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Abstract. The pervasive integration of deep learning within the realm of image 

generation has catalyzed profound advancements and breakthroughs in this 

technology. The advent of emblematic models such as Generative Adversarial 

Networks (GANs) and Variational Autoencoders (VAEs) has positioned image 

generation at the forefront of discussions in computer vision and artificial 

intelligence. This paper delves into these three quintessential deep 

learning-based image generation models: GANs, VAEs, and Autoregressive 

Models (ARMs). It offers an in-depth examination of their methodologies, recent 

enhancements, and the trajectories of their development, aiming to elucidate the 

current landscape of image generation technologies and the practical challenges 

they encounter. Furthermore, the paper projects future trends and potential 

avenues for research in image generation, spotlighting emergent areas of 

scholarly interest. By presenting a comprehensive review of extant image 

generation technologies, this manuscript seeks to furnish invaluable insights and 

resources for researchers in allied domains, thereby fostering the further 

evolution and utilization of image generation technology. 

Keywords: Generative models; Generative Adversarial Networks; 

Autoregressive Models. 

1 Introduction 

The exponential growth of digital technologies has paved the way for significant 

advances in the field of image generation, a domain that is witnessing profound 

transformations due to the development of sophisticated generative models. Among 

these, Generative Adversarial Networks, Variational Autoencoders, and 

Autoregressive Models have emerged as fundamental architectures that enable a 

myriad of applications ranging from artistic image synthesis to medical imaging and 

beyond. Each of these models leverages unique mechanisms to produce images, 

pushing the boundaries of what artificial intelligence can achieve in terms of realism 

and accuracy. GANs, for instance, employ adversarial processes to refine image 

quality, while VAEs use a probabilistic approach to generate new data points from 

learned distributions. ARMs, on the other hand, predict future outputs based on past 

data, which is invaluable for time-sensitive applications. This paper aims to delve into 

the operational principles, improvements, and applications of these models, 

highlighting how they have evolved to address specific challenges such as image  
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quality and model stability. Through this exploration, the paper seeks to underscore
the profound impact these technologies are having on various industries and to outline
potential future directions in the field of image generation.

2 Relevant Theories and Typical Methods

Below is an overview of the basic network architectures adopted by typical methods
in the field of image generation, including the architectures of GANs, VAEs, and
ARMs [1].
2.1 Basic Principles of Generative Adversarial Networks (GANs)

GANs were first proposed by Ian Goodfellow et al. in the paper titled "Generative
Adversarial Nets". This model consists of two sub-networks: the Generator and the
Discriminator [2]. The algorithm can be summarized as alternating training between
the two networks. In the first step, the Generator is fixed, and the Discriminator is
trained. In the second step, the Discriminator is fixed, and the Generator is trained.
The two sub-networks are in a continual adversarial state. As depicted in Fig.1, the
Generator progressively transforms random variables into images resembling real
ones. Meanwhile, the Discriminator distinguishes between the received images to
determine whether they are generated or real, driving the Generator to produce
increasingly realistic images. The ultimate goal of the GAN model is to continually
train and optimize both the Discriminator and the Generator.

Fig. 1 GAN network structure (Photo credit: Original).

The Generator loss function GL and the Discriminator loss function DL are
specifically defined as (Cao et al., 2024): ))](([logL 2~ xDE GPxG

 and

))](([log
2
1))](([log

2
1L 2~2~D xDExDE Gdata PxPx

 .

Where ‘ x ’represents generated images, ‘ x ’represents real images, ‘ E ’denotes
the expectation operation, ‘ GP ’represents the probability distribution of features in
generated images, and ‘ dataP ’stands for the probability distribution of real image
features.

Exploring Deep Learning-Based Generative Image Techniques             489



Innovations and Applications of Generative Adversarial Networks. The
mainstream improvements of these models can be summarized into the following two
points: 1. Optimizing the model by combining with other models; 2. Improving
methods to address the model's shortcomings. This also applies to the next two typical
models that will be introduced. For GAN, its drawbacks are quite prominent. Due to
the method of using two independently trained models to engage in adversarial
training, the training of GAN models is highly unstable, often leading to issues such
as model collapse and vanishing gradients. Additionally, ensuring the balance and
synchronization between the two models poses significant challenges, resulting in the
poor controllability of GAN models. Therefore, there have been many improvements
to GANs targeting the aforementioned shortcomings [3].

