumption for freight vehicles are crucial. This not only helps implement more efficient
energy use strategies but also contributes to reducing overall fuel consumption, lower-
ing environmental emissions, and promoting sustainable development in the transpor-
tation industry.

With the advancement of data mining and information technology, machine learning
methods have been widely applied in fuel consumption prediction [4-5]. Compared to
traditional physical models, machine learning models efficiently handle large-scale
data, especially with real-time data from onboard T-Box devices, allowing for rapid
updates and iterations. Mainstream models include support vector machine (SVM) [6],
Random Forest (RF)[7], Gradient Boosting Decision Tree (GBDT)[8], and neural net-
works like Backpropagation (BP)[9] and Long Short-Term Memory (LSTM)[10], etc.
For example, Zhao et al. used BP neural networks and Principal Component Analysis
to predict fuel consumption on urban expressway [11]. Wickramanayake et al. used RF,
GB, and neural networks with GPS and fuel sensor data for long-distance bus fuel pre-
diction [12]. Yao et al. combined smartphone-collected driving data and OBD fuel data
to predict taxi fuel consumption using BP, Support Vector Regression, and RF [13].
Kanarachos et al. utilized RNNs to predict instant fuel consumption under various driv-
ing conditions, but faced issues with gradient problems [14]. Wang et al. used an LSTM
neural network to accurately predict vehicle fuel consumption, though empirical hy-
perparameter selection affected accuracy [15].

Considering that prediction accuracy is influenced by hyperparameters [16], heuris-
tic optimization algorithms have been proposed to improve model accuracy. Niu et al.
enhanced SVR prediction accuracy using Artificial Fish School Algorithm(AFSA)
[17]. Gu et al. used PSOGA to optimize SVM hyperparameters for mining truck fuel
consumption, improving performance but struggling with local optima in high-dimen-
sional problems [18]. Han et al. used Improved Grey Wolf Optimization (IGWO) to
optimize LSTM hyperparameters for ship fuel consumption, with XGBoost for feature
selection [19].

The Echo State Network (ESN) is a new type of neural network with strong data
processing capabilities, though its application in fuel consumption prediction is still
limited. Given the complex nature of vehicle fuel consumption, this study first utilizes
XGBoost to select key features affecting fuel consumption. A data-driven model is then
constructed based on the DeepESN algorithm to evaluate its prediction performance.
To further enhance model performance, an Improved Arithmetic Optimization Algo-
rithm (IPOA) is used to optimize DeepESN hyperparameters. Practical case validation
results show that the proposed XGBoost-IPOA-DeepESN optimization model achieves
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the highest prediction accuracy compared to other models.

2 Fundamental Principles

2.1 Deep Echo State Network

The DeepESN is a type of deep recurrent neural network model designed for processing
time series data. It extends the traditional ESN by introducing a hierarchical organiza-
tion of recurrent layers, enabling more efficient processing of temporal information and
multi-time scale representation [20-21].

The basic structure of DeepESN includes five main concepts: state, input, output,
reservoir layers, and leakage rate [22]. The state ( ) represents the internal state of the
network at a given time point, the input ( ) represents the external input signal received
by  the  network,  and  the  output  ( ) is computed through the network's state and the
output layer weight matrix. Reservoir layers are the core components of DeepESN,
consisting of multiple hierarchical recurrent units where the output of each layer serves
as the input to the next. The leakage rate ( ) controls the mix of new and old information
during state updates.

At each time step, the state update equations for DeepESN are as follows:
For the first layer, the state update formula is:

( )( ) = (1− ( )) ( )( − 1) + ( ) ( ( ) ( ) + ( ) ( )( − 1)) (1)

For the  -th layer ( >1), the state update formula is:

( )( ) = (1 − ( )) ( )( − 1) + ( ) ( ( ) ( )( ) + ( ) ( )( − 1)) (2)

where ( ) is the input weight matrix, ( ) is the inter-layer connection weight ma-
trix, ( ) is the recurrent weight matrix, ( ) is the leakage rate, and  is the activa-
tion function.

