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Abstract. Recently, advancements in remote sensing technology have led to the 

collection of a large volume of remote sensing images. Nevertheless, these 

images are always influenced by atmospheric phenomena such as haze, which 

reduce their clarity and quality. Traditional dehazing methods and convolutional 

neural network (CNN)-based techniques show certain limitations when dealing 

with the complex and uneven pattern of haze in remote sensing images. The 

article repurposes DRSformer, a pioneering transformer network created for rain 

removal tasks, to tackle the problem of image dehazing in this research. 

DRSformer utilizes Sparse Transformer Blocks (STB) and a Mixture of Experts 

Feature Compensator (MEFC) to effectively address the challenges posed by 

nonuniform haze scenarios. Based on experimental results, DRSformer achieved 

good performance. It surpasses current appeached, achieving superior PSNR and 

SSIM values under various haze conditions. Furthermore, qualitative 

assessments indicate that DRSformer significantly improves visual clarity and 

detail preservation. Looking ahead, the adaptability of DRSformer can be further 

explored to enhance its performance under other atmospheric conditions and 

expand its applicability to a wider range of remote sensing image processing 

tasks. 
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1 Introduction 

Advances in remote sensing (RS) technology in recent history have produced a large 

number of RS images, which are essential for land cover classification and ocean 

monitoring, among other uses [1]. However, undesirable weather circumstances like 

haze and fog frequently degrade the quality of these photographs, resulting in low 

contrast, blurring, and other image degradation [1]. 

The quality of satellite photos is improved and the genuine landscape taken in hazy 

conditions is shown when atmospheric haze is removed [2]. Enhancement approaches 

or prior-based procedures are typically employed in conventional dehazing techniques. 

Examples are dark channel prior (DCP) [3] and haze-optimized transformation [4], both 

of which have been applied extensively. While these techniques are usually simple and 

fast to implement, they can have drawbacks such as artifact introduction and 

inefficiency in complicated scenarios with non-uniform haze distribution. 
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Deep learning-based techniques have shown a great deal of promise recently for
dehazing natural photographs. Convolutional neural networks (CNNs) are used in
methods like DehazeNet [5], MSFNet [6], and GridDehazeNet [7] to estimate the
parameters of atmospheric scattering models or to directly produce clear images.
These techniques, however, are less effective for RS photos with more varied and
nonuniform haze distributions because they are primarily designed for natural
photographs and assume a uniform haze distribution.

Researchers have explored deep learning frameworks specifically designed for
dehazing RS images to address these images' unique challenges. Developed methods
include the First-Coarse-Then-Fine Network (FCTF-Net) [8], the Dual-Step Cascaded
Residual Dense Network (DCRD-Net) [9], and the Dense Attentive Dehazing
Network (DADN) [10]. These techniques restore haze-free images through the use of
advanced network architectures and have achieved success, though they still face
challenges with the highly variable haze distribution in RS images.

Drawing inspiration from the effectiveness of Vision Transformers in handling
distant dependencies and representing global information [11], DRSformer introduces
a novel Transformer-based approach for RS image dehazing and deraining. In view of
the good application of the original model DRSformer in removing rain from images,
the article extended this model and experimentally verified the rationality of the
conjecture on the state1k data set.

Fig. 1. DRSformer framework and its components. (Picture credit: Original)

2 Methodology

This section outlines the adaptation of the DRSformer architecture, initially designed
for image deraining, to address the challenges of image defogging. DRSformer have
adopted the architecture as described by Chen et al [12], without modifications, due to
its proven effectiveness in managing complex image distortions akin to those
encountered in foggy scenarios. DRSformer uses a hierarchical encoder-decoder
framework to process foggy images. The core components retained from the original
architecture include: Sparse Transformer Block (STB), Mixture of Experts Feature
Compensator (MEFC), Loss Function. The specific operations of this architecture
(e.g., feed-forward networks and multi-scale processing) are an integral part of the
STB and are described in the following sections.
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2.1 Overall Framework