For example, to address the instability in GAN training, the paper "Wasserstein
GAN" proposed mitigating mode collapse by minimizing the Wasserstein distance
instead of the original GAN's Jensen-Shannon divergence [4]. Another example is the
challenge of image generation requiring the model to generate images as closely as
possible to the description provided, So the Conditional Generative Adversarial
Networks (Conditional GANs) emerged as one of the solutions. The earliest CGAN
model adopted the GAN-INT-CLS method, introducing text descriptions into the
Generator and the Discriminator [5]. Meanwhile, some researchers have also
proposed new architectures and training techniques to address the instability and
mode collapse issues in GAN training, for instance, optimizing the interaction
between the Generator and the Discriminator [6]. Another challenge in image
generation technology is how to generate images of the highest possible quality.
Progressive Growing GANs is one of the methods specifically designed to tackle this
challenge. By gradually increasing the image resolution and the depth of the network,
PGGAN excels in generating high-resolution and high-quality images [7].

As research on Generative Adversarial Networks continues to deepen, many
application areas have emerged. Because GANs themselves have very powerful
distribution learning capabilities, in addition to image generation tasks, GANs are also
widely used in tasks such as data generation, image super-resolution, image
restoration, image style transfer, and cross-modal image generation. These new
application areas provide new opportunities and challenges for the development of
GANs, promoting the continuous improvement and innovation of GANs. In addition,
there are some typical improvement methods, some of which are listed below but not
elaborated on: Deep Convolutional Generative Adversarial Networks (DCGANs),
Cycle Generative Adversarial Networks (CycleGANs) and Large-Scale Generative
Adversarial Networks (BigGANs), among others [8].
2.2 Operational Mechanisms of Variational Autoencoders (VAEs)

Auto-Encoders (AE) models, as a form of self-supervised learning, are predominantly
applied in reducing data dimensionality, classifying images, detecting objects, and
removing noise from images. Additionally, AE models possess the capability to
generate data samples resembling the training data, rendering them suitable for data
augmentation and unsupervised neural network pre-training. An autoencoder model is
composed of two primary components:
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Encoder: Acquires the latent characteristics of the input data, condensing the data
into a representation within a latent space. Decoder: Reconstructs the original input
data from the learned low-dimensional features [9].

VAE, a typical deep learning generative model, were proposed by Kingma et al. in
2014, rooted in Variational Bayes inference. As depicted in Fig.2, VAE employ two
neural networks to construct two models of probability density distributions: one for
conducting variational inference on the original input data, generating the probability
distribution from variational inference of latent variables, referred to as the inference
network; the other for reconstructing the approximate probability distribution of
reconstructing the original data from the variational probability distribution of latent
variables, referred to as the generative network [10].

Fig. 2 VAE network structure (Photo credit: Original).

Consider an original dataset where each data sample iX is randomly drawn from
mutually independent continuous or discrete distribution variables, forming the
dataset N

1ii }'{x= X'  . It is posited that this process yields latent variables Z,
indicating that some variables are not directly visible. The observable variable X is a
random vector within a high-dimensional space, whereas the latent variable Z exists
as a random vector in a comparatively lower-dimensional space. This model can be
delineated into two distinct processes: (1) the approximate inference of the posterior

distribution of the latent variable Z, represented by )( xzq , which serves as the

inference network; the process generating the conditional distribution of the variable
X', represented by )()( ' zxPzP   , known as the generation network [11].

VAE is named due to its structural resemblance to AE. However, its operational
principles diverge significantly from those of AE. In contrast to AE, the Encoder and
Decoder outputs in VAE are probability density distributions defined by parameters,
instead of fixed encodings.
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Novel Research in Variational Autoencoders. VAEs can be seen as a hybrid of
neural networks and Bayesian networks. Its greatest advantage lies in its ability to
learn a low-dimensional representation of data distribution by maximizing the
marginal likelihood of the data, explicitly modeling the probabilistic relationship
between observed data and latent variables. This holds true for both continuous and
discrete variables, enhancing interpretability. Additionally, VAE avoids the complex
Markov chain sampling process through parameter transformation, resulting in more
stable training compared to GAN.

