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Abstract. In recent years, simultaneous localization and mapping (SLAM) 

techniques have seen continual improvement. Meanwhile, the development of 

Neural Radiance Fields (NeRF) has surged, demonstrating significant advantages 

in the mapping process at the backend of SLAM. Researchers are increasingly 

exploring new approaches integrating NeRF deeply into SLAM technology, 

propelling SLAM towards greater intelligence and efficiency. Compared to 

traditional SLAM methods, NeRF-based SLAM offers numerous advantages, 

albeit facing several challenges. This paper reviews the development of NeRF 

technology and analyzes representative NeRF-based SLAM methods. Through 

comparison and analysis, it summarizes the strengths and weaknesses of NeRF-

based SLAM methods, and anticipates the future directions and application 

prospects of NeRF technology in the SLAM field, highlighting research 

directions such as real-time improvement, performance optimization, and 

interdisciplinary integration. This paper aims to provide researchers with insights 

into NeRF-based SLAM technology, fostering further research and application 

in this field. 
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1 Introduction 

With the rapid development of technology, SLAM has become an indispensable core 

technology in fields such as robotics, autonomous driving, and augmented reality [1]. 

The SLAM system aims to achieve autonomous navigation of robots in unknown 

environments by simultaneously constructing environment maps in real-time and 

determining their own positions, providing precise navigation information for robots. 

This is vital for advancing sectors including autonomous driving, smart homes, and 

various medical procedures, both non-invasive and minimally invasive 

A classic SLAM typically consists of five stages: mapping, tracking, optimization, 

loop closure, and localization. Traditional SLAM methods achieve localization and 

map construction based on geometric principles and feature point matching by 

extracting features from sensor data. However, in environments with low texture or 

significant illumination changes, where there are few feature points available for  
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extraction and matching, the performance of traditional SLAM may be suboptimal
[1]. Given the demand to overcome current challenges and the significant
achievements of neural network technology in computer vision in recent years,
especially in image generation and recognition, the fusion of deep learning and
traditional geometric methods has become a new trend in SLAM. Considering one of
the key challenges faced by SLAM is the ability to synthesize and reinforce real-time
retrieval and application of environmental information from new perspectives, the
development of NeRF in recent years has led to the integration of NeRF and SLAM
becoming a frontier development hotspot in the SLAM field [2]. Unlike traditional
geometry-based rendering methods, NeRF directly manipulates raw pixel values to
generate photo-realistic maps without relying on pre-extracted features or geometric
information. This makes it possible to directly perform localization and map
construction from image data using neural networks. The application of NeRF in the
SLAM field shows promising prospects, while the research process has also revealed
certain limitations.

To address the inadequate attention to the latest developments in SLAM surveys
and meet the growing interest in research in this field, this paper reviews the past four
years of NeRF-based SLAM technology. In-depth analysis of representative NeRF-
integrated SLAM systems such as iMAP, Nice-SLAM, NoPe-NeRF etc, presents the
rapid progress in this field [3][4][5]. In addition, unlike mere enumeration and
comparison, this review introduces these studies from a novel perspective by utilizing
the integration points of NeRF and SLAM frameworks as the classification basis. It
provides a comprehensive overview of the incorporation of NeRF in the five key
stages of mapping, tracking, optimization, loop closure, and localization within
SLAM. This encompasses an analysis of representative research at each stage along
with their underlying principles, applications, advantages, and challenges. Through
thorough investigation and comparison of these methodologies, this paper elucidates
the strengths and limitations associated with NeRF-based SLAM while also
discussing potential future directions for development.