According to the Fig. 2, DRSformer employs a layered encoder-decoder architecture
specifically tailored for processing fog-affected images. The model takes a foggy
image input, . In this model, � denote height and�denote the width of
the image resolution. Using overlapping patch embeddings applied through 3×3
convolutions, the model prepares the input data for feature extraction. In its core, four
Sparse Transformer Blocks (STBs) are used to extract spatially variant fog features
and manage multi-scale fog representations. The encoders and decoders at each stage
are meticulously designed to address specific spatial resolutions and channel
dimensions, ensuring precise image detail recovery. Additionally, skip connections
are incorporated into the STBs to maintain feature information continuity during
various training stages and stabilize the training process. At the initial and final stages
of training, DRSformer integrates N0 Mixture of Experts Feature Compensators
(MEFC) for supplementary feature refinement, which ultimately results in high-
quality clear output. This hybrid approach allows DRSformer to leverage both
adaptive content and the inherent characteristics of foggy images, effectively
distinguishing between unwanted fog and the underlying clear background.
Experimental results show significant quality improvement due to these design
choices. Consequently, the final reconstructed result is obtained using the following
formula:

where is the entire network. The article train the network by
minimizing the following lossfunction:

In the formula, Igt represents the real image, and ∥ · ∥ 1 represents the L1
norm.

2.2 Sparse Transformer Block (STB)

The DRSformer employ the STB, which is specifically de- signed for enhanced
feature extraction in image denoising tasks. STB leverages the sparsity emerging in
neural networks to optimize the efficiency and effectiveness of feature extraction.
Specifically, given the input features from the previous block Xl−1, the coding process
is defined as follows

Here, LN denotes layer normalization. This technique enhances the stability of the
network and aids in its convergence by standardizing the inputs. The variable 

Research on Defogging Algorithm Based on DRSformer             479



corresponds to the output from the top-k sparse attention (TKSA) module. This
module is designed to efficiently manage sparse data by concentrating on the top-k
elements. Meanwhile, is derived from the mixed-scale feed-forward network
(MSFN). The MSFN enhances feature representation by integrating information
across different scales.

Top-k Sparse Attention (TKSA). The Reformer model innovates by enhancing the
traditional self-attention mechanism used in Transformers through the introduction of
TKSA. In the TKSA mechanism, the initial step involves encoding the channel-wise

context using convolutions, which help in managing the spatial dimensions

and preparing the data for further processing. This is followed by depth-wise
convolutions, which are crucial for capturing more detailed and localized features
within the data.

Additionally, the mechanism computes the similarities between all reshaped
queries and keys. During this process, elements that exhibit lower attention weights
are masked within the transposed attention matrix M By doing so, the TKSA
mechanism ensures that only the most relevant and critical components are retained,
effectively minimizing the interference caused by irrelevant information. This
adaptive top-k selection strategy enables the most important features to be noticed in
the model, thus improving the overall performance. The standard self-attention
mechanism, which TKSA replaces, is mathematically described as follows:

In this context, (Q) represents the matrix of queries, (K) denotes the matrix of
keys, and (V) stands for the matrix of values. The parameter �, which is optional, is
defined as  . Each of the � new sets of queries (Q), keys (K), and
values (V) undergoes multi-head attention. This process results in channel
dimensional outputs of .

The resulting outputs are combined and then transformed through a linear
projection, yielding the final output of the attention mechanism

To provide an alternative to the standard self-attention mechanism, the TKSA
mechanism is introduced. This new mechanism operates as follows:

where the learnable top-k selection operator is used:

In this context, refers to the -th largest value found in the -th row
of . This method of adaptive selection is effective in enabling the attention
mechanism to transition smoothly from a dense configuration to a sparse one, thereby
enhancing the model's efficiency and focus.
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Mixed-scale Feed-Forward Network (MSFN). To effectively capture the features of
image degradations such as fog or rain streaks across various scales, the DRS-Former
introduces multiple scale-wise separable convolution paths within the MSFN.

Next, the DRS-Former employs feature transformation through two parallel
branches. One branch utilizes ) depth-wise convolutions, while the other
employs depth-wise convolutions. This dual-path approach enhances the
extraction of multi-scale local information, allowing the model to effectively handle
features at different scales.

The detailed process for feature fusion in the MSFN is described as
follows:

In this context, the ReLU activation function is denoted by � (⋅ ), introducing a

non-linear component to the model. The expression  signifies a
convolution, which is utilized to enhance the channel dimension and facilitate
subsequent processing. Depth-wise convolutions with kernel sizes of ) and

are represented by  and dw , respectively. These depth-
wise convolutions are crucial for capturing local features at multiple scales. The
channel-wise concatenation operation, symbolized by , merges outputs from
different convolutional paths into a unified feature representation.

2.3 Mixture of Experts Feature
Compensator (MEFC)

The DRSformer incorporates a novel component called the MEFC which enhances
performance through a combination of sparsity and feature compensation techniques.
This approach builds upon the foundational design of effective CNN models, widely
referenced in existing literature. In the MEFC module, DRSformer employs a series
of parallel layers, each comprising multiple sparse CNN operations, referred to as
"Experts." These experts include a variety of specialized layers: an average pooling
layer with a 3×3 receptive field, separable convolution layers with kernel sizes of
(1×1), (3×3), (5×5), and (7×7), along with dilated convolution layers of identical
kernel sizes to capture diverse spatial features.

DRSformer utilizes self-attention mechanisms as a dynamic selector for the
experts. This design allows the model to adaptively prioritize different representations
based on the characteristics of the incoming data.

Starting from an input feature map , the DRSformer initially
computes a C-dimensional channel descriptor by applying a channel-wise
average.
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where denotes the feature at position (y, x) within the feature
map. Each expert’s influence is then modulated by learnable weight matrices

and , where T is the dimension of these matrices.
The output for the l-th MEFC layer is computed as follows:

In this context, xp denotes the expert operations, while signifies the count
of experts.The term refers to a 1×1 convolution, while � (⋅ ) denotes the
ReLU activation function. The symbol is used for channel-wise concatenation.
This design intricately incorporates the MEFC into the main STBs, enabling it to
adaptively manage the diverse appearances of image degradations such as rain streaks
and fog.

3 Results

3.1 Datasets and Metrics

The article uses 1,200 synthetic image pairs from the SateHaze1k dataset [13] in this work. Based on the degree of
fog, this dataset is separated into three categories: thin, moderate, and thick. There are 400 image pairs in each
category for training. A selection of 120 image pairs, proportionately dispersed over the three fog types, are chosen
for testing. As with the previously stated datasets, the article measure the efficacy of dehazing approach in this
study using assessment metrics such as the Structural Similarity Index Measure (SSIM) and the Peak Signal-to-
Noise Ratio (PSNR) [14, 15]. These measurements aid in validating the level of image restoration quality that the
article’s method provides under hazy settings.

3.2 Experimental Setup

Datasets. As mentioned above, the article experiments with defogging using the SateHaze1k dataset. The diverse
levels of fog in this dataset offer a thorough assessment of the model’s method's performance in various scenarios.

Comparing Methods. The article evaluate DRSformer model against a number of cutting edge dehazing
techniques, including as transformer-based models like M2SCN [16] and SkyGAN[17, 18], CNN-based techniques
like FCFT-Net [8, 16] and SAR-Opt-cGAN[13, 19], and conventional techniques like DCP [3, 16]. The
information used in these models comes from earlier assessments conducted by Chen [13] and Huang [13], Zhou
[16]. To ensure a fair comparison, the article retrain recent models in the event that no pretrained versions are
available. The article refer to published results in the literature for other methodologies.
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Evaluation Metrics. As the article previously indicated, the article uses PSNR and
SSIM measures to evaluate the dehazing algorithm's performance on the SateHaze1k
dataset. By comparing the restored image's similarity to the original, unaltered image,
PSNR assesses the restoration's correctness. On the other hand, SSIM looks at the
structural similarity between the reference and restored images, providing information
about how well the important structural details are preserved.

Instructional Specifics. In the DRS model, is defined as

. The number of attention heads for each of the four STBs at each

level is set to . The initial count (C) has 48 channels with an expansion
ratio of 2. For the weight matrix, T is set to 32, and the number of experts in the
MEFC is O = 8. Due to the simplicity of the fog patterns in SateHaze1k, MEFC is not
utilized for training. Additionally, the channel expansion factor r in MSFN for the

sparseness values in the STB is 2.66.

3.3 Results and Comparison

Table 1. Quantitative PSNR and SSIM comparison based on SateHaze1k.

Mo
del

Thin Moderate Thick
PSNR SSIM PSNR SSIM PSNR SSIM

Original 12.77 0.7316 12.59 0.7408 8.58 0.4215
DCP [3, 16] 13.15 0.7246 9.783 0.5735 10.25 0.5850
SAR-Opt-cGAN[13, 19] 20.19 0.8419 21.66 0.7941 19.65 0.7573
FCFT-Net [8, 16] 23.59 0.9127 22.88 0.9272 20.03 0.8156
M2SCN [16] 25.21 0.9175 26.11 0.9416 21.33 0.8289
SkyGAN[13, 18] 25.38 0.9248 25.58 0.9035 23.43 0.8925
DRSformer 25.93 0.9310 27.12 0.9477 23.33 0.8672

The mean PSNR and SSIM values for the test procedure in thin, medium, and thick
haze conditions are displayed in Table 1. The table illustrates that the SSIM is 0.7246
and the PSNR of DCP [3, 16] is 13.15 dB in misty conditions. These findings
highlight DCP's shortcomings, particularly when dealing with thicker haze.

In hazy conditions, SkyGAN [13, 18] demonstrates significantly better
performance, achieving 25.38 dB in PSNR and 0.9248 in SSIM, highlighting the
effectiveness of advanced deep learning models. SAR-Opt-cGAN [13, 19], although
achieving a respectable SSIM of 0.8419 and a PSNR of 20.19 dB, does not perform as
well as other models. FCFT-Net [8, 16] and M2SCN [16] both achieve high PSNR
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and SSIM values under hazy conditions. Specifically, M2SCN reaches an SSIM of
0.9175, while FCFT-Net records a PSNR of 23.59 dB, with both models achieving an
SSIM of 0.9127. These results indicate their strong capability to mitigate haze.

However, the DRS-Former model, which is the focus of this study, outperforms all
other models. In thin haze conditions, DRS-Former achieves a PSNR of 25.93 dB and
an SSIM of 0.9310. For medium haze conditions, it records a PSNR of 27.12 dB and
an SSIM of 0.9477. Even in thick haze conditions, DRS-Former maintains superior
performance with a PSNR of 23.33 dB and an SSIM of 0.8672. These results clearly
demonstrate that DRS-Former sets a new state-of-the-art in haze removal, proving its
robustness and effectiveness across various haze intensities.

However, the DRS-Former model, which is the focus of this study, outperforms all
other models. In thin haze conditions, DRS-Former achieves 25.93 dB in PSNR and
0.9310 in SSIM. For medium haze conditions, it records 27.12 dB in PSNR and
0.9477 in SSIM. Even in thick haze conditions, DRS-Former maintains superior
performance with 23.33 dB in PSNR and 0.8672 in SSIM. These results clearly
demonstrate that DRS-Former remains effective on the SateHaze1k dataset, extending
its applicability in the field of image restoration.

3.4 Discussion

The article’s trials' outcomes show how well the DRS-Former performs in dehazing
RS images in a range of haze situations. DRSformer robustness and effectiveness are
demonstrated by the strong PSNR and SSIM values observed in the thin, moderate,
and thick haze categories. In particular, this performance was much improved by the
MEFC and Sparse STB, which improved feature extraction and processed multi-scale
haze patterns.

The model performs noticeably better, especially in heavy haze, than both
sophisticated deep learning models like SkyGAN and more conventional techniques
like DCP. This is explained by the DRSformer's capacity to efficiently manage non-
uniform haze dispersion by utilizing the advantages of Transformer-based systems.
By utilizing MSFN and TKSA, the DRSformer can effectively handle different haze
patterns and concentrate on pertinent features.

The article’s study does have several limitations, though. Even while the
SateHaze1k dataset is extensive, its synthetic nature might not adequately represent
the complexities of actual atmospheric conditions. Subsequent investigations may
concentrate on verifying the model with authentic datasets and investigating the
incorporation of other contextual data to augment dehazing efficacy. Further insights
into the practical usefulness of the DRSformer could be gained by investigating its
computing efficiency and scalability in bigger and more diverse datasets.

4 Conclusion

The article introduced the DRSformer in this work, which is a Transformer-based
network designed to dehaze images obtained from remote sensing (RS). Using a
MEFC and novel Sparse Transformer Blocks (STB), the DRSformer manages the
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non-uniform haze distribution that is frequently present in RS pictures. The article’s
approach ensures high-quality dehazing outcomes by efficiently capturing pertinent
characteristics and processing multi-scale haze patterns.

The article have shown through extensive testing on the SateHaze1k dataset that
the DRSformer works much better than both deep learning-based and classical
dehazing approaches. Across various hazy conditions, DRSformer exhibited PSNR
and SSIM values that highlight its exceptional performance. The DRSformer is a
viable option for enhancing the usefulness of RS pictures in real-world vision
applications because of its capacity to adjust to various haze levels and improve
image quality.

In the future, DRSformer can be further improved to handle a wider range of
complex atmospheric conditions and investigate its potential applications in further
image restoration. The article’s goal is to promote RS technology and its applications
to Earth observation by further developing DRSformer capabilities.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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