However, VAE generates images by sampling from the latent space rather than
directly copying input data. This randomness often leads to ambiguous and fuzzy
representations, causing unstable output quality and having poor expressive power for
complex models. That is the culprit behind VAE's tendency to produce ambiguous
images. Moreover, it incurs significant training costs as it requires multiple iterations
[12].

To address this issue, many researchers have also improved VAEs. As illustrated in
Table 1, various VAEs are capable of producing distinct image samples tailored to
specific task requirements, significantly enhancing the quality of the generated
outputs. Table 1 lists only a few improvements and variants.

Table 1. Improvements/Variants of VAE

Improvements/Variants of VAE Abbreviation Year
Conditional Variational Autoencoders CVAE 2015
Variational Fair Autoencoder VFAE 2015
Importance-Weighted Autoencoders IWAE 2015
Conditional Variational Autoencoders with GAN CVAE-GAN 2017
Variational Lossy Autoencoders VLAE 2017
Channel-Recurrent Variational Autoencoders CRVAE 2017
Least Square Variational Bayesian Autoencoders LSVAE 2017
Information Maximizing Variational Autoencoders IMVAE 2017
Multi-Stage Variational Auto-Encoders MSVAE 2017
Nonparametric Variational Autoencoders NpVAE 2017
Memory-enhanced Variational Autoencoders MeVAE 2017
Fisher Autoencoders FAE 2018

As mentioned earlier in the article, most improvements to models revolve around
optimizing the methods within the model to address its shortcomings or combining
the advantages of other models to enhance the model.

The conventional VAE is an unsupervised model capable of producing output data
resembling the input. But it cannot control the directed generation of specific category
sample data. To enable the VAE model, which performs image generation tasks, to
generate images that match descriptions as closely as possible, conditional
information was first introduced to constrain the model's generation. By adding
category information labels to the input of the encoder, Conditional VAE (CVAE)
controls the generation of samples for specified categories. Therefore, CVAE has also
transformed from a traditional unsupervised mode to a semi-supervised mode.

Improvements like CVAE-GAN combine other models. Considering that images
produced by CVAE tend to appear blurry, GAN can use its adversarial nature to
maintain the fidelity of the generated images. By adding the GAN's Discriminator
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after the CVAE's Decoder, it ensures that the images generated by CVAE are of high
quality [13].

The Cyclic Channel Variational Autoencoder (CRVAE) is a VAE variant proposed
by Shang et al. in 2017. CRVAE integrates Convolutional VAE (cVAE), Long-Short
Term Memory (LSTM), and Generative Adversarial Networks (GAN), achieving a
multi-channel cyclic interconnected network structure. It overcomes many drawbacks
of traditional VAEs, such as generating blurry images, poor representation of complex
structures, and unsuitability for sequential model applications, and shows good
performance in image generation and data reconstruction.

It is worth mentioning that, although the methods listed in Table 1 are not from
recent years, they are typical improvement methods. The cutting-edge improvements
of the three typical models introduced in this paper are all aimed at their respective
task goals, combining one or more variants or improvements to achieve better results.
For example, Sina et al. proposed a method for synthesizing cardiac MR images for
the medical field, which also combines GAN and VAE. Most new research
improvements and variants are inseparable from these typical models and typical
improvement methods [14]. Therefore, this paper lists some of the new improvements
but does not provide a detailed introduction.
2.3 Application Framework of Autoregressive Models (ARMs)

Autoregressive (AR) models are statistical and time series models used for analyzing
and forecasting based on the previous values of data points. These models are widely
employed in various fields, including economics, finance, signal processing, natural
language processing, and the image generation field being discussed in this paper,
among others.