2 The Overview of NeRF

2.1 Mapping

SLAM requires maps that are continuously expanding and easy to query. On the other
hand, the process of building maps with NeRF is easily scalable, convergent, and
superior in rendering speed. The representation of NeRF maps can be categorized into
three types: implicit, explicit, and hybrid. Implicit refers to the use of Multilayer
Perceptrons (MLPs) to store the map, while explicit means using traditional methods
such as voxel grids to represent the map, and hybrid representation refers to a
combination of implicit and explicit methods. Implicit maps can be further divided
into maps represented by a single Multilayer Perceptron (MLP) and maps represented
by multiple MLPs. Below, this paper will analyze each in detail.
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Implicit Representation.The iMAP, published in 2021, is a pioneering work in the
field of NeRF-based SLAM, which uses a single MLP for map representation [3]. To
meet the needs of real-time mapping, iMAP has only four hidden layers, each with
256 neurons, and does not consider reflections, so it does not input the viewing
direction. Due to its single MLP, it suffers from a severe forgetting problem.
However, in this system, researchers addressed the forgetting problem by organizing
keyframes into a memory bank set for continuous backend map optimization, to some
extent. From the map effect, it can be seen that the single MLP's representation
capability is limited and can only model small scenes, leading to new challenges for
applying NeRF to SLAM systems—modeling unbounded scenes.

Mip-NeRF 360 is the first attempt of NeRF to model unbounded scenes [6]. Its
predecessor, Mip-NeRF, was used to improve rendering quality and speed up
rendering, while Mip-NeRF 360 extended the Kalman filter to map unbounded scenes
into bounded coordinate spaces, and then mapped the set of mappings to model
unbounded scenes.

NeRF++ is another attempt of NeRF on unbounded scenes [7]. It divides the space
into foreground and background, reconstructs the foreground using the original NeRF
method, and then uses the method of reverse spherical parameterization to build the
background on an outer sphere. However, this solution and the unbounded scenes
processed by Mip-NeRF 360 are around a central camera running a week to establish
a model, while the camera pose of SLAM is arbitrary. To achieve unbounded scene
modeling under arbitrary camera poses, the multiple MLP implicit map representation
emerged.

Block-NeRF is a representative model based on multiple MLPs for implicit map
representation [8]. It divides the scene into multiple separate blocks, which are set at
key positions throughout the scene to ensure that the visible range of these blocks can
cover the entire scene. These blocks are trained separately, and each block can be
updated individually, avoiding updating the entire map each time. During rendering,
the visible blocks within the visible range are superimposed according to visibility to
complete map rendering. However, distant blocks do not participate in viewpoint
synthesis, so this model does not truly solve the problem of background modeling, but
its strategy is close to the needs of SLAM local maps.

Another model of multiple MLP implicit map representation is Mega-NeRF, which
achieves scalable reconstruction of large scenes [9]. This model divides the entire
scene into regular spatial cells, each with its MLP weight. At the same time, it
budgets the spatial cell density and RGB based on the idea of Plenoctress, placing
them in an octree to improve rendering speed [10]. However, it upgrades Plenoctress's
fixed octree to a scalable octree to save computational resources. In addition, for the
handling of foreground and background, Mega-NeRF refers to the strategy of
NeRF++. While NeRF++ uses a sphere to encapsulate the camera and objects in the
foreground, resulting in many invalid sampling points on the ground, Mega-NeRF
changes the sphere of the foreground to an ellipsoid, reducing such invalid sampling
and thus reducing computational consumption. However, even so, the modeling speed
of the NeRF system still cannot meet the real-time needs of the existing SLAM.
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In summary, if the backend map of the SLAM system adopts an implicit scene
representation, the currently available mapping strategies mainly include accelerating
training, accelerating rendering, and map expansion. For accelerating the training
process, if it is based on a single MLP map representation, acceleration methods such
as Instant-NGP can be used to improve the performance of MLP itself; if it is based
on multiple MLP map representations, some MLPs can be selected for training
according to certain strategies and updated locally, such as Block-NeRF [11][8].
Accelerating the rendering process can be achieved by increasing the proportion of
effective sampling points, or by selecting some MLPs for rendering according to
certain strategies, which is faster than global rendering. In addition, pre-extracting the
body density and RGB and building an octree as a buffer like Mega-NeRF or
plenoctree can avoid querying the MLP during rendering, thereby improving
rendering speed [9][10]. For map expansion, the current solution is to pre-divide the
area and call multiple NeRFs autonomously allocated by the SLAM system based on
the camera's running status. However, this map expansion method is limited by
significant pre-planning and cannot achieve dynamic expansion.