DeepESN exhibits several critical characteristics. First, the recurrent weights remain
fixed after initialization, ensuring network stability through the Echo State Property
(ESP). Second, the hierarchical reservoir layer structure enables the network to develop
multi-time scale representations within its internal states. Additionally, DeepESN can
be simplified into a layered version of a single-layer ESN by applying constraints, such
as removing certain inter-layer connections, which affect how different sub-parts pro-
cess temporal information [23].

For output computation, the states of all layers at each time step are used as inputs
to the output layer, calculated as follows:

( ) = ( ) (3)

where  is the readout weight matrix.
The innovation of DeepESN lies in its hierarchical recurrent structure and automatic

layer selection method. Compared to traditional ESN, DeepESN captures and repre-
sents multi-time scale information more efficiently through its layered recurrent struc-
ture.
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2.2 Pelican Optimization Algorithm

The Pelican Optimization Algorithm (POA) is a novel nature-inspired stochastic opti-
mization algorithm [24]. The design of POA is inspired by the natural behavior of pel-
icans during hunting. Pelicans dive from a height to catch prey after identifying its lo-
cation and then spread their wings on the water surface to push fish towards shallow
water for easier capture. This algorithm mimics this process by updating the positions
of population members in the search space to solve optimization problems.

The basic structure of POA includes Search Agents, Search Space, Objective Func-
tion, and Initial Position. Search Agents represent candidate solutions in the search
space [25]. The search space is the solution space where candidate solutions are
searched and optimized. The objective function evaluates the quality of candidate so-
lutions. The initial positions of the population members are randomly initialized within
the problem's bounds.

POA achieves candidate solution updates and optimization through two main
phases: approaching the prey (exploration phase) and spreading wings on the water
surface (exploitation phase). In the exploration phase, population members simulate
pelicans identifying prey location and moving towards it, enhancing the algorithm's
exploration capability. The specific state update formula is:

, = , + rand ⋅ ( − ⋅ , ), <
, + rand ⋅ ( , − ), else (4)

where ,  is  the  updated  value  of  the -th candidate solution in the -th dimension,
 is the prey's position in the -th dimension,  is a random number,  and  are

the objective function values of the prey and the candidate solution, respectively.
In the exploitation phase, population members simulate pelicans spreading their

wings  on  the  water  surface  to  push  fish  towards  shallow water,  enhancing the  algo-
rithm's local search capability. The specific state update formula is:

, = , + ⋅ 1 − ⋅ (2 ⋅ rand− 1) ⋅ , (5)

where ,  is the updated value of the -th candidate solution in the -th dimension,
is a constant,  is the iteration counter, and  is the maximum number of iterations.
The coefficient ⋅ 1 −  represents the neighborhood radius of the population
members, which decreases as the number of iterations increases.

POA performs effective updates in each phase. If the objective function value of the
new position is better than the current value, the new position is accepted. The specific
formula is:

=
, <
, <

, else
(6)

where  and  are the new positions after the exploration and exploitation
phases, respectively, and  and  are their respective objective function values.
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3 Optimization Algorithm Improvement.

3.1 Algorithm Improvement.

POA simulates the hunting behavior of pelicans, has been proven to be highly efficient 
in solving various optimization problems [26]. However, POA may encounter issues 
such as local optima and slow convergence when dealing with complex and high-di-
mensional problems. To address these challenges, this paper proposes an Improved Pel-
ican Optimization Algorithm (IPOA) to enhance the algorithm's global search capabil-
ity and convergence speed. The IPOA process is illustrated in Fig. 1.

Fig. 1. IPOA flow chart

Tent Chaotic Mapping.
Since the initial population in basic POA is randomly generated, it cannot ensure a

uniform distribution of individuals in the search space, which affects the search speed
and optimization performance [27]. In the initialization process of IPOA, Tent chaos
mapping is introduced to increase the ergodicity of the initial population. The specific
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formula is:

, = + ( − ) ⋅ ( ), = 1,2, … , , = 1,2, … , , (7)

The Tent mapping is defined as follows:

=
, | ∈ [0, )

, | ∈ [ , 1)
(8)

where ,  is the position of the -th pelican in the -th dimension,  and  are the
lower and upper bounds of the variable, ( ) is the chaotic sequence, and  is a con-
stant.