At the core of autoregressive modeling is the AR(p) model, with "p" denoting the
model's order. And the present value of a variable is depicted as a linear sum of its
preceding "p" values along with a white noise error term. The general formula for the
AR(p) model can be expressed as follows:

tptp2t21t1t εXφ...XφXφcX  
(1)

tX represents the value of a time series at time t , which is the value to be predicted
or understood.

c is the constant term, sometimes included to account for nonzero mean.
p ,...,3,2,1 are autoregressive coefficients representing the weights assigned to

previous values. These coefficients determine the strength and direction of influence
of past values on the current value.

t is the error term, typically assumed to be white noise, representing the
variance or randomness that cannot be explained at time t . Autoregressive models
require the selection of an appropriate order (p) and estimation of suitable
autoregressive coefficients (phi) to assess the goodness of fit of the model. Different
orders and estimation methods may yield different results. In the field of image
processing and generation, autoregressive models can also be utilized. Due to the
correlations between image pixels, autoregressive models can be employed for
pointwise prediction and computation by considering a two-dimensional image as
one-dimensional sequential data. In image generation, autoregressive models are often
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combined with other models to model the dependencies between image pixels. One of
the most typical models is PixelRNN and PixelCNN [15]. Fig.3 illustrates a simple
schematic example, using PixelCNN proposed by Van den Oord et al.

Masked Mask Convolution Kernel

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0
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Fig. 3 PixelCNN network structure (Photo credit: Original).

Standard convolutional layers extract information from all pixels simultaneously.
Therefore, in PixelCNN, the authors relied on traditional CNN techniques and
introduced Masked Convolutions while eliminating pooling layers to model the data.
They stacked multiple convolutional layers to predict the value of each pixel in the
image pixel-wise. During the generation process, the prediction of each pixel
considers the previously generated pixels [16].

Recent Developments in Autoregressive Models. The strength of Autoregressive
Models (ARMs) lies in their versatility with input data, making them ideal for a range
of sequence generation tasks such as text, speech synthesis, time series forecasting,
and image generation. ARMs can adapt to generate videos with appropriate
modifications due to their sequential data handling capabilities. Additionally, the
incremental nature of their generation process, where each output depends on the
preceding one, allows for greater interpretability and controllability [17]. This
structured model approach also facilitates specific enhancements and the integration
of constraints to remedy shortcomings.
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However, these benefits come with limitations. The dependency on previous
outputs can lead to information loss or error accumulation over long sequences, and
the focus on local information might affect the overall coherence and consistency of
the generated images. Moreover, the sequential computation increases the model’s
computational complexity exponentially with the sequence length, which can be
resource-intensive, especially for large-scale and high-resolution tasks. To mitigate
these drawbacks, ARMs have been combined with other models such as GANs and
VAEs, and enhanced with optimization techniques like multi-channel methods,
attention mechanisms, and regularization. For example, AR-GAN integrates ARM
with GAN, enhancing the generative capabilities, while AR-VAE merges ARM with
VAE to balance generative efficiency and variability [18].

Additionally, Sparse Vector Autoregressive Models have been developed to
address the computational challenges associated with long sequences. By introducing
sparsity, these models reduce the number of parameters and limit the scope of
attention mechanisms, decreasing computational demands while preserving
generation quality and improving generalization and interpretability. Recent
advancements also highlight the use of autoregressive models in video generation,
showcasing their potential as leading tools in this area due to their inherent flexibility
and capacity for handling dynamic, sequential data.

3 Analysis of Technological Applications

3.1 Applications in Artistic Creation

The advancement of image generation techniques, empowered by deep learning, has
revolutionized artistic creation and found widespread applications in various domains
in recent years. Among these applications, image-related tasks stand out, including
but not limited to image super-resolution, restoration, completion, and style transfer.

With the capability to produce highly realistic images, GANs and VAEs have
emerged as essential tools and sources of inspiration for artists. GANs, by learning
from a vast amount of artistic styles and contents, can generate new artworks with
distinct styles, enabling artists to explore novel creative avenues. Moreover, they
contribute to art restoration and repair by reconstructing damaged artworks based on
known pixel information or removing redundant details.

Prominent AI painting software in recent years includes MidJourney, OpenAI's
DALL-E, and DeepArt. Furthermore, image generation technologies have found
applications in producing animations and special effects for movies.

In the realm of music, image generation techniques also shine, particularly in
music visualization. Models can generate corresponding visual effects based on the
rhythm and emotional tones of music, enhancing immersive experiences. Popular
software applications include Magic Music Visuals, Spotify, and Suno.