Therefore, the current implicit scene representation method of NeRF can
significantly improve the rendering quality of scene reconstruction, but the problems
of slow speed and difficulty in expansion still need to be solved. It still cannot fully
meet the needs of SLAM backend mapping.
Explicit Representation.Explicit scene representation does not rely on MLPs, but
since NeRF's application to SLAM is crucial to achieve volume rendering, as long as
the map supports volume rendering, NeRF's application to SLAM can be realized.

DVGO is a typical model of explicit representation, which, detached from MLPs,
directly implements voxel grid optimization, achieving fast convergence of radiance
field reconstruction [12]. Compared to the original NeRF, its training speed has
increased by two orders of magnitude. When rendering, DVGO first extracts the
voxel density values around the specified position, then performs trilinear
interpolation to obtain the density value at position x, activates it through softplus,
and calculates the opacity through the alpha formula. Although this type of map
representation optimization has the advantages of fast convergence speed, easy
expansion, and editing, it is difficult to fit high-frequency features, and the operation
of volume rendering is challenging, so researchers have begun to explore mixed scene
representation methods of explicit and implicit.
Hybrid Representation.Nice-SLAM truly achieves mapping with a mixed
representation of explicit and implicit scenes, inheriting the camera tracking idea of
iMAP, but it remedies the shortcomings of iMAP's failure in large-scale scenes [4][3].
Nice-SLAM uses three voxel grids of different resolutions, nested to represent the
scene, storing feature vectors in the voxel grid, sampling with trilinear interpolation,
and then decoding with a pre-trained decoder to merge the decoding content of each
layer of the grid to achieve volume rendering. However, since its voxels are pre-
allocated, it cannot achieve map expansion.

Vox-fusion is another NeRF-based mixed scene representation SLAM method,
which realizes map expansion and reduces the memory consumption of Nice-SLAM
from 200M to 0.15M [13][4]. Its map is stored in an octree, which can expand
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continuously with the progress of SLAM. The grid stores the encoding of the signed
distance field (SDF). Vox-fusion sets the SDF value of the object surface position to 0
in the grid. The surface is positive outward and negative inward, thus achieving
excellent fitting of the scene's geometric structure. However, both Nice-SLAM and
Vox-fusion lack new viewpoint synthesis capabilities in map representation, resulting
in gaps in map representation. In addition to voxels, the explicit scene representation
of mixed schemes can also return to a more traditional point cloud-based scene
representation, which stores feature vectors in the point cloud and achieve continuity
through interpolation.

The most intuitive role of NeRF in SLAM is as the backend scene representation.
In summary, NeRF-based SLAM map representations can be divided into three
categories: using one or multiple MLPs to store the full implicit representation of the
scene. Its advantages are that it can continue the excellent characteristics of the
original NeRF, with continuous scene representation, convenient optimization, but in
practice, they do not quite meet the needs of SLAM for the backend because such
maps are often difficult to expand and cannot be applied in real-time. The second type
is a fully explicit voxel grid, which is less frequently used due to its difficulty in
fitting high-frequency features and not being very friendly to volume rendering.
However, its advantages, fast optimization convergence speed, easy expansion, and
editing, have inspired NeRF work. The third type is based on the explicit storage of
voxel or point cloud feature vectors, which are then decoded by MLPs during
rendering. The advantage of this approach is that it retains the advantages of
traditional map representation—easy expansion, editing, training, and fast rendering
speed—and can achieve rendering quality to some extent. In conclusion, for mapping,
the mixed scene representation based on voxels and feature vectors can meet the
needs of SLAM and is the most suitable and commonly used.

2.2 Tracking

In SLAM, precise, fast, and robust camera pose estimation is required at the frontend.
The NeRF map, acting as the backend, leverages its inverse rendering capability to
aid in pose estimation at the frontend. Nice-SLAM achieves camera pose optimization
and local map updates simultaneously through NeRF's inverse rendering [4].
Furthermore, Nicer-SLAM, as an improvement, surpasses Nice-SLAM in terms of
localization accuracy and rendering quality [14][4]. However, NeRF inverse
rendering has its drawbacks, particularly sensitivity to initial pose. When the initial
pose deviates significantly, the accuracy of local map optimization achieved by NeRF
inverse rendering is greatly reduced. Subsequently, NoPe-NeRF proposes a method to
enhance camera pose estimation accuracy during training by introducing undistorted
monocular depth priors [5]. These priors, generated to correct scale and translation
parameters, constrain the relative poses between adjacent frames. To enforce these
constraints, the research team introduces novel loss functions, including Chamfer
distance loss based on undistorted depth maps generated from monocular depth and
depth-based surface rendering loss. Experimental results demonstrate that this method
performs excellently in handling challenging camera trajectories and outperforms
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earlier methods in terms of new viewpoint rendering quality and pose estimation
accuracy.