Nonlinear Weight Factor.
To balance the local exploitation and global exploration abilities of the algorithm,

IPOA introduces a nonlinear weight factor  during the phase of moving towards the
prey. This factor adjusts the relevance of the pelican's position update with the current
position information. The formula is as follows:

, = , + ( ) ⋅ rand ⋅ ( − ⋅ , ) (9)

where  is smaller at the early iterations to favor global search, and increases over
time to enhance local search capabilities.

Cauchy Mutation Strategy.
During the surface skimming phase, the Cauchy mutation strategy is introduced.

Each iteration compares the current pelican's fitness value with the population's average
fitness. If the fitness value is higher than the average, the Cauchy mutation strategy is
applied to increase diversity; otherwise, the original position update method is used.
The formula is as follows:

, =
, + Cauchy( ), if >

, + 1 − ⋅ (2 ⋅ rand− 1) ⋅ , , else
(10)

where Cauchy( ) is the Cauchy distribution, and  is the mutation intensity.

Sparrow Alarming Strategy.
During the surface skimming phase, a sparrow alarming strategy is added. When

pelicans perceive danger, the pelicans on the edge of the group quickly move to a safe
area, while those in the middle move randomly to approach other pelicans. This strategy
accelerates convergence and enhances global search capabilities.

For pelicans in a dangerous state (edge individuals), the update formula is:

, = , + rand ⋅ ( best, − , ) (11)
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where best,  is the current optimal position in the population.
For pelicans in a safe state (middle individuals), the update formula is:

, = , + randn ⋅ ( ̅ − , ) (12)

where randn is a random number from the standard normal distribution, and ̅  is the
average position of the population.

3.2 Performance Evaluation

To evaluate the enhancement effect of the IPOA algorithm, it was benchmarked on 13
commonly used unimodal and multimodal benchmark functions [28-30]. The standard
benchmark functions are shown in Table 1, where Dim represents the dimension of the
function, Range is the boundary of the function's search space, and  is the optimal
value. The total number of iterations for the algorithm was set to 500, with each algo-
rithm running 30 times on each benchmark function. The average and standard devia-
tion of the 30 runs were calculated, and the statistical results are presented in Table 2.
To validate the results, the IPOA algorithm was compared with POA [24], GWO [30],
PSO [31], and GA [32].

Table 1. Benchmark functions

Function Dim Range

( ) = 30 [-100,100] 0

( ) = | | + | | 30 [-10,10] 0

( ) = 30 [-100,100] 0

( ) = max{| |, 1 ≤ ≤ } 30 [-100,100] 0

( ) = [100( − ) + ( − 1) ] 30 [-30,30] 0

( ) = ([ + 0.5]) 30 [-100,100] 0
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( ) = + [0,1) 30 [-1.28,1.28] 0

( ) = − sin | | 30 [-500,500] -9850

( ) = [ − 10 cos(2 ) + 10] 30 [-5.12,5.12] 0

( ) = −20 exp −0.2
1

− exp
1

cos(2 ) + 20 + 30 [-32,32] 0

( ) =
1

4000
− cos

√
+ 1 30 [-600,600] 0

( ) = 10 sin( ) + ( − 1) [1 + 10 sin ( )]

+ ( − 1) + ( , 10,100,4)

= 1 +
+ 1
4

, ( , , , ) =
( − )

0
(− − )

>
− < <

< −

30 [-50,50] 0

( ) = 0.1 sin (3 ) + ( − 1) [1 + sin (3 + 1)]