Regarding video creation, generative models introduce an additional temporal
dimension, allowing the generation of a series of continuous and correlated image
frames, thereby producing coherent video sequences.

That above has sufficiently highlighted the multifunctionality and immense
potential of image generation technology across various creative domains.
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3.2 Applications in Virtual and Augmented Reality

Virtual Reality (VR) and Augmented Reality (AR) are also crucial application
domains, but they cannot be solely achieved through image generation technology.
Instead, they require integration with fields such as digital image processing and
computer vision to achieve their full potential. Image generation models can assist in
creating high-quality virtual environments and AR content, offering users a more
realistic and immersive experience.

In virtual reality, generation models can be used to create realistic scenes and
characters, such as scene expansion similar to image completion, scene generation,
and generating scenes in 360-degree panoramic videos or images. For instance, due to
the autonomous unsupervised learning and stochastic sampling advantages of
generative adversarial networks, coupled with their powerful distribution learning
capabilities, they can create highly complex virtual environmental scenes, even
extending to three dimensions.

In augmented reality, image generation techniques can be used for generating and
optimizing AR effects. By generating and superimposing virtual objects onto the real
environment in real-time, AR generation can appear more realistic and natural.
3.3 Prospects in Other Fields

Image generation technology also has wide-ranging applications in fields such as
healthcare and education. For instance, in medical training, it can generate realistic
images of medical cases for more intuitive training, without requiring a large number
of real case samples. For example, generating CT scans for interns or trainee doctors
to practice diagnosing conditions. In the field of early childhood education, images
are often more easily accepted by young children than text. However, high-quality
image resources require significant manpower for creation, leading to issues such as a
limited variety of learning resources and difficulty in creating personalized resources.
Image generation technology can effectively address these challenges.

Furthermore, image generation models can provide a considerable quantity of
samples for any object that requires images. For instance, one image generation
model can generate a large number of images to provide samples for another image
generation model. This can be applied to scenarios where a large number of samples
are needed or samples are difficult to obtain, such as training models for facial
recognition that require a vast amount of data, or providing interns with generated
images of brain tumors and cardiac MRIs in medical training scenarios. By
synthesizing a series of pseudo-pathological synthetic subjects with the desired
corresponding features, this technology can effectively help train new medical
personnel.

4 Challenges and Solutions

The development and application of artificial intelligence-related technologies
inevitably raise concerns about privacy, security, and ethics among the public. In
future development and application, these are unavoidable challenges.
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4.1 Social Acceptance and Costs

Although image generation technology has many advantages in applications such as
art, medicine, and education, it also poses significant challenges and triggers new
conflicts in some areas. One of the most notable areas is its application in the field of
art. With technological advancements, the use of artificial intelligence in the field of
painting has become more common and prominent, reaching a peak in 2020 and 2021.
AI-created artworks have garnered widespread attention, with some pieces even being
sold at high prices at auctions, causing a sensation. On one hand, many young people
admire the skill and creativity of AI-generated artworks, seeing it as a manifestation
of technological progress and bringing new possibilities to the art world. On the other
hand, practitioners in these fields are very concerned that the rise of AI will replace
traditional professions, especially in the art field, fearing that the value of human
creation will be diminished and will affect the ecological balance of the art industry.
Additionally, with many individuals and groups using AI painting to generate images
they need, questions have been raised about copyright issues and abuse of AI works.
Who owns AI works—the AI itself, the operator, or the company or studio to which
the AI belongs? Is the widespread appearance of AI works encroaching too much on
the space for human works?

On the other hand, developing and deploying practical image generation
technology models requires a large amount of resources, including hardware devices,
human resources, and data storage. Even with abundant resources, there needs to be a
balance between cost and performance. Currently, mainstream AI painting software
belongs to some well-capitalized large companies, and monopolies and technological
blockades are also potential challenges.
4.2 Issues of Data Privacy Protection and Security

The application of image generation technology relies on the collection and
processing of data, so the second challenge is the public's privacy and security
concerns. Firstly, while not all image generation models collect personal information
data, it is inevitable in some generative tasks. Particularly, for targeted and
personalized generation, such as when generating facial data, many real personal
facial photos are needed. This data may include personal identity information or other
sensitive information, so strict compliance with privacy regulations and best practices
is necessary during data collection, storage, and processing. If this data is leaked, it
may affect the privacy of users, such as identity theft if facial information is leaked.
4.3 Proposed Solutions