2.3 Optimization

In NeRF, camera pose optimization is also necessary, as inaccurate camera poses can
pose challenges to reconstruction. Synchronous reconstruction and optimization are
mutually beneficial. BARF introduces image alignment theory into NeRF, jointly
optimizing camera poses and reconstruction models [15]. Therefore, when adjusting
camera poses, it uses low-pass filters at different frequencies, equivalent to aligning
low-frequency image information for pose optimization.

Additionally, VBA implements optimization on NeRF [16]. It performs online
scene reconstruction, employing a B+ tree combined with VDB grids to store maps.
This can be seen as an upgraded version of octrees combined with regular voxel grids,
enabling more efficient expansion and querying. Its grids store multi-layer spatial
features, decoded through MLP, and the optimization method is similar to the inverse
rendering approach. It simultaneously optimizes camera poses, features stored in the
grid, and MLP parameters by calculating the loss between the rendered RGB, Depth,
and ground truth.

2.4 Loop Closure

In SLAM systems, accumulated drift errors from sensor data collection and long-term
camera pose estimation necessitate loop closure detection modules to correct drift
errors by detecting whether the camera has passed through previously visited
locations. A classic SLAM system ORB-SLAM2 utilizes a bag-of-words model
specifically for matching ORB features of the current frame to identify loop closures.
After identifying loop closures, correction of keyframe poses is necessary. However,
for NeRF, the backend map encodes keyframe image content within the map,
especially for implicit maps. This implies that the mapping process is irreversible, and
the encoded information cannot be adjusted for pose correction, thus loop closure
correction cannot be achieved.

SE3 addresses this issue by implementing an equivariant mapping from SE3 to
feature space, synchronously adjusting camera poses and implicit map representations
[17]. Leveraging the frontend localization module of ORB-SLAM2, the authors
utilize their voxel grid as the backend, constructing a SLAM system that achieves
loop closure correction for implicit maps.

2.5 Localization

The foundation of loop closure detection is achieving camera localization on the
global map. On top of this, relocalization can restart SLAM after camera tracking loss
or interruption.

IR-MCL achieves global localization in NeRF maps built from 2D radar scans
through Monte Carlo localization [18]. It samples several candidate camera poses in

Advancement in Neural Radiance Fields Propulsion for SLAM             137



space, calculates their differences with observed values, generates weights, eliminates
candidate poses with low weights, iteratively updates poses, and finally, when
converging near the true pose, weights the remaining poses to obtain the final pose.
This idea may be applicable to 3D maps, but whether convergence is achievable in 3D
space requires further investigation.

CP-SLAM proposes a novel neural network-based 3D scene representation method
within NeRF, where each point maintains a learnable neural feature for scene
encoding, associated with specific keyframes [19]. Additionally, it updates the global
optimization framework, similar to traditional bundle adjustment, improving system
accuracy. This enhances both localization and reconstruction capabilities compared to
existing methods.

3 Discussion

3.1 Integration of Traditional Point Clouds and Neural Radiance Fields

The point cloud-based mapping approach combines traditional point clouds with
neural radiance fields by storing feature vectors in point clouds. This integration not
only achieves NeRF rendering quality but also retains the intuitive and easily scalable
characteristics of point clouds. Importantly, once the map returns to a point cloud,
various backend optimization methods of traditional SLAM can be utilized, which is
significant for SLAM. However, there remains a gap in reapplying traditional
SLAM's backend optimization methods to NeRF-based SLAM research.