+ ( − 1) [1 + sin (2 )] + ( , 5,100,4)
30 [-50,50] 0

Table 2. Results of benchmark functions

IPOA POA GWO PSO GA

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

0.00E+00 0.00E+00 1.26E-210 0.00E+00 7.33E-28 7.72E-28 2.72E+02 8.88E+01 1.15E+03 1.23E+02

7.47E-170 0.00E+00 3.18E-104 9.38E-104 1.03E-16 7.42E-17 1.34E+01 4.37E+00 7.64E+00 1.36E+00

1.55E-284 0.00E+00 4.77E-212 0.00E+00 4.92E-05 1.41E-04 4.15E+03 3.13E+03 2.34E+03 6.59E+02

5.45E-164 0.00E+00 1.49E-105 2.83E-105 7.04E-07 6.99E-07 1.72E+01 4.08E+00 2.04E+01 2.20E+00

2.80E+01 6.81E-01 2.78E+01 3.88E-01 2.74E+01 1.05E+00 1.57E+04 5.89E+03 2.36E+05 1.34E+05

3.36E+00 5.56E-01 3.53E+00 2.03E-01 7.84E-01 2.75E-01 2.70E+02 5.61E+01 9.93E+02 1.69E+02
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1.30E-01 2.78E-17 1.30E-01 2.78E-17 1.30E-01 1.96E-17 1.35E-01 3.20E-03 3.31E-01 1.51E-01

-6.55E+03 9.09E+02 -4.85E+03 4.54E+02 -3.80E+03 4.06E+02 -5.41E+03 9.00E+02 -6.91E+03 5.66E+02

0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.75E+00 5.55E+00 1.21E+02 2.52E+01 5.58E+01 1.35E+01

4.44E-16 0.00E+00 4.44E-16 0.00E+00 2.08E+01 7.14E-02 2.00E+01 0.00E+00 1.06E+01 5.19E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.51E-02 1.72E-02 3.28E+00 3.63E-01 8.98E+00 1.81E+00

-7.03E-01 1.00E-01 -6.83E-01 4.51E-02 -9.78E-01 2.06E-02 2.28E+01 2.91E+01 8.12E+01 1.50E+02

2.18E+00 4.09E-01 2.37E+00 2.25E-01 4.85E-01 2.10E-01 1.29E+01 4.24E+00 5.22E+01 1.34E+01

The tests on unimodal and multimodal functions are shown in Table 2, demonstrat-
ing that IPOA provides highly competitive results. IPOA effectively avoids local op-
tima and approaches the optimal solution with fewer iterations. The algorithm outper-
forms all other algorithms in  to  and  to , with average test results of 0 and
a standard deviation of 0 for ,  and , indicating stable convergence to the global
optimum in every test. Through experiments on multiple benchmark functions and en-
gineering design problems, IPOA has shown stronger global search capabilities and
faster convergence speed compared to POA. Overall, although IPOA may not achieve
the best performance on every individual test function, its overall performance still sur-
passes that of other tested algorithms.

4 Fuel Consumption Prediction Model Design

4.1 Real-Time Operational Data Collection

In this study, data samples were obtained from the onboard data collection terminal (T-
BOX) firmware, which collects operating data from light-duty diesel trucks. Data was
collected from 150 light trucks with identical technical parameters and models across
various provinces and cities in China. The data includes driver behavior and vehicle
condition data, sampled every 10 seconds. The data format and structure are shown in
Table 3 below.

Table 3. T-BOX Data Format

Feature
Variable Unit Feature Variable Unit Feature Variable Unit Feature Vari-

able Unit

Vehicle ID - Engine Status - DPF Pressure kPa Reagent
Level %

Collection
Time - Engine Net Out-

put Torque % SCR Upstream NOx-
Sensor Output ppm Intake Air kg/h

Longitude - Friction Torque % SCR Downstream
NOxSensor Output ppm Fuel Level %

Latitude - Engine RPM rpm SCR Inlet Tempera-
ture ℃ Endurance

Mileage km

MILStatus - Fuel Flow Rate L/h SCR Outlet Temper-
ature ℃ Accumula-

tive Mileage km

Vehicle
Speed km/h Engine Coolant

Temperature ℃ Atmospheric Pres-
sure kPa Urea Level %
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Given potential anomalies or missing data during collection and transmission, this
study conducted data cleaning to ensure accuracy and completeness. The process in-
volved: examining time series continuity to correct temporal inconsistencies; using ap-
propriate methods to fill missing data; and removing data inconsistent with actual driv-
ing conditions. These steps improved the dataset quality for modeling and analysis.