Firstly, it is essential to ensure that technology aligns with human values. Relevant
departments and institutions should strengthen supervision, clarify the scope of data
use and protection, and enhance measures to combat and penalize data privacy
breaches. They should also formulate relevant policies and regulations to ensure
safety and reliability. Developers and decision-makers need to increase transparency
and actively promote public understanding and acceptance of these technologies,
remembering the essence and purpose of technological development.

Secondly, awareness and understanding of data privacy and security should be
enhanced. For models aimed at public use, especially those that require the collection
of user personal information, technical means for data privacy protection should be
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strengthened. Many practical methods and technologies exist for data transmission,
encryption, and protection. For example, decentralized data training methods allow
model training without exposing raw data. Federated learning technology allows
multiple participants to train models locally and only share model parameter updates,
not raw data. Techniques like homomorphic encryption allow computations on
encrypted data, thus protecting data privacy. Developers and decision-makers need to
remain vigilant to ensure that users' privacy is adequately protected.

In summary, issues related to data privacy, security, social costs, copyrights, and
ethics are all important considerations in the development and application of image
generation technology models. It requires effective measures and cooperation from all
sectors of society to ensure that these technologies bring more benefits to society
while minimizing potential risks and negative impacts as much as possible.

5 Future Prospects

In the future, image generation technology is expected to advance in several key
areas:
 Authenticity, Diversity, and Controllability of Outputs: Future developments

aim to enhance user control over the generation processes, leading to outputs
that are more diverse, realistic, and tailored to specific needs. This will
expand the potential applications of generated content.

 Real-time Generation: Improvements in algorithm efficiency will enable
real-time image generation, essential for interactive applications such as
virtual reality games, where images and animations must adapt instantly to
user actions and environmental changes.

 High-resolution Generation: There will be a focus on producing images with
higher resolution and finer details, which is particularly critical in fields like
medical imaging, where precision and clarity are paramount.

Additionally, as model improvements and variations evolve, new combinations of
these models are likely to be explored.

A primary future direction for image generation technology will be cross-modal
development, extending beyond traditional formats to include transformations like
image-to-3D modeling, image-to-video, and image-to-scene generation. This
approach will not only enhance virtual reality experiences but also advance
technologies in autonomous driving by providing more intuitive interfaces and richer
visual information. In summary, future research will likely concentrate on multimodal
integration and cross-modal generation, merging information from various sources to
enhance multimodal data generation and processing. Ongoing optimization of models
and algorithms will improve the robustness and security of generative models,
broadening their application across different fields and industries, and fostering
cross-domain innovations.
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6 Conclusion

This paper surveys deep learning-driven image generation techniques, focusing on
three pivotal models:GANs, VAEs, and ARMs. It explores their foundational
principles, recent advancements, and diverse applications. The rapid evolution in
image generation has ushered in notable enhancements in content quality and
diversity, propelling forward the domains of computer vision and artificial
intelligence.

Image generation technologies demonstrate vast potential across various sectors
including artistic creation, virtual and augmented realities, medical imaging, and
autonomous driving. These applications are not only revolutionizing artistic
endeavors and digital content creation but are also pivotal in technical fields requiring
high fidelity visual simulations. Despite these advances, the deployment of image
generation technologies encounters significant challenges including social acceptance,
cost efficiency, and data privacy. To address these issues, researchers are refining
algorithms, bolstering data security measures, and advocating for robust legal
frameworks. Future research directions likely to shape the landscape of image
generation include multimodal, real-time, and high-resolution image generation. Key
focal areas include enhancing model controllability, boosting image realism and
variety, and integrating novel architectural frameworks.

In conclusion, deep learning-based image generation has achieved significant
milestones in both theoretical and practical aspects. As algorithmic and hardware
developments continue to mature, broader and more effective applications of image
generation are anticipated, enhancing user experiences and service quality across
industries. This review aims to offer critical insights and serve as a reference for
researchers, further catalyzing the progress of image generation technology.
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