3.2 Migration Challenges of Geometry-Based Optimization Algorithms

Compared to traditional geometry-based map representations, NeRF faces challenges
in achieving frame-to-map alignment. Traditional maps are typically based on
geometric features such as keypoints or edges, easily aligned with current frames
using traditional geometric matching algorithms (e.g., feature matching, ICP, etc.).
However, since NeRF maps are dense voxel representations learned by neural
networks rather than sparse feature points or geometric structures, traditional
geometry-based matching methods cannot be directly applied.

Therefore, NeRF map pose optimization often employs iterative methods to
minimize reprojection errors between current frames and the map. This optimization
process may require additional information, such as optical flow or depth information,
to aid in pose estimation. However, due to the unique representation of NeRF maps,
optimizing them is not as straightforward as traditional maps, especially in scenes
with rich features and textures, which may lead to problems such as local optima and
slow convergence. Therefore, migrating mature geometry-based optimization
algorithms to NeRF maps is a challenging task.
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3.3 Adaptive NeRF-based SLAM Methods for Dynamic Environments

In adaptive NeRF-based SLAM methods for dynamic environments, we face various
challenges. The presence of dynamic objects may interfere with traditional NeRF
methods, leading to instability in reconstruction results and increased localization
errors. Therefore, to enhance adaptability in dynamic environments, modeling and
tracking mechanisms for dynamic objects can be introduced. By modeling dynamic
objects and tracking them with motion models, they can be distinguished from static
scenes and dynamically updated in the NeRF reconstruction process to maintain
reconstruction accuracy. This approach effectively addresses challenges posed by
dynamic environments, making NeRF-based SLAM methods more robust and
reliable.

Furthermore, objects in dynamic environments often exhibit certain temporal
characteristics, with their motion trajectories and appearances changing over time.
Therefore, leveraging temporal information can better understand and reconstruct
dynamic environments. Combining visual SLAM techniques allows for the inference
of dynamic object motion trajectories between consecutive frames and consideration
during NeRF reconstruction. By fully utilizing temporal information, the stability and
accuracy of NeRF-based SLAM in dynamic environments can be improved,
providing more reliable solutions for practical applications.

3.4 Trend of Multi-Sensor Fusion

Under the trend of multi-sensor fusion, incorporating multi-view information
processing and multi-sensor fusion can improve system performance. In dynamic
environments, single-view image data may be affected by dynamic object occlusion
and interference, impacting reconstruction results. To address this issue, multi-view
information can be introduced for processing. By fusing image data from multiple
views, a more comprehensive environmental information capture can be achieved,
reducing reconstruction errors caused by occlusion and interference, thus
improvingrobustness and accuracy of reconstruction. This multi-view information
processing strategy effectively addresses challenges in dynamic environments,
providing more reliable support for NeRF-based SLAM methods. Additionally, multi-
sensor fusion technology combines different sensor data, such as depth cameras,
IMUs, LiDAR, etc., to obtain richer environmental information and enhance
reconstruction and localization accuracy and robustness through well-designed fusion
strategies. Therefore, multi-sensor fusion technology is of great significance for
improving the performance of NeRF-based SLAM in dynamic environments and
deserves further research and exploration.

4 Conclusion

With the continuous development of neural radiance field methods (NeRF) and other
neural rendering-based environment reconstruction methods, the integration of NeRF
models into SLAM systems has significantly advanced the technology, notably
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enhancing continuous mapping, robustness, and generalization capabilities, as well as
addressing many shortcomings of traditional SLAM models. NeRF-based SLAM
methods have shown tremendous potential in environmental reconstruction and
localization. This paper comprehensively analyzes over a dozen NeRF-based SLAM
papers in the order of various stages of SLAM technology, studying the evolution and
advantages and disadvantages of their methods, discussing the improvement of
system performance by running dual-thread parallelism in NeRF-based SLAM
systems, and discovering some highly mature frameworks. Future research will
largely build upon these established foundations. Finally, the paper points out the
problems existing in current NeRF-based SLAM systems, including real-time
performance, adaptability to dynamic environments, and multi-sensor fusion, which
still need further research and solutions. Through this summary, the author hopes to
attract more attention from relevant practitioners, promote research on NeRF-based
SLAM, and further advance the development of future SLAM systems.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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