4.2 Development of the XGBoost-IPOA-DeepESN Prediction Model

Fig. 2. Flow Chart of Fuel Consumption Prediction Based on XGBoost-IPOA-DeepESN

The flow chart of fuel consumption prediction shows in Fig.2. The specific process of
the chart is as follows:

Step 1: Preprocess the vehicle fuel consumption data, select key features using
XGBoost, and split the data into training and testing sets with a ratio of 7:3.

Step 2: Develop the IPOA optimization algorithm incorporating Tent Chaotic Map-
ping, Nonlinear Weight Factor, Cauchy Mutation Strategy, and Sparrow Alarming
Strategy, and set the maximum number of iterations.

Step 3: Initialize the IPOA population, calculate individual fitness values, optimize
and update the hyperparameters of DeepESN, and record the position and fitness value
of each pelican.
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Step 4: Determine the stopping condition of the algorithm: if the current iteration
count t = T, the algorithm stops, and the optimal DeepESN hyperparameters are output
for model training; otherwise, return to Step 3 for iterative optimization.

Step 5: Use the output optimal hyperparameters to build the fuel consumption pre-
diction model and compare the prediction results with those from DeepESN, ESN,
SVM, and RF models.

4.3 Model Evaluation

This study evaluates the model's prediction performance using three key metrics: Mean
Square Error (MSE), Mean Absolute Percentage Error (MAPE), and the coefficient of
determination (R²).

MSE = ∑ (y − y ) (13)

MAPE = %∑ (14)

= 1−
∑ ( )
∑ ( ) (15)

where  is  the  actual  fuel  consumption  for  the -th sample,  is the predicted fuel
consumption for the -th sample,  is the mean of the actual fuel consumption values,
and  is the number of samples.

4.4 Results Validation and Analysis

The prediction results of the models are detailed in Table 4, which summarizes the
accuracy performance of each fuel consumption prediction model. Comparisons were
made among DeepESN, ESN, SVM, and RF prediction models to comprehensively
verify the optimization effect of IPOA on DeepESN. The R², MSE, and MAPE of the
optimized DeepESN were 0.9291, 1.5287, and 8.95%, respectively. Compared to the
DeepESN model without IPOA hyperparameter optimization, the MAPE improved by
3.01%. Data from 150 experimental results were used for comparative analysis of the
model's predictive performance, as shown in Fig. 3. In conclusion, the proposed inte-
grated model is effective and enhances the accuracy of vehicle fuel consumption pre-
diction.

Table 4. Comparison of experimental results and data

XGBoost-IPOA-
DeepESN

XGBoost-Deep-
ESN

XGBoost-ESN
XGBoost-SVM XGBoost-RF

0.9291 0.8638 0.8548 0.8252 0.8851

MSE 1.5287 1.8284 1.8729 1.9751 1.7649

MAPE 8.95% 11.96% 12.71% 14.42% 10.83%
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Fig. 3. Comparison of Prediction Results of Different Models

5 Conclusion

This paper integrates machine learning, meta-heuristic algorithms, and deep learning to
propose a hybrid model for accurate vehicle fuel consumption prediction. The IPOA
was enhanced with Tent Chaotic Mapping, Nonlinear Weight Factor, Cauchy Mutation
Strategy, and Sparrow Alarming Strategy. The performance of these improvements was
tested on 13 benchmark functions. Comparative results with other optimization algo-
rithms indicate that the enhancements significantly improved the performance of the
POA algorithm, providing stronger global search capabilities and higher computational
accuracy. This optimization effectively improves the hyperparameter tuning of the
DeepESN algorithm, thereby enhancing the model's prediction accuracy. Additionally,
a comparative experiment was conducted using real-time T-BOX fuel consumption
data from vehicles. The results show that the model achieved an optimal MAPE value
of 8.95% and a maximum R² of 0.9291, demonstrating the superior performance and
competitiveness of the proposed XGBoost-IPOA-DeepESN model compared to other
predictive models.

The findings of this study can provide a reference for implementing efficient energy
use strategies. Future work can explore different types and scales of vehicle data, con-
sidering multi-dimensional factors such as vehicle load, tire pressure, and weather con-
ditions. Further research should seek more effective model design methods and validate
and optimize the models in a wider range of application scenarios to improve the accu-
racy and practicality of fuel consumption predictions.
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