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Abstract. The Prisoner's Dilemma is a classic example of a game in game 

theory where two players must decide independently whether to cooperate or 

betray the other, with the outcome of their choices affecting both their rewards 

or punishments. This study utilizes the Q-Learning algorithm to solve the 

problem of achieving Nash equilibrium in the Prisoner's Dilemma using the 

Parallel-Env environment from the PettingZoo library. Q-Learning allows for 

multiple random selection of action strategies, providing corresponding rewards 

and updating Q-values through the Bellman equation. The ε-greedy strategy is 

used to balance exploration and exploitation, ensuring that the agents 

sufficiently explore various actions while gradually converging to the optimal 

strategy. This approach is particularly well-suited for problems like the 

Prisoner's Dilemma, where limited and definite actions lead to quantifiable 

rewards. By designing the environment using PettingZoo's Parallel-Env class, 

all agents are allowed to make decisions simultaneously at each step. In 

conclusion, this project demonstrates the practicality and efficiency of Q-

Learning in solving multi-agent dilemmas and reinforces its applicability in 

broader multi-agent systems. 
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1 Introduction 

Multi Agent Reinforcement Learning (MARL) is multiple agents making decisions in 

the same environment. Each agent may cooperate or compete with each other, or both 

[1]. As for the reinforcement learning, the main principle is trial and error, that is, the 

agent interacts with the environment and receives feedback from it. The agent then 

iteratively optimizes based on the feedback information, which is commonly referred 

to as a Markov Decision Process [2-4]. 
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For MARL, there are multiple agents in the same environment, each following the
process of reinforcement learning. This means that for each agent, their decisions are
not only influenced by the action of other agents, but also affect the behaviors of other
agents. The main application of multi-agent reinforcement learning is to solve an
unpredictable or unpredictable environment. In the face of this kind of problem, there
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are usually three solutions: 1) Design effective agent rules to avoid conflicts. 2) Use
means of communication so that agents can exchange information with each other.
3) The learning mechanism is added, and the behavior strategy of the agent can be
optimized and improved through iteration

In previous studies and related information, there are many that introduce the types
of multi-agent reinforcement learning, reinforcement learning coding environments,
and reinforcement learning methods. In the paper, Zhang et al [1] introduce about
three types of relationship between the agent including: fully competitive, fully
collaborate, and mix. Also, python libraries such as Gym, Pettingzoo and Magent,
introduce a convenient environment on simulating the agent problems. For Gym, it is
design for single Agent while Magent is design for an environment that contains a
huge number of quantities of agent, about over a thousand, pettingzoo, it’s better to
use for multiple agents but under a thousand. However, there are few papers that
analyze how to integrate these three aspects, namely, which methods and
environments should be used for different types of multi-agent reinforcement learning
and how to implement them in code. Also, a few papers discuss the types of decisions
made by agents. To be more detailed, for agents, the decisions they make are either
limited choices or non-selective.

This paper will focus on the range of agents numbering approximately under and
explores how to use the PettingZoo library, based on Python, to apply Q-learning and
genetic algorithms to solve decision-making problems faced by two types of agents:
those with choice-based decisions and those with non-choice-based decisions. In
addition, the paper will use the Nash equilibrium in the prisoner's dilemma, and the
gradual evolution of evasion strategies by predators to illustrate choice-based
decisions and non-choice-based decisions. Furthermore, it will provide a methodology
and implementation process using Q-learning and genetic learning. These approaches
offer agents a reference for implementing two different behavioral strategy choices.

2 Methods

2.1 The Introduction of Prisoner’s Dilemma

The Prisoner's Dilemma is a fundamental scenario in game theory as shown in Fig. 1:
two criminals are imprisoned in separate cells and cannot communicate with each
other. Each person has the option either to remain silent or confess. If both prisoners
choose to cooperate, they will each be sentenced to one year in prison. If both choose
to defect, they will each be sentenced to two years in prison. However, if one opts to
cooperate while the other defects, the cooperative prisoner will receive a three-year
sentence, whereas the defecting one will be released without charges [5-7].
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Fig. 1. The schematic of the prisoner’s dilemma [8].
For both prisoners, there are only two choices: to remain silent or to confess. If

considering all possible strategy combinations for the two prisoners and the
corresponding payoffs for each combination, then for a prisoner, when he chooses to
cooperate (remain silent), his payoff function is �1(−1,−3). When he chooses to
defect (confess), his payoff function is �2(0,−2). When comparing the two payoff
functions, it can be found that choosing to defect, represented by �2, yields the
highest benefit for the prisoner. Assuming both prisoners are completely rational and
self-interested, they will both choose to defect, reaching an equilibrium state. In this
scenario, if both choose to defect, they will each receive a payoff of -2, resulting in
both being imprisoned for two years. This equilibrium state is known as the Nash
Equilibrium.
2.2 Q Learning

Q-learning is a model-free reinforcement learning algorithm used to learn a policy by
interacting with the environment to maximize cumulative rewards. It determines the
expected cumulative reward of taking a specific action in a given state by learning a
value function known as the Q-function [9, 10].

Some basic and important definition as well as rules about Q learning are provided
as follows:

1) Q value function: The Q-function represents the expected total reward obtained
by taking action a in state s. It is denoted as �(�,�)

2) Q-table: In discrete state and action spaces, Q-values can be stored in a table.
3) Update Rule (Bellman Equation): The Q-learning algorithm updates the Q-

values using the Bellman equation
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About the Bellman Equation:
Q(s,a)←Q(s,a)+α[r+γmaxa′ Q(s′,a′)−Q(s,a)]
←: This symbol means "gets assigned to" or "is updated to". It's indicating that the

value of �(�,�) will be updated based on the expression on the right-hand side of the
equation.

• Q(s,a): The Q-value of the current state s and action a, representing the long-
term value of taking a specific action in the current state.

• a: The learning rate, which controls the extent to which new information
influences the current Q-value. It's typically a small decimal between 0 and 1.

• r: The immediate reward, indicating the immediate feedback received after
taking action �a.
• γ: The discount factor, which balances the influence of future rewards on current
decisions. It's usually a value between 0 and 1, where values closer to 1 prioritize
future rewards more.
• max �′�(�′,�′): The maximum Q-value in the next state s′. This part represents
the maximum long-term value achievable by selecting the best action in the next state.
2.3 Introduction About Pettingzoo and Parallel-env

PettingZoo is a Python-based library primarily used for simulating and handling
multi-agent reinforcement learning problems. Also, it includes many preset
environments and problem simulations.

Parallel-Env is an abstract class in the PettingZoo library used to define multi-
agent parallel environments. Unlike PettingZoo's Agent-Environment Cycle
Environment (AECEnv) class, Parallel-Env allows all agents to take actions
simultaneously within the same timestep. This parallel mode is particularly suitable
for environments where all agents need to make decisions at the same time. In the
coding part about the Prisoner's Dilemma, both prisoners make their decisions at the
same time, and there is no communication between them, therefore, it is suitable to
use the environment provided by Parallel-Env.
2.4 Training Process and Q-learning Implementation

During the training process, the Q-learning algorithm is used to train and optimize the
agents. The training process is as follows: first, the environment and the actions of the
agents are initialized. At each timestep, the agents select actions using the ε-greedy
strategy, which balances exploration (randomly choosing actions) and exploitation
(choosing the current best action). Then, the agents interact with the environment
based on the chosen actions and receive feedback in the form of rewards and new
states. The Q-table is updated using the Bellman equation to gradually optimize the
expected reward for each state-action pair. Throughout the training process, the
exploration rate ε is gradually decayed, allowing the agents to explore more in the
early stages and focus on exploiting the best strategies in the later stages. After
multiple training episodes, the agents eventually reach the Nash Equilibrium in the
Prisoner's Dilemma.
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3 Results and Discussion

By printing the results of the prisoners' choices before and after training shown in
Table 1 and Table 2, it can be observed that the final outcome reaches a Nash
Equilibrium. In the two tables, the first column shows the prisoners' choices: 1
represents confessing, and 0 represents remaining silent. The second column displays
the prisoners' payoffs. As previously described, if both prisoners choose to confess,
their payoff is 1 each. If prisoner A confesses while prisoner B remains silent, A's
payoff is 5 and B's is 0. If both prisoners choose to remain silent, their payoff is 3
each.

Table 1. Prisoners’ choices without training.

Agent Actions Rewards
player_0': 1, 'player_1': 0 player_0': 5, 'player_1': 0
player_0': 0, 'player_1': 0 player_0': 3, 'player_1': 3
player_0': 1, 'player_1': 1 player_0': 1, 'player_1': 1
player_0': 0, 'player_1': 1 player_0': 0, 'player_1': 5
player_0': 0, 'player_1': 1 player_0': 0, 'player_1': 5

Table 2. Prisoners’ choices after the training.

Agent Actions Rewards
player_0': 1, 'player_1': 1 player_0': 1, 'player_1': 1
player_0': 1, 'player_1': 1 player_0': 1, 'player_1': 1
player_0': 1, 'player_1': 1 player_0': 1, 'player_1': 1
player_0': 1, 'player_1': 1 player_0': 1, 'player_1': 1
player_0': 1, 'player_1': 1 player_0': 1, 'player_1': 1

In Table 1, without Q-learning training, the prisoners' choices are based purely on
randomness, and it could be observed that their choices are disordered. That is, the
two prisoners might choose either 0 or 1. In the second table, it could be observed that
both prisoners choose 1, which means they both defect and confess, resulting in a
payoff of 1 for each of them. This paper randomly selects actions using the Q-values
table and updates the Q-values using the Bellman equation. Through multiple updates,
the Q-values stabilize.

When dealing with problems like the Prisoner's Dilemma, the Q-learning method
demonstrates significant advantages. Firstly, in the Prisoner's Dilemma, each agent
needs to choose from a set of possible actions. Q-learning effectively balances
exploration and exploitation through the ε-greedy strategy, helping the agent widely
explore various options in the early stages of training and gradually focus on the
optimal strategy. Secondly, the payoff function in the Prisoner's Dilemma is clear and
easy to quantify, allowing Q-learning to directly use these numerical rewards for Q-
value updates.
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Specifically, through continuous updates of the Q-table, the agent learns to choose
actions that maximize the expected reward in each state, gradually mastering the
optimal strategy combination. Given sufficient training time and an appropriate
learning rate, the agent's strategy will converge to the Nash Equilibrium, where no
agent can gain a higher payoff by unilaterally changing their strategy. The
convenience of this method and its ability to handle quantifiable rewards make Q-
learning an effective tool for solving game-theoretic problems like the Prisoner's
Dilemma. Although Q-Learning is effective in handling small-scale problems like the
Prisoner's Dilemma, it faces scalability issues when applied to larger state-action
spaces. The increase in the number of states and actions results in exponential growth
in memory and computational requirements, making it impractical for more complex
environments.

4 Conclusion

This paper provides an overview of multi-agent reinforcement learning, using a
fundamental problem—the Prisoner's Dilemma—to explore how such problems can
be solved using the Q-learning algorithm. It discusses the implementation and
benefits of the algorithm in this context and offers insights into potential future
research directions. However, when dealing with problems involving more agents,
this leads to further computational demands. The scalability issue becomes a
challenge that needs to be addressed in future work